GAME CHROMATIC NUMBER OF $W_{n}{ }^{-\cdots} P_{2}$

UMMAHAN AKCAN ${ }^{1}$, EMRAH AKYAR ${ }^{1}$, HANDAN AKYAR ${ }^{1}$

Manuscript received: 12.12.2015; Accepted paper: 07.02.2016;
Published online: 30.03.2016.

Abstract

In this paper we find an exact value for the game chromatic number of the Cartesian product graph $W_{n}{ }^{*} P_{2}$ of two graphs, n-wheel W_{n} and the path graph P_{2}. This extends a previous work of Sia on the game chromatic number of certain families of Cartesian product graphs. We prove that the game chromatic number of graph $W_{n}{ }^{*} P_{2}$ is 5 , if $n \geq 3$.

Keywords: Game chromatic number; wheel graph; Cartesian product of graphs.
2010 Mathematics Subject Classification: 05C15, 05C57, 91A43

1. INTRODUCTION

In this study we consider a graph coloring game invented by Bodlaender and Brams independently (see [2,3]). Let $G=(V, E)$ be a finite simple graph and X be a set of colors. The game chromatic number of G is defined via a two-person finite game. Two players, generally called Alice and Bob, with Alice going first, alternatively color the uncolored vertices of G with a color from a color set X, such that no two adjacent vertices have the same color. Bob wins if at any stage of the game before the G is completely colored, one of the players has no legal move; otherwise, that is, if all the vertices of G are colored properly, Alice wins. Certainly, the result of the game depends on the graph G and the number of colors in X. It is obvious that if $|X| \geq|V|$, then Alice can win, but if $|X|<\chi(G)$, then Bob always wins, where $\chi(G)$ is the chromatic number of G. The game chromatic number $\chi_{g}(G)$ of G is the least number of colors in the color set X for which Alice has a winning strategy. It is clear that the game chromatic number $\chi_{g}(G)$ satisfies

$$
\begin{equation*}
\chi(G) \leq \chi_{g}(G) \leq \Delta(G)+1, \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the largest vertex degree in G.
The Cartesian product $G \square H$ of graphs G and H is the graph with a vertex set $V(G) \times$ $V(H)$, where two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$, or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$. Here, $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of graph G respectively. Although

$$
\chi(G \square H)=\max \{\chi(G), \chi(H)\}
$$

[^0]there is no similar equality for the game chromatic number of the Cartesian product of arbitrary graphs (see [1]). If $v \in V(H)$, then the subgraph G_{v} of $G \square H$ obtained by $\{(u, v)$: $u \in V(G)\}$ is called a G-fiber. H-fiber is defined similarly.

The game coloring number of a graph G is defined by modifying the rules of the coloring game as follows. The players fix a positive integer k, and instead of coloring vertices, only mark an unmarked vertex each turn. Bob wins if at some stage, some unmarked vertex has k marked neighbors, while Alice wins if this never happens. The game coloring number of a graph G is defined as the least number k for which Alice has a winning strategy on graph G, and it is denoted by the symbol $\operatorname{col}_{g}(G)$.

The following results provide a useful upper bound for the game chromatic number of the Cartesian product of the graphs in view of the game coloring number.

Proposition 1.1 ([4]) Suppose that $G=(V, E)$ is a graph with $E=E_{1} \cup E_{2}$. Let $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Then

$$
\chi_{g}(G) \leq \operatorname{col}_{g}(G) \leq \operatorname{col}_{g}\left(G_{1}\right)+\Delta\left(G_{2}\right)
$$

holds.
Corollary 1.2 ([7]) For any Cartesian product graph $G \square H$, we have

$$
\chi_{g}(G \square H) \leq \operatorname{col}_{g}(G \square H) \leq \operatorname{col}_{g}\left(\cup_{v \in V(H)} G_{v}\right)+\Delta(H)
$$

Here, G_{v} denotes the G-fiber in $G \square H$.
In [8], Zhu proposes another useful upper bound for the game chromatic number of the Cartesian product of the graphs by means of acyclic chromatic number of a graph.

