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Abstract. In this paper, we study the structure of cyclic and skew cyclic codes over the
finite ring Dy = F, + v, Fy + -+ v Fy, vi = v, vivy =vj1; =0, 1< i,j <k, q=p™ p
is a prime for k > 1 which contains the ring F, + v, F,, v{ = v;. We define a new Gray map
from D, to IF’;“. The algebraic structures of cyclic codes and duality properties are
investigated. A linear code over D, is represented by means of k + 1 g-ary codes. The non
trivial automorphism over D, is given and the skew cyclic codes over D, are introduced. The
algebraic structure of skew cyclic codes and duality properties are investigated. The Gray
images of both cyclic and skew cyclic codes over D, are obtained.
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1. INTRODUCTION

As cyclic codes have got rich algebraic structure, they are very important class in
coding theory. These classes of codes were first discussed by a series of papers and reports by
E. Prange in [17] and [18].

Skew cyclic codes are generalization of the notion of cyclic codes. The class of skew
cyclic codes are bigger class than the class of cyclic codes. If a trivial automorphism is used,
the notion of the cyclic code coincides with the notion of the skew cyclic code. As a similar,
the notion of the skew quasi-cyclic codes and skew constacyclic codes are generalizations of
the notions of quasi-cyclic codes and constacyclic codes. There are a lot of studies about skew
codes.

Firstly, D. Boucher et al. generalized the notion of cyclic codes by using generator
polynomials in skew polynomial rings. They introduced skew cyclic codes over finite fields
with g elements in [7].

In [8], D. Boucher et al. generalized the construction of linear codes via skew
polynomials rings by using Galois ring instead of finite fields. In 2008, D. Boucher and F.
Ulmer gave some important result on the duals of skew cyclic codes over F, in [9]. T.
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in [1]. In [2], T. Abualrub et al. studied skew quasi- cyclic codes over [F,. The notion of
generator and parity-check polynomials was given. M. Bhaintwal investigated skew quasi-
cyclic codes over the Galois ring in [6]. A necessary and sufficient condition for skew cyclic
codes over Galois rings to be free and a canonical decomposition of skew quasi-cyclic codes
were given. J. Gao et al. studied skew generalized quasi-cyclic codes over finite fields in [12].
In [21], I. Siap et al. investigated the structural properties of skew cyclic codes of arbitrary
length over finite fields. In [16], S. Jitman et al. studied the Gray image of three type skew
constacyclic codes over finite chain ring. J. Gao studied skew cyclic codes over [F,, + vIF),
v2 = v, p is a prime in [13]. He investigated the structural properties of skew poynomial
(F, + vFp)[x, 6] and (F, + vF,)[x,0]/(x™ —1). F. Gursoy et al. introduced skew cyclic
codes over F, + vF,, v?> = v, g =p™ in [15]. The idempotent generators of skew cyclic
codes over [, and F, + vIF, were given, firstly. Both M. Ashraf et al. and M. Shi et al.
studied skew cyclic codes over the ring F, + vF, + v*F,, v = v, ¢ = p™, p is odd prime
at the same time in [5] and [19] , respectively. In [14], J. Gao et al. generalized it to the finite
ring § =F, + vF, + v?F, + v3F,, v* = v, q = p", p is odd prime, 3|p — 1. They studied
skew cyclic codes over S. In [3], M. Ashraf et al. investigated skew cyclic codes over
F; + vF3;, v?2 =1 by taking the automorphism as 6 : v » —v. Later, M. Ashraf et al.
extended this work to the ring F,m + vF,m, v* = 1, p is odd prime in [4]. In [20], M. Shi et
al. interested in skew cyclic codes over T = F, + vF, + uF, + uvF,, u*> = u,v? = v,uv =
vu. They gave a formula for the number of skew cyclic codes over length n over T. In [10]
and [11], A. Dertli et al. investigated skew cyclic and quasi-cyclic codes over F, + ulF, +
u?F,, u® = 1and Z3 + vZ; + v*Zs, v3 = v, respectively.

