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Abstract. Assessment is one of the most powerful educational tools for promoting 

effective learning. But it must be used in the right way. We need to be on helping teachers use 
assessment as part of teaching and learning, in ways that will raise pupil’s achievement. This 
paper proposes some problems to assess student’s mathematical creative competency in 
grade 10 in Vietnam. 

Keywords: mathematics competency, creative competency, mathematics teaching 
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1. INTRODUCTION  
 
 
 

Assessment is one of the most powerful educational tools for promoting effective 
learning. But it must be used in the right way. We need to be on helping teachers use 
assessment as part of teaching and learning, in ways that will raise pupils achievement. 

Before teaching, the teachers need to determine educational aims and appropriate 
teaching methods for each pupil, Therefore, teachers need to have the initial assessment of the 
competence of each pupil about attitudes, ability to acquire knowledge, they use knowledge in 
practice, circumstances, etc., factors that impacts pupils educating process. Therefore, in 
teaching mathematics, the teachers should also have diagnostic competence, assessment 
competence of comprehensive. Currently assessment competency development of 
mathematics teachers are not good in Vietnam. 

In this paper, we suggest some techniques for pupils process learning. 
 
 
 

2. RESULTS AND DISCUSSION 
 
 
 
We give out some examples in [3] that help pupils develope their creativity while 

teaching  quadratic equation lesson in Mathematics grade 10 in Vietnam. 
Given .4=0,,=)( 22 acbacbxaxxf   
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Proposition 1. Suppose 21, xx  are two solutions of 0.=)(xf  We get:  
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Proposition 2. Suppose ][)( xRxf   and .4= 2 acb   We get:   
 
    i) 0>)(xf  for all x  if and only if { 0>a  and 0< }. 
 
    ii) 0)( xf  for all x  if and only if { 0>a  and 0 }. 
 
    iii) 0<)(xf  for all x  if and only if { 0<a  and 0< }. 
 
    iv) 0)( xf  for all x  if and only if { 0<a  and 0 }. 
 
    v) 0=)(xf  have two solutions 21, xx  and real numbers 21 << xx   if and only if 

0.<)(af   
  
Proposition 3. Suppose finite sequence of real numbers )(),(),( iii tba  such that 

BbbAaa ii  <,0<0  and 0it  where for all .,1,= ni   We have  
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Proof. i) By 
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Suming up we get:  
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Hence .
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 ii) So Aaa i <0  and 0it  deduce i
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 The first technique. Teachers help pupils to recognize the relation between equations 

and theory they learned. 
 
Example 1. Given real numbers 321321 ,,,,, bbbaaa  such that 0.>2

3
2
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1 aaa   We have  
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Proof. Considering the function  xbababaxaaaxf )2()(=)( 332211
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1 bxabxabxabbb   From the supposition we deduce 01 a  

and 0.)(
1

1 
a

b
f  Applying proposition (2.v) we get 0=)(xf  have some solutions, deduce 

0.  
 
The second technique. Convert a problem to another equivalent problems. 
 
Example 2. Given triangle .ABC  Let cba ,,  denote the length of edges and let 

ABCSS  = . Prove that for all 0>x  we have the inequality: 

.341)
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Proof. The above inequality is equivalent to 

02)34(2 222222  bxScbaxa  for all 0.>x  Consider 

].434][434[= 222222 abScbaabScba   
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Similary, since )
3

(cos1


 C  deduce 0.434222  abScba  We deduce 

0  hence ends the proof. 
 
 The third technique. Change the approaching methods to simplify the original 

problem. 
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Example 3. Given sequence )( na  such that:  

 




 0.,2010356=

1=
2

1

0

naaa

a

nnn

 

Prove that  

   i) 
1

2

111

2010
=,12=







n

n
nnnn a

a
aaaa  for all 1.n  

  ii) The sequence )( na  is not bounded from above. 