2. EXACT VALUE FOR $\chi_{g}\left(W_{n} \square P_{2}\right)$

In this section we give an exact value for the game chromatic number of the graph $W_{n} \square P_{2}$, which is the Cartesian product of the two graphs n-wheel W_{n} and path graph P_{2}. Here, wheel graph W_{n} is a graph with $n+1$ vertices ($n \geq 3$), formed by connecting a single vertex v_{0}, called a center, to all vertices of an n-cycle, called a rim of the wheel.

Using Corollary 1 and Inequality (1) we immediately get the following result.
Proposition 2.1 If $n \geq 3$ then $3 \leq \chi_{g}\left(W_{n} \square P_{2}\right) \leq 5$.
Proof. It is not difficult to see that for $n \geq 3$,

$$
\chi\left(W_{n} \square P_{2}\right)= \begin{cases}3, & \text { if } n \text { is even } \\ 4, & \text { if } n \text { is odd }\end{cases}
$$

Hence, using inequality (1) we find for any integer $n \geq 3$,

$$
3 \leq \chi_{g}\left(W_{n} \square P_{2}\right)
$$

In Corollary 1, for $n \geq 3$, if we set $G=W_{n}$ and $H=P_{2}$, then it is clear that $\Delta\left(P_{2}\right)=1$. Furthermore, since $\operatorname{col}_{g}\left(W_{n}\right)=4$, then we get

$$
\begin{equation*}
\chi_{g}\left(W_{n} \square P_{2}\right) \leq \operatorname{col}_{g}\left(W_{n} \square P_{2}\right) \leq 5 \tag{2}
\end{equation*}
$$

This completes the proof.
Indeed, Alice clearly wins with five or more colors. The degree of vertices of the Cartesian product graph $W_{n} \square P_{2}$ is 4 , except for the centers of the wheel-fibers. The centers of the wheel-fibers are of the degree $n+1$, so Alice wins if she colors these centers on her first moves.

In [7], the exact value for the game chromatic number of the Cartesian product graph $W_{n} \square P_{2}$ is presented as follows:

Proposition 2.2 ([7]) For any integer $n \geq 9, \chi_{g}\left(W_{n} \square P_{2}\right)=5$.
We improve the result given in [7], by Theorem 2.3
Theorem 2.3 For $n \geq 3$, we have $\chi_{g}\left(W_{n} \square P_{2}\right)=5$.
Proof. Using Proposition 2, for $n \geq 3$ we have $\chi_{g}\left(W_{n} \square P_{2}\right) \leq 5$. Therefore, if we describe a winning strategy for Bob with four colors, we complete the proof.

Figure 1. Cartesian product graph $W_{3} \square P_{2}$.
Let $n=3$ (see Fig. 1). Since $W_{3} \cong K_{4}$, no matter which vertex Alice colors on her first move. Without loss of generality, assume that Alice colors the center of any wheel-fiber with any color, say v_{0} with color 1 . Then Bob simply responds by coloring v_{1}^{\prime} with color 2 . Then all possible cases for Alice's second move and Bob's response are as indicated in Table 1. When Bob responds to Alice's move, he gets two critical vertices, which she cannot defend at the same time, or a vertex requiring a fifth color, and he wins the game.

Table 1: All possible cases for Alice's second move and Bob's responses for $\boldsymbol{n}=\mathbf{3}$.

Alice's 2nd Move	Bob's Responses	Critical Vertices
v_{3}^{\prime}, color 1	v_{2}, color 3	v_{1}, v_{2}^{\prime}
v_{3}^{\prime}, color 3	v_{2}^{\prime}, color 4	v_{0}^{\prime}
v_{2}^{\prime}, color 1	v_{3}, color 3	v_{1}, v_{3}^{\prime}
v_{2}^{\prime}, color 3	v_{3}^{\prime}, color 4	v_{0}^{\prime}
v_{0}^{\prime}, color 3	v_{3}, color 4	v_{1}, v_{3}^{\prime}
v_{1}, color 3	v_{2}^{\prime}, color 4	v_{0}^{\prime}, v_{2}
v_{2}, color 2	v_{3}^{\prime}, color 3	v_{0}^{\prime}, v_{3}
v_{2}, color 3	v_{3}, color 4	v_{1}
v_{3}, color 2	v_{2}^{\prime}, color 3	v_{2}, v_{0}^{\prime}
v_{3}, color 3	v_{2}, color 4	v_{1}

