CYCLIC AND SKEW CYCLIC CODES OVER THE
 $\mathbb{F}_{\boldsymbol{q}}+\boldsymbol{v}_{1} \mathbb{F}_{\boldsymbol{q}}+\cdots+\boldsymbol{v}_{\boldsymbol{k}} \mathbb{F}_{\boldsymbol{q}}$

ABDULLAH DERTLI ${ }^{1}$, YASEMIN CENGELLENMIS ${ }^{2}$

Manuscript received: 15.11.2015; Accepted paper: 10.03.2016;
Published online: 30.03.2016.

Abstract

In this paper, we study the structure of cyclic and skew cyclic codes over the finite ring $D_{k}=\mathbb{F}_{q}+v_{1} \mathbb{F}_{q}+\cdots+v_{k} \mathbb{F}_{q}, v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}=0,1 \leq i, j \leq k, q=p^{m}, p$ is a prime for $k \geq 1$ which contains the ring $\mathbb{F}_{q}+v_{1} \mathbb{F}_{q}, v_{1}^{2}=v_{1}$. We define a new Gray map from D_{k} to \mathbb{F}_{q}^{k+1}. The algebraic structures of cyclic codes and duality properties are investigated. A linear code over D_{k} is represented by means of $k+1 q$-ary codes. The non trivial automorphism over D_{k} is given and the skew cyclic codes over D_{k} are introduced. The algebraic structure of skew cyclic codes and duality properties are investigated. The Gray images of both cyclic and skew cyclic codes over D_{k} are obtained.

Keywords: Cyclic code, skew cyclic code, finite ring.

1. INTRODUCTION

As cyclic codes have got rich algebraic structure, they are very important class in coding theory. These classes of codes were first discussed by a series of papers and reports by E. Prange in [17] and [18].

Skew cyclic codes are generalization of the notion of cyclic codes. The class of skew cyclic codes are bigger class than the class of cyclic codes. If a trivial automorphism is used, the notion of the cyclic code coincides with the notion of the skew cyclic code. As a similar, the notion of the skew quasi-cyclic codes and skew constacyclic codes are generalizations of the notions of quasi-cyclic codes and constacyclic codes. There are a lot of studies about skew codes.

Firstly, D. Boucher et al. generalized the notion of cyclic codes by using generator polynomials in skew polynomial rings. They introduced skew cyclic codes over finite fields with q elements in [7].

In [8], D. Boucher et al. generalized the construction of linear codes via skew polynomials rings by using Galois ring instead of finite fields. In 2008, D. Boucher and F. Ulmer gave some important result on the duals of skew cyclic codes over \mathbb{F}_{q} in [9]. T. Abualrub and P . Seneviratne studied skew cyclic codes over the finite ring $\mathbb{F}_{2}+v \mathbb{F}_{2}, v^{2}=v$