This paper is organized as follows. In section 2, some knowledges about linear codes
over the finite ring D;, are given. We define a new Gray map from D,, to IF’;;“. It is shown that
C is self dual so is ¢(C). The Gray image of cyclic code is obtained. A linear code over Dy is
represented by means of k + 1 g-ary codes. The algebraic structure of cyclic code and its
duality properties are investigated. In section 3, the non trivial automorphism over D;, is given
and we introduce skew cyclic codes over Dy. It is shown that C is a skew cyclic code over Dy,
if and only if Cy, C,, ..., Ci4, are all skew cyclic codes over [F,. The Gray images of skew
cyclic codes are given.

2. LINEAR CODES OVER Dy,

Let Dy be the ring F, + v, Fy + -+ v F, = {ap + viay + -+ vpap:a; € Fy, i =
0,... 4 With v22= vz, vivy=v/vi=0, 1<i/<k, g=pm, pis a prime. Dk can be as quotient ring
Fy vy, v, o, vl /(VE = vy, 005 = vjv; = 0), where 1 < i,j < k. D, is a finite commutative
ring with g®** elements. A linear code C over D, length n is a D,-submodule of D}. An
element of C is called a codeword. We define the Gray map as follows,

¢ : Dy~ F§*!
P(ag +vqia; + -+ viay) = (ag, a9 + 24,39 + ay, ..., a9 + ag)

It can be extended to D}}.

WWW.josa.ro Mathematics Section



Cyclic and skew cyclic ... Abdullah Dertli, Yasemin Cengellenmis 15

Let C be a code over F, of length (k + 1)n and ¢’ = (cg,¢1, ) C(ry1ym—1) be @

codeword of C. The Hamming weight of ¢ is defined as wy (c') = &V w, (¢!), where

wy(c)) =1 if ¢; # 0 and wy(c;) =0 if ¢; = 0. The minimum Hamming distance of C is
defined as dy (C) = min{d,(c,c")}, where for any ¢’ € C, ¢ # c'and dy(c,c") is Hamming
distance between two codewords with d (¢, c’) = wy(c — ¢').

Let r = ay + v,a; + -+ + via, be an element of Dy, then the Lee weight of r is
defined as w; (r) = wy(ay, ag + a4, ay + a4, ..., ag + a;), where wy is the Hamming weight.

Define the Lee weight of a vector ¢ = (¢, ¢4, ..., cn_1) € Di} to be the sum of Lee
weights of its components. For any element c;, ¢, € D}}, the Lee distance between c¢; and c, is
given by d; (cq,c;) = wy(c; — ¢;). The minimum Lee distance of C is defined as d;(C) =
min{d; (cy,c,)}, where forany ¢, € C, ¢; # c,.

Forany x = (xq, X1, ., Xn-1), ¥ = Vo, Y1, ---» Yn—1) the inner product is defined as

n—-1
Xy = Z XiYi
i=0

If xy = 0 then x and y are said to be orthogonal. Let C be a linear code of length n
over D, the dual code of C

Ct={x:VyeC(xy=0}

which is also a linear code over D, of length n. A code C is self orthogonal, if C € C+ and
self dual, if C = C*.

A cyclic code C over D, is a linear code with the property that if
¢ = (cy, €1, - Cnq) € C, then o(C) = (cp_1,Cq, --+»Cn_z) € C. A subset C of D} is a linear
cyclic code of length n iff its polynomial representation is an ideal of D [x]/{(x™ — 1).

Leta € IF‘ng)n with a = (ag, ay, ., Aggs1yn-1) = (@@]a®] ...|a®), a® € FZ for
i =012.,k Let ¢ be a map from FI™ to FIY™  given by

p(a) = (a(a(o)) lo(a®)] ... |a(a("))), where o is a cyclic shift from F to F? given by

o(a®) = ((a(i,n—l)), (at9), @Dy, ., (a(i,n—z)))

forevery a® = (a®0,qV, . atn=D) where a®) € F,,j = 0,1,..,n— 1.
A code of length (k + 1)n over [, is said to be quasi-cyclic code of index k + 1 if
p(C) = C.

Theorem 1: The Gray map ¢ is distance preserving map from (D}, Lee distance) to
(Ing“)”, Hamming distance). Moreover it is F-linear.