Figure 2. Cartesian product graph $W_{4} \square P_{2}$.
Now, let $n=4$ (see Fig. 2). Then again there are two cases for Alice's first move:
Case 1. Alice can color a vertex on the rim of the wheel-fibers. Without loss of generality, assume that Alice colors v_{1} with color 1 . Then Bob colors a vertex on the rim of an uncolored wheel-fiber, say v_{3}^{\prime}, with color 1 . No matter whose turn it is, the remaining uncolored vertices of the graph cannot be colored with color 1. Therefore, Alice has to use a new color. Note that, if Alice colors v_{2} with color 1 instead of v_{1} then Bob colors v_{4}^{\prime} with color 1 , or if she colors v_{3} or v_{4} with color 1 then Bob colors v_{1}^{\prime} or v_{2}^{\prime} with color 1 respectively. Therefore, in any case, on her second move, she has to use a new color. No matter which vertex Alice colors with her second move, if Bob colors a vertex according to the possible cases given below, Bob wins the game.

Case 1.1. Alice, on her second move, colors v_{2} with color 2. Then Bob colors v_{4}^{\prime} with color 2. In this case, the remaining uncolored vertices of the graph cannot be colored by color 2. All possible alternatives for Alice's third move and Bob's responses to Alice are listed in Table 2. In all of the alternatives, Bob wins.

Table 2: Case 1.1: All possible cases for Alice's third move and Bob's responses for $\boldsymbol{n}=4$.

Alice's 3rd Move	Bob's Responses	Critical Vertex
v_{0}, color 3	v_{4}, color 4	v_{3}
v_{3}, color 3	v_{4}, color 4	v_{0}
v_{4}, color 3	v_{3}, color 4	v_{0}

Case 1.2. Alice, on her second turn, colors v_{3} with color 2 . Bob then plays color 2 in v_{1}^{\prime}. In this case, Alice, on her third move, has to use a third color. In Table 3, a winning strategy for Bob is given for all of Alice's possible moves.

Table 3: Case 1.2: All possible cases for Alice's third move and Bob's responses for $n=4$.

Alice's 3rd Move	Bob's Responses	Critical Vertex
v_{0}, color 3	v_{2}^{\prime}, color 4	v_{2}
v_{2}, color 3	v_{4}, color 4	v_{0}
v_{4}, color 3	v_{2}, color 4	v_{0}

Case 1.3. If Alice, on her second move, colors v_{4} with color 2, then Bob colors v_{2}^{\prime} with color 2. Then Alice, on her next move, must use color 3. All possible alternatives for Alice's third move and Bob's responses to Alice are presented in Table 4. According to Table 4, Bob wins.

Table 4: Case 1.3: All possible cases for Alice's third move and Bob’s responses for $\boldsymbol{n}=4$.

Alice's 3rd Move	Bob's Responses	Critical Vertex
v_{0}, color 3	v_{1}^{\prime}, color 4	v_{0}^{\prime}
v_{2}, color 3	v_{3}, color 4	v_{0}

v_{3}, color 3	v_{2}, color 4	v_{0}

Case 1.4. Alice, on her second move, can color v_{0} with color 2 . Then Bob colors v_{1}^{\prime} with color 2. Alice, again on her next move, must use color 3. All possible moves for Alice's third move and Bob's responses to Alice are given in Table 5. In all situations, Bob wins.

Table 5: Case 1.4: All possible cases for Alice's third move and Bob's responses for $\boldsymbol{n}=4$.

Alice's 3rd Move	Bob's Responses	Critical Vertex
v_{2}, color 3	v_{4}, color 4	v_{3}
v_{3}, color 3	v_{4}^{\prime}, color 4	v_{4}
v_{4}, color 3	v_{2}, color 4	v_{3}

All possible sequences of moves in Case 1. are given in Fig. 3.