[^0]in [1]. In [2], T. Abualrub et al. studied skew quasi- cyclic codes over \mathbb{F}_{q}. The notion of generator and parity-check polynomials was given. M. Bhaintwal investigated skew quasicyclic codes over the Galois ring in [6]. A necessary and sufficient condition for skew cyclic codes over Galois rings to be free and a canonical decomposition of skew quasi-cyclic codes were given. J. Gao et al. studied skew generalized quasi-cyclic codes over finite fields in [12]. In [21], I. Siap et al. investigated the structural properties of skew cyclic codes of arbitrary length over finite fields. In [16], S. Jitman et al. studied the Gray image of three type skew constacyclic codes over finite chain ring. J. Gao studied skew cyclic codes over $\mathbb{F}_{p}+v \mathbb{F}_{p}$, $v^{2}=v, p$ is a prime in [13]. He investigated the structural properties of skew poynomial $\left(\mathbb{F}_{p}+v \mathbb{F}_{p}\right)[x, \theta]$ and $\left(\mathbb{F}_{p}+v \mathbb{F}_{p}\right)[x, \theta] /\left\langle x^{n}-1\right\rangle$. F . Gursoy et al. introduced skew cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}, v^{2}=v, q=p^{m}$ in [15]. The idempotent generators of skew cyclic codes over \mathbb{F}_{q} and $\mathbb{F}_{q}+v \mathbb{F}_{q}$ were given, firstly. Both M. Ashraf et al. and M. Shi et al. studied skew cyclic codes over the ring $\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}, v^{3}=v, q=p^{m}, p$ is odd prime at the same time in [5] and [19] , respectively. In [14], J. Gao et al. generalized it to the finite ring $S=\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}+v^{3} \mathbb{F}_{q}, v^{4}=v, q=p^{r}, p$ is odd prime, $3 \mid p-1$. They studied skew cyclic codes over S. In [3], M. Ashraf et al. investigated skew cyclic codes over $\mathbb{F}_{3}+v \mathbb{F}_{3}, v^{2}=1$ by taking the automorphism as $\theta: v \mapsto-v$. Later, M. Ashraf et al. extended this work to the ring $\mathbb{F}_{p^{m}}+v \mathbb{F}_{p^{m}}, v^{2}=1, p$ is odd prime in [4]. In [20], M. Shi et al. interested in skew cyclic codes over $T=\mathbb{F}_{q}+v \mathbb{F}_{q}+u \mathbb{F}_{q}+u v \mathbb{F}_{q}, u^{2}=u, v^{2}=v, u v=$ $v u$. They gave a formula for the number of skew cyclic codes over length n over T. In [10] and [11], A. Dertli et al. investigated skew cyclic and quasi-cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+$ $u^{2} \mathbb{F}_{2}, u^{3}=1$ and $\mathbb{Z}_{3}+v \mathbb{Z}_{3}+v^{2} \mathbb{Z}_{3}, v^{3}=v$, respectively.

This paper is organized as follows. In section 2, some knowledges about linear codes over the finite ring D_{k} are given. We define a new Gray map from D_{k} to \mathbb{F}_{q}^{k+1}. It is shown that C is self dual so is $\phi(C)$. The Gray image of cyclic code is obtained. A linear code over D_{k} is represented by means of $k+1 q$-ary codes. The algebraic structure of cyclic code and its duality properties are investigated. In section 3, the non trivial automorphism over D_{k} is given and we introduce skew cyclic codes over D_{k}. It is shown that C is a skew cyclic code over D_{k} if and only if $C_{1}, C_{2}, \ldots, C_{k+1}$ are all skew cyclic codes over \mathbb{F}_{q}. The Gray images of skew cyclic codes are given.

2. LINEAR CODES OVER D_{k}

Let D_{k} be the ring $\mathbb{F}_{q}+v_{1} \mathbb{F}_{q}+\cdots+v_{k} \mathbb{F}_{q}=\left\{a_{0}+v_{1} a_{1}+\cdots+v_{k} a_{k}: a_{i} \in \mathbb{F}_{q}, i=\right.$ $0, \ldots, k$ with $v i 2=v i, v i v j=v j v i=0,1 \leq i, j \leq k, q=p m, p$ is a prime. $D k$ can be as quotient ring $\mathbb{F}_{q}\left[v_{1}, v_{2}, \ldots, v_{k}\right] /\left\langle v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}=0\right\rangle$, where $1 \leq i, j \leq k . D_{k}$ is a finite commutative ring with q^{k+1} elements. A linear code C over D_{k} length n is a D_{k}-submodule of D_{k}^{n}. An element of C is called a codeword. We define the Gray map as follows,

$$
\begin{gathered}
\phi: \mathrm{D}_{\mathrm{k}} \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{k}+1} \\
\phi\left(\mathrm{a}_{0}+\mathrm{v}_{1} \mathrm{a}_{1}+\cdots+\mathrm{v}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}\right)=\left(\mathrm{a}_{0}, \mathrm{a}_{0}+\mathrm{a}_{1}, \mathrm{a}_{0}+\mathrm{a}_{2}, \ldots, \mathrm{a}_{0}+\mathrm{a}_{\mathrm{k}}\right)
\end{gathered}
$$

It can be extended to D_{k}^{n}.