Proof. For ky, k, € F, and z,, z, € Dy, then we have ¢(kyz; + kyz,) = k1¢p(z1) +
k,p(z;). So, ¢ is Fg-linear. Let z; = (21,00 2110 w0 Zime1)s 22 = (22,0, 221 s Zam_1) bE
elements Dif where z;; = af; + via}; + -+ veaf; and z,; = ad; + via3; + - + veak,
i =01,...,n—1. Then 2z, —2z, = (210~ Z30s +Z1n-1— Zan-1)aNd  P(z; — 2z,) =
$(z1) — P(z2). So, di(z1,2;) =wy(z, —2,) = WH(¢(Z1 - Zz)) = WH(¢(Z1) - ¢(Zz)) =
dH(¢(Z1): ¢(Zz))
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16 Cyclic and skew cyclic ... Abdullah Dertli, Yasemin Cengellenmis

Theorem 2: If C is a linear code of length n over D, with rank r and minimum Lee
distance d,, then ¢(C) is a linear code of length (k + 1)n over F, with dimension r,

dH = dL'
Proposition 3: Let ¢ be the Gray map from D;} to IFg”l)n, let o be the cyclic shift
and let ¢ be a map as in the section 2. Then ¢po = @¢.

Proof. Let z= (2o,21,...,2n1) € D}. Let z; =a) +vial + -+ vial, where

al,al,..,af €F, and 0 <i<n-—1. From definition ¢, we have (af,..,a5_; ad+
a01,...,.an—10+an—11,...,a00+a04,...,an—10+ an—1#,

o(d(2) =(aS_y,af,...,ad a0 s +ak_q,..,aS ;+at o ..,ad_+ak 4, ..,ad_, +
an—240n the other hand, 6(2) = (zy_1, Zo, -, Zn_2)- If We apply ¢, we have ¢(o(2)) =

0 0 0 0 1 0 1 0 k 0 k
(ad_y,ad,..,ab_5,a% 1 +ak g, .,ad_ ,+ak_,, ..,ad_y +ak_;,...,a5_, +ak_,).

Theorem 4: Let o and ¢ be as in section 2. A code C of length n over Dy, is a cyclic
code iff ¢(C) is a quasi-cyclic code of index k + 1 over F, with length (k + 1)n.

Proof. Let C be a cyclic code. Then a(C) = C. If we apply ¢, we have qb(a(C)) =

#(C). By using proposition 3, ¢(a(C)) = ¢(¢(C)) = $(C). Hence ¢(C) is a quasi-cyclic
code of index k + 1. For the other part, ¢(C) is a quasi-cyclic code of index k + 1, then we

have ¢(¢(C)) = ¢(C). From proposition 3, we have ¢(a(C)) = ¢(¢(C)) = $(C). Since ¢
is injective, it follows o(C) = C.
Definition 5: Let A, A,, ..., Ay, be linear codes.

A1®A;® ... QAry1 = {(ay,az, ., Aky1) ¢ a1 € Ay, e, Apy € Agyr)
and

A1BAD .. A ={a; +a; + -+ agyg i a; €Ay, A € Ayl
Let C be a linear code of length n over D,. Define

C, = {ao € Fgq: Fay,a,,...,ak € Fg,ap + vqa; + -+ viag € C}

C2={a0+aIEIF‘g: a0+vla1+---+vkakEC}

Cyy1 = {ao +ay € Fg: ag+via; + - +vag € C}
Itis clear that C;, C,, ..., Cy4q are g-ary linear codes of length n.

Theorem 6: Let C be a linear code of length n over D,. Then
d(C) = COC® ... ®Cyy 1 and |C| = |C1||Cy| ... [Creqal-

Proof. It is proved as in [11].

WWW.josa.ro Mathematics Section



Cyclic and skew cyclic ... Abdullah Dertli, Yasemin Cengellenmis 17

Corollary 7: If ¢(C) = C;QC,Q ... ®Cy 1, then
C = (1 - Vl — e — Vk)C1®V1C2®V2C3® e @Vka+1.
Theorem 8: Let C = (1 —v; — - — v )C;BV,C,DV,C5D ... Bv, iy be a linear

code of length n over D,.. Then C is a cyclic code over Dy, if and only if C;, C,, ..., C 4, are all
cyclic codes over .