Figure 3. For $\boldsymbol{n}=4$ all possible sequences of moves in Case 1.
Case 2. Alice can color the center of the one of the wheel-fibers with any color. Without loss of generality, assume that Alice colors v_{0} with color 1 . Then Bob colors v_{0}^{\prime} with color 2 . Now, Alice, on her second move, can color the vertices on the rim of the wheel-fiber centered with v_{0}, with colors 2,3 or 4 . Similarly, Alice, on her second move, can color the vertices on the rim of the other wheel-fiber with colors 1,3 or 4 . If we label the new unused color as color 3 , it is not necessary to study possible moves for color 4 . Without loss of generality, suppose that Alice colors the vertices on the rim of the wheel-fiber centered with v_{0}. Therefore, we only need to consider the following cases:

Case 2.1. Alice can color any vertex on the rim of the wheel-fiber, centered with v_{0}, with color 2, say v_{4}. Then Bob colors v_{4}^{\prime} with color 1 (if Alice colors v_{i} with color 2, then Bob
colors v_{i}^{\prime} with color 1 for $i=1,2,3,4$). Now there are only four possible cases for Alice's third move. All these moves and Bob's responses to Alice are listed in Table 6.

Table 6: Case 2.1: All possible cases for Alice's third move and Bob's responses for $\boldsymbol{n}=4$.

Alice's 3rd Move	Bob's Responses	Critical Vertex
v_{1}, color 3	v_{2}^{\prime}, color 4	v_{1}^{\prime}
v_{2}, color 2	v_{2}^{\prime}, color 3	$v_{1}^{\prime}, v_{3}^{\prime}$
v_{2}, color 3	v_{3}^{\prime}, color 4	v_{3}
v_{3}, color 3	v_{2}^{\prime}, color 4	v_{3}^{\prime}

Case 2.2. Alice, on her second move, can color a vertex on the rim of the wheel-fiber, centered with v_{0}, with color 3 . In this case, possible options are as indicated in Table 7.

Table 7: Case 2.2: All possible cases for Alice's second move and Bob's responses for $n=4$.

Alice's 2nd Move	Bob's Responses	Critical Vertex
v_{1}, color 3	v_{4}^{\prime}, color 4	v_{1}^{\prime}, v_{4}
v_{2}, color 3	v_{3}^{\prime}, color 4	v_{3}, v_{2}^{\prime}
v_{3}, color 3	v_{2}^{\prime}, color 4	v_{2}, v_{3}^{\prime}
v_{4}, color 3	v_{1}^{\prime}, color 4	v_{1}, v_{4}^{\prime}

All possible sequences of moves in Case 2 are given in Fig. 4.

Figure 4. For $\boldsymbol{n}=4$ all possible sequences of moves in Case 2.
Hence, if Alice colors the center of any wheel-fiber, then Bob colors an uncolored center with a different color and wins the game by 4 colors.

Figure 5. Cartesian product graph $W_{n} \square P_{2}, n \geq 5$.

Finally, let $n \geq 5$ (see Fig. 5). In this case, Bob has a winning strategy again. Bob's strategy is as follows:

Alice, on her first move, has to choose one of two alternatives:
Case 1. Alice can color the center of any wheel-fiber with any color, say v_{0} with color 1. Then Bob colors v_{1}^{\prime} with color 2 . Now Alice, on her second move, can color a vertex from one of the two wheel-fibers:
Case 1.1. If Alice colors a vertex from the wheel-fiber, centered with v_{0}^{\prime}, then there are two alternatives:
Case 1.1.1. If Alice, on her second move, colors v_{0}^{\prime} with color 3 , then Bob colors v_{2} with color 4 . Since Alice cannot defend both v_{1} and v_{2}^{\prime} at the same time, Bob wins.
Case 1.1.2. If Alice, on her second move, colors any vertex, different from v_{0}^{\prime}, she can choose one of three alternatives:
Case 1.1.2.1. Alice can color any vertex, but v_{0}^{\prime}, on the wheel-fiber centered with v_{0}^{\prime} with color 2. Then Bob, on his second move, colors v_{2}^{\prime} with color 3. In this case, Alice has to defend v_{0}^{\prime}, that is, she has to color v_{0}^{\prime} with color 4 . Now if Bob colors a proper vertex from another wheel-fiber, he gets two critical vertices, which Alice cannot defend at the same time. Bob wins.
Case 1.1.2.2. Alice can color any vertex, except v_{0}^{\prime}, on the wheel-fiber centered with v_{0}^{\prime} with color 1 , say v_{2}^{\prime}. Then Bob, on his second move, colors a vertex with a distance 2 from v_{2}^{\prime}, and on the same rim with v_{2}^{\prime}, with color 3, say v_{4}^{\prime}. Now Alice, on her third move must defend vertex v_{0}^{\prime}, i.e., she colors v_{0}^{\prime} with color 4 . Then Bob colors v_{3} with color 2. Since one more color is necessary for the vertex v_{3}^{\prime}, Bob wins.
Case 1.1.2.3. Alice can color any vertex, except v_{0}^{\prime}, on the wheel-fiber centered with v_{0}^{\prime} with color 3. Then Bob colors any vertex, except v_{0}^{\prime}, from the wheel-fiber centered with v_{0}^{\prime} with color 4 . In this case, one more color is necessary for the vertex v_{0}^{\prime}, and Bob wins.