 
Proof. i) Since 201035=)6( 22

1  nnn aaa  we deduce the equation: 

0=201012 2
1

2
1   nnnn aaaa  for all 0.n  We change 1n  by n  deduce 

0.=201012 2
1

2
1   nnnn aaaa  We deduce 1na  and 1na  are two solutions of this equation 

0.=201012 22  nn axax  Applying Viest theorem, we deduce 
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 ii) Bcause 0>na  and nnnn aaaa 6>2010356= 2
1   for all 0n  deduce the 

sequence )( na  is a monotonically increasing. If the sequence )( na  is bounded from above 

then it has a finite limit. Suppose this finite limit is .a  
Since 2010= 2

11  nnn aaa  and (i) deduce 2010.= 22 aa  Deduce :0=2010  incorrect. 

We get the sequence )( na  is not bounded from above. 

 
Example 4. Given the integer sequence )( na  such that 4=1,= 10 aa  and 

nnn aaa  12 4=  where 0.n  Prove that  
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   ii) The sequence )( na  is not bounded from above. 
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Therefore 1na  and 1na  are two solutions of the equation 0.=14 22  nn axax  Using 

Viest theorem, we have .
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 ii) Because nnn aaa  12 4=  for all 0n  and 4=1,= 10 aa , we deduce the sequence 

)( na  is a monotonically increasing. If the )( na  is bounded sequence from above then it has a 

finite limit. Suppose this finite limit is .a  Since 1= 2
11  nnn aaa  and (i) we deduce 

1.= 22 aa  We get :0=1  incorrect. Therefore, the sequence )( na  is not bounded from 

above. 
 
The fourth technique. Use different methods to ultilize given assumptions. 
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Example 5. Given triangle ABC  Let cba ,,  denote the length of edges; :,, cba hhh  the 

length of altitudes; with 2.=cba   We have  
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Proof. Because )sincos()sincos(=2 BBcCCbha a   deduce 
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Using proposition 3 we have the inequality .
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Example 6. Given triangle ABC  Let cba ,,  denote the length of edges and three real 

numbers rqp ,,  so that 0.=rqp   We have 0.222  rpcqrbpqa  
  
Proof. Since 0=rqp   we suppose 0.0,,  rqp  Because 22 )(> bac   deduce  

 .2)()(=)( 22222222 abprqprbrqparpbaqrbpqarpcqrbpqa   

Therefore 0.)( 2222  braprpcqrbpqa  
 
Example 7. Prove that for all real numbers zyx ,,  and for all triangles ABC  we have 

inequality .cos2cos2cos2222 BzxAyzCxyzyx   We deduce  

   i) .
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  ii) .
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1
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 Proof. Bcause the quadratic function 

AyzzyBzCyxxxf cos2)coscos(2=)( 222   has 0  deduce 0)( xf  
 zyx ,,  and for all the triangles .ABC  

Choosing 1=== zyx  we get the inequality (i).  

Choosing 
6.8.10

8
=,

6.8.10

6
= yx  and 

6.8.10

10
=z  we get the inequality (ii). 

 
Example 8. Let cba ,,  denote the length of edges of a triangle. Prove that if three reals 

zyx ,,  and such that 0=czbyax   then we have 0 cxybzxayz  and 0. xyzxyz  
  
Proof. Since 0=czbyax   deduce .= byaxcz   Because 0>c  therefore 

0 cxybzxayz  is equivalent to 0.2  xycbczxaycz  We prove that 

0)()( 2  xycbyaxbxbyaxay  or 0.)( 22222  abyxycbaabx  Consider the 

function 22222 )(=),( abyxycbaabxyxf   where 0.>ab  Because  
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 0))()()((= 2  ycbacbacbacba  
therefore 0),( yxf  for all ., yx  

Because 
c

byax
z


=  deduce 0   xyzxyz  is equivalent to 

0.  )( 22  byxycbaax  One can easily seen that 0.  We deduce 0. xyzxyz  
 
The fifth technique. Applying knowledge flexibly. Sometime a problem maybe hard 

for pupils. It require flexibly, depend on specific problem. 
 