Proof. Let (ag, al, ..,ak_y) € Cy, (a3, a?, ...,a%_,) € Cy, ..., (ak¥t,ak™, .. akt]) €
Crs1- Assume that z; = (1 — vy — - —v)a} + v,a? + -+ vak*™ for i =0,1,..,n — 1.
Then the vector (z,, ...,z,-1) € C. As C is a cyclic code, then (z,_1, Zy, ..., Z,_,) € C. Note
that  (Zp_1, 20, ) Zn_z)=(1 — vy — =) (ak_y, @}, ...,ak_,) + - + v (akti, ..., ak*).

Hence (ai_,, a},..,ak_,) € Cy,..., (ak*}, ..., ak*1) € Ciyq. SO, €y, Cy, ..., Creyq are all cyclic
codes over [F,.
Conversely, Cy,Cy, ..., Cr4q are all cyclic codes over F,. Let(z,zy,...,2,-1) € C

where z;=(1—v, — - —v)al +va? + - +vakt* for i=0,,..,n—1. Then
(ad,ai,..,ak 1) € Cy, (a3 a?,..,a2_y) € Cyy ..., (ab*t,al*?, ..., ak*}) € Ciy1. Note that
(Zn-1,Z0) wr Zn-2)=(1 — vy — = )(ak_q, @}, ..,ak_5) + -+ v (akt}, .. ,aktl) e ¢ =
1-vy — - —v)C,®V,C,BV,C5® ... BV Ci 1. Therefore C is a cyclic code over Dy.

Corollary 9: If G4,G,,...,Gy, are generator matrices of g-ary linear codes
C1, Cy, ..., Cy4q respectively, then the generator matrix of C is

(1 —v; — = 1)Gy
G= valiz
va.k+1
We have
¢((1 —Vy = vk)Gl)]
$(6) = (162
¢(vk.Gk+1)

Let d; be the minimum Lee weight of a linear code C over Dy. Then,

d, = dH(¢(C)) = min{dy(Cy), ..., dy(Cx+1)}

where  dy(C;) denotes the minimum Hamming weights of g-ary codes
Cy, ..., Cryq , respectively.

Theorem 10: Let C be a linear code over D,. Then ¢(C)* = ¢p(CL). If C is a self
dual, so is ¢(C).

Proof. Let x =ay + a,vy + -+ agvy, x1 =by+bv; + -+ bv, € C, Where

ay, Ay, ..., A, bg, by, ..., by, € IFZ}.
xxl = aobo + vl(aobl + a1b0 + albl) + -+ Uk(aobk + akbo + akbk)
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18 Cyclic and skew cyclic ... Abdullah Dertli, Yasemin Cengellenmis

Since C is a self dual code, ayby = 0,a¢0b; + a;by + a;b; =0, ...,a0by + ayby +
apb, = 0. p(x)p(xY) = (ay, ..., ay + a,)(by, ..., by + b)) = 0. We have ¢p(C)* c ¢p(CL).
By using |¢(C)*| = |¢(CH)|, we have ¢(C)*F = ¢(CH).

Proposition 11: Let C be a linear code of length n over D, and ¢(C) = C;® ... ®Cj 41
then

$(CH) = C1RCH® ... QCi, 4
which gives C+ = (1 —v; — - — 1) CiL BV, C3 D ... DV City 1 -

Proposition 12: Suppose C = (1 —v; — - —v,) ;B C,® ... BV, 41 1S a cyclic
code of length n over D,,. Then

C=(1—vy = —v)fL,V1f2 e, ViSi41)

and |C|=qU+Dn-(degfi+-+deg frvr) - where fi, fy, .., fis1 Qenerator polynomials of
Ci, ..., Cryq1, respectively.

Proposition 13: Suppose C is a cyclic code of length n over Dy, then there is a unique
polynomial f(x) such that C =< f(x) > and f(x)|x™ —1, where f(x)=(1—-v; — - —
VA Ix+v1f2x+..+vkfh+1(X).