Case 1.2. Alice, on her second move, can color any vertex on the rim of the wheel-fiber centered with v_{0}. Then Bob colors the neighbor of the vertex, which is a neighbor of the last two colored vertices by Alice and is on the wheel-fiber centered at v_{0}^{\prime}, with an unused color. In this case, Bob gets two vertices such that Alice cannot defend both at the same time. Bob wins.

Therefore, when Alice colors the center vertex of any wheel-fiber with any color, Bob always wins by coloring a vertex with a different color on the rim of the uncolored wheelfiber.

Case 2. Alice can color a vertex on the rim of any wheel-fiber. Then Bob colors the center of the uncolored wheel-fibers with an unused color. Then it is Alice's turn. If Bob uses the strategy as in Case 1, he wins the game.

Therefore, if $n \geq 3$, Bob wins the game with four colors. This completes the proof.

3. CONCLUSION

In the literature, a few exact values are known for the game chromatic number of Cartesian product graphs. For example, the game chromatic number of grid graph $P_{m} \square P_{n}$ is still not known, except for certain special values of m and n. Similarly, the game chromatic number of the toroidal graph $C_{m} \square C_{n}$ is also not known for arbitrary m and n (see [6]).

In [5], it is proved that the game coloring number of a graph G is at most $c+4$, if every edge of G belongs to at most c different cycles. Since $c=0$ for trees, using Corollary 1 we get

$$
\begin{gathered}
\chi_{g}\left(P_{2} \square T\right) \leq 5, \\
\chi_{g}\left(P_{n} \square T\right) \leq 6, \quad(n \geq 3) \\
\chi_{g}\left(C_{n} \square T\right) \leq 6, \quad(n \geq 3)
\end{gathered}
$$

for any tree T.
In this work, even if we calculate the exact value for the game chromatic number of $W_{n} \square P_{2}$, it is still an open question as to what is the game chromatic number of $W_{n} \square P_{m}$ for any values of n and m.

Acknowledments: This work is supported by the Anadolu University Research Foundation under Grant 1502F064.

REFERENCES

[1] Bartnicki, T., Brešar, B., Grytczuk, J., Kovše, M., Miechowicz, Z., Peterin, I., Electron. J. Combin., 15(1), 1, 2008.
[2] Bodlaender, H. L., Internat. J. Found. Comput. Sci., 2(2), 133, 1991.
[3] Gardner, M., Mathematical games, Scientific American, 1981.
[4] Guan, D. J., Zhu, X., J. Graph Theory, 30(1), 67, 1999.
[5] Szaniawski, K. J., Rożej, Ł., Inform. Process. Lett., 110(17), 757, 2010.
[6] Raspaud, A., Wu, J., Inform. Process. Lett., 109(21-22), 1183, 2009.
[7] Sia, C., AKCE Int. J. Graphs Comb., 6(2), 315, 2009.
[8] Zhu, X., J. Graph Theory, 59(4), 261, 2008.

[^0]: ${ }^{1}$ Anadolu University, Science Faculty, Department of Mathematics, 26470 Eskişehir, Turkey. E-mail: ummahanakcan@anadolu.edu.tr; eakyar@anadolu.edu.tr; hakyar@anadolu.edu.tr.