Example 9. Suppose that cbxaxxf 2=)(  where 0a  such that 1|)(| xf  with 

1.|| x  Prove that 16.=}3{4max 32 ba   
  
Proof. Because 2|(1)||(0)||(1)(0)|  ffff  therefore 4.)( 2  ba  

Because 2|1)(||(0)||1)((0)|  ffff  therefore 4.)( 2  ba  

We get 16.=88)2()2(=34 22222  bbababa  The equality holds if and 
only if 1=0,=2,= cba  or 1.=0,=2,= cba   

 
Example 10. Suppose that )()(=)( 2 dexbcaxxf   ( 0a ) has some solutions 

that are larger than 1. Prove that edxcxbxaxxg  234=)(  has some solutions.  
  
Proof. Denoted solutions of 0=)(xf  by 2= tx  with 0.>t  Deduce 

.= 224 dbtectat   Because ))((1=)(=)( 2224 dbttdbttectattg   deduce 

).)((1=)(=)( 2224 dbttdbttectattg   We get 0<))((1=)()( 222 dbtttgtg   
deduce 0=)(xg  has some solutions in ].;[ tt  

 
Example 11. Suppose 1=)( 234  axbxaxxxf  has some positive solutions. 

Prove that |).|2(1|| ab   
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Therefore, we deduce the inequality |).|2(1|| ab   
 
Example 12. Suppose cbxaxxf 2=)(  such that 1|)(| xf  where 1.|| x  Find the 

maximun value of |||||| cba  . 
  
Proof. Because 1|)(| xf  where 1|| x  deduce 
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 We consider 0.a  From the above system of inequalities, we deduce 
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 If 0b  then 2.1|=|||  cbaba  We get 3.||||||  cba  
 If 0b  then 2.1|=|||  cbaba  We get 3.||||||  cba  
 Therefore, when choosing 1=0,=2,= cba  and it such that 

1|2cos|=|1cos2|=|12| 22  ttx  where 1.|| x  
 We get the maximun value of |||||| cba   is 3.  
 
Example 13. Suppose cbxaxxf 2=)(  such that 1.|1)(||,(1)||,(0)| fff  Prove 

that 
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Proof. Because 1|1)(||,(1)||,(0)| fff . Set ,= cbaA   cbaB =  we have 













1||

1||=||

1||=||

c

cbaB

cbaA

 and .|
2

)
2

(|=|)(| 2 cx
BA

xc
BA

xf 





 

We deduce .|)(1)(
2

)(
2

|=|)(| 222 xcxx
B

xx
A

xf    

Therefore, we deduce 
4

5
)(1||

2

1
||

2

1
|)(| 222  xxxxxxf  khi 1.|| x  

Example 14. Given for all real numbers cba ,,  such that hcbxax  || 2  where 
1|| x  and we always have .|||||| khcba   Find the minimun value of Rk  .  

  
Proof. Set 0.1;1]}[||{|max= 2  xcbxaxh  Choosing 1,=0,= xx  we always 

have inequalities  
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 From this inequalities, we deduce:  
 hhhccbacba 3=22=   
 hhhccbacba 3=22=   
 hhhccbacba 3=22=   
 .3=22= hhhccbacba   
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 We always have .3|||||| hcba   With 1,=0,=2,= cba  we have 

hx =1|12| 2   where 1|| x  and .3.=3.1=3|=||||| hcba   Therefore 3<k , k  do not 
satisfy conditions. 

Conclusion we get 3.=nnk  

 
 
 

CONCLUSIONS 
 
 
 
In mathematics, it is important to teach pupils self-learning and discovering 

knowledge. This paper proposed some techniques in teaching the lesson "Quadratic equation", 
mathematics grade 10 in Vietnam. In which, teachers help pupils to applying knowledge 
flexibly and studying more effectively. Thereby, improving the quality of not only teaching 
and learning Mathematics but education in Vietnam in general. 
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