Proposition 14: If C = (1 — vy, — - — v,)C;®Vv,C, D ... v, Cy 41 1S a cyclic code of
length n over Dy, , then

ct = (1—vy — . —vp)h] + vihy + -+ vghpiq)

and |Ct|=q(@e9fit+deg fi+1)  where h} are the reciprocal polynomials of h; for i=
1,2, ...,k +1,ie, hi(x) = x™ —1/fi(x), hi(x) = x9e8hip;(x~1) for i = 1,2,..,k + 1.

3. SKEW CODES OVER Dy,
We are interested in studying skew codes over the ring D;, where 1 < k .
Fork =1, Dy = Fy[v,]/(vf — v;) where v{ = v;, ¢ = p™ with ring automorphism
91': Dl d Dl

defined by 6;(a + v,b) = ab’ + vlbpi. In [15], they studied skew cyclic codes on D;.
We define non-trivial ring automorphism 6, on the ring D, by

Ht: Dk - Dk
0,(ag + 1101 + - + V) = agP’ + via:P + . Fva?
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The automorphism 6 is Frobenious automorphism of F,, ¢ = p™ and 6, = 61. The
order of the automorphism 6, ism/t.

The ring Dylx,0.] ={ay+a;x+ -+ a,_1x"1: a, €D, n€N}is called a
skew polynomial ring. This ring is a non-commutative ring. The addition in the ring Dy [x, ;]
is the usual polynomial addition and multiplication is defined using the rule, (ax')(bx’) =
a 6i(b)x*,

Definition 15: A subset C of D} is called a skew cyclic code of length n if C satisfies
the following conditions,
i.  Cisasubmodule of D},
i, If ¢ =(co,..,cn-1) € C,then gy, (c) = (0¢(cp-1),0:(co), ..., 0t (cn_z)) € C
Let f(x)+ (x™—1) be an element in the set Sy, = Dy[x,0,]/(x™ —1) and
let r(x) € Di[x, 8;]. Define multiplication from left as follows,

r)F )+ (" = D)=r(x)f(x) + x" = 1)
forany r(x) € Dy[x, 0,].
Theorem 16: S, ,, is a left D [x, 6;]-module where multiplication defined as in above.

Theorem 17: A code C in Sy, is a skew cyclic code if and only if C is a left
Dy [x, 6;]-submodule of the left Dy[x, 6;]-module S, ,,.

Theorem 18: Let C be a linear code of length n over D, and C = (1 —v; — - —
V) C, 0OV, C,D ... Ovy Cyyq, Where Cy, ..., Cyoq are linear codes of length n over F,. Then C
is a skew cyclic code in according to the automorphism 6, over D, if and only if C,, ..., Cx4q
are all skew cyclic codes over I, in according to the automorphism 6.

Proof. Let (cf,..,ch 1) €C;, i=12,..,k+1. Assume that ¢; = (1 —v; — - —
V)¢ 4+ vt for j=0,12,...,n—1, then ¢ = (co, ..., ch—1) EC. As C is a skew
cyclic  code in according to the automorphism 0;, we have
0g,(c) = (8:(cn-1),0:(co), .., 0 (cn—2)) €C. We know that gy, (c) =1 —-vy—-—
vk)(et(chl—l)' 0.(co), - Ht(crll—z)) ot v (Ht(crlff%), et(ctl)ﬁl)' e Ht(cﬁi-zl ) So,
(et(c,il_l),et(cg), ...,Qt(cfl_z)) €C; fori=12,..,k+1.We have Cj,...,Cyy; are skew
cyclic codes in according to automorphism 6, over IF,.

Conversely, assume that Ci,...,Cy., are skew cyclic codes in according to

automorphism 6, over F, and ¢ = (co, ...,cp—1) € C Where¢; = (1 — vy — -+ — vk)cj1 + -+
vecftt for j=0,1,..,n—1,then (cf, ...,ch_y) € C;, i = 1,2, ...,k + 1. Note that o5, (c) =
(1= vy = = 1) (0 (Cho1), B:(d), o, Op(cho)) + -+ + v (Be(ch*D), ., 6. (kD)) € C.

Corollary 19: If C is a skew cyclic code in according to the automorphism 6, over Dy,
then the dual code C* is also a skew cyclic code in according to the automorphism 8, over
Dy.
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Theorem 20: Let C;, ..., Cy4, are skew cyclic codes over [F, and g;(x) be the monic
generator polynomials of them for i = 1,2, ...,k + 1 , respectively. Let C = (1 —v; — -+ —
v )G, BV, C,®D ... BV, Cry1 . Then there exist a unique polynomial g(x) = (1 —v; — - —
Vi) g1(x) + v192(x) + -+ + v grsq () € Di[x,6,] such that C =< g(x) > and g(x) isa
right divisor of x™ — 1.

Corollary 21: Every left submodule of D[x,6,]/<x™—1> s principally
generated.

Definition 22 Let [F, be a finite field of characteristic p with g elements and 6, be an
automorphism of F,. A subset C of ]ng+1)" is called a skew quasi-cyclic code of length
(k + 1)n and index n such that |6, ||k + 1 If,

i.  C issubspace of F~*M"

ii If c = (Co‘o, Co1s »+e» CO,Tl—l’ Cl,O' ey Cl,n—l’ vy Ck,O' ) Ck,n—l) € C, then

Ht(ck,O)' (L] Ht(ck,n—l)' gt(CO,O)I L) ) €EC

T c) =
et'kﬂ’n( ) ( 0 (Con-1)s - 0c(Cr—1,0)s +» 0 (Ck—1.n-1)

Proposition 23 Let gy, be the skew cyclic shift on Dy, let ¢ be the Gray map from

Dj} to IFEI"“)" , let @ be as in the section 2 and let 74, 41, be the skew quasi-cyclic shift
operator. S0, ¢ag, = VPTg, k41, Where v is a map such that v(xq,..,xg4q) =
(X2, oy X141, %) TOr x; € IFZI‘ withi =1,2,...,k + 1.

Proof. Letr; = a} + v,at + -+ v,al be the elements of D, fori = 0,1,...,n — 1.
We have gy, (1o, ..., Ta—1) = (0:(Th-1), 0¢(10), -, (B¢ (1—2)). If we apply ¢, we have
¢ (06,10, -, Tn-1)) = P((O(Tn-1), 0¢(70), ..., (B¢ (1-2))

= (@™, @), ., (@), (@™ + (@, e (@ )P +
(aln—2)pt,..., (aOn—1)pt+(akn—1)ps,..., (@0n—2)pt+(akn—2)pt.

On the other hand, ¢(7g, ..., 7—1) = (@, ...,a¥ Lad + a?, ..., al t + a7, ..., ad +
akd,..., aOn—1+akn—1. By applying 78t k+1,n, we have
TGt,k+1,n(¢(r0' ---'rn—l)) =
(@3)P" + (@), o, (@3 ™" + (@O, (@), ) (@™, (@)P +
(@2 )P, ..., (@ HP" + (a~1)P"). We have expected result.

Theorem 24: The Gray image a skew cyclic code over D, of length n is permutation
equivalent to a skew quasi-cyclic code of index n over F, with length (k + 1)n.

Proof. Let C be a skew cyclic codes over D, of length n. So, gy, (C) = C. If we apply
¢, we have $(0p,(C)) = d(C). From the Proposition 23,

$(06,(C)) = P(C)=v(@(Tg, k+10(P(0)))). So, d(C) is permutation equivalent to a skew
quasi-cyclic code of index n over IF, with length (k + 1)n.
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4. CONCLUSION

The algebraic structures of cyclic and skew cyclic codes over the finite ring D, are
studied. A new Gray map from D, to IF’;+1 is defined. The non trivial automorphism over D,
is given and the skew cyclic codes over D, are introduced. A linear code over Dy is
represented by means of k + 1 g-ary codes. It is shown that C is a (cyclic) skew cyclic code
over Dy ifand only if C;, C;, ..., Cy1 are all (cyclic) skew cyclic codes over [F,. The algebraic
structures of (cyclic) skew cyclic codes and its duality properties are investigated. The Gray
images of skew cyclic and cyclic codes are obtained.
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