Let C be a code over \mathbb{F}_{q} of length $(k+1) n$ and $c^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{(k+1) n-1}^{\prime}\right)$ be a codeword of C. The Hamming weight of c^{\prime} is defined as $w_{H}\left(c^{\prime}\right)=\sum_{i=0}^{(k+1) n-1} w_{H}\left(c_{i}^{\prime}\right)$, where $w_{H}\left(c_{i}^{\prime}\right)=1$ if $c_{i}^{\prime} \neq 0$ and $w_{H}\left(c_{i}^{\prime}\right)=0$ if $c_{i}^{\prime}=0$. The minimum Hamming distance of C is defined as $d_{H}(C)=\min \left\{d_{H}\left(c, c^{\prime}\right)\right\}$, where for any $c^{\prime} \in C, c \neq c^{\prime}$ and $d_{H}\left(c, c^{\prime}\right)$ is Hamming distance between two codewords with $d_{H}\left(c, c^{\prime}\right)=w_{H}\left(c-c^{\prime}\right)$.

Let $r=a_{0}+v_{1} a_{1}+\cdots+v_{k} a_{k}$ be an element of D_{k}, then the Lee weight of r is defined as $w_{L}(r)=w_{H}\left(a_{0}, a_{0}+a_{1}, a_{0}+a_{1}, \ldots, a_{0}+a_{k}\right)$, where w_{H} is the Hamming weight.

Define the Lee weight of a vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in D_{k}^{n}$ to be the sum of Lee weights of its components. For any element $c_{1}, c_{2} \in D_{k}^{n}$, the Lee distance between c_{1} and c_{2} is given by $d_{L}\left(c_{1}, c_{2}\right)=w_{H}\left(c_{1}-c_{2}\right)$. The minimum Lee distance of C is defined as $d_{L}(C)=$ $\min \left\{d_{L}\left(c_{1}, c_{2}\right)\right\}$, where for any $c_{1} \in C, c_{1} \neq c_{2}$.

For any $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ the inner product is defined as

$$
x y=\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}
$$

If $x y=0$ then x and y are said to be orthogonal. Let C be a linear code of length n over D_{k}, the dual code of C

$$
\mathrm{C}^{\perp}=\{\mathrm{x}: \forall \mathrm{y} \in \mathrm{C}, \mathrm{xy}=0\}
$$

which is also a linear code over D_{k} of length n. A code C is self orthogonal, if $C \subseteq C^{\perp}$ and self dual, if $C=C^{\perp}$.

A cyclic code C over D_{k} is a linear code with the property that if $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, then $\sigma(C)=\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. A subset C of D_{k}^{n} is a linear cyclic code of length n iff its polynomial representation is an ideal of $D_{k}[x] /\left\langle x^{n}-1\right\rangle$.

Let $a \in \mathbb{F}_{q}^{(k+1) n}$ with $a=\left(a_{0}, a_{1}, \ldots, a_{(k+1) n-1}\right)=\left(a^{(0)}\left|a^{(1)}\right| \ldots \mid a^{(k)}\right), a^{(i)} \in \mathbb{F}_{q}^{n}$ for $i=0,1,2, \ldots, k$. Let φ be a map from $\mathbb{F}_{q}^{(k+1) n}$ to $\mathbb{F}_{q}^{(k+1) n}$ given by $\varphi(a)=\left(\sigma\left(a^{(0)}\right)\left|\sigma\left(a^{(1)}\right)\right| \ldots \mid \sigma\left(a^{(k)}\right)\right)$, where σ is a cyclic shift from \mathbb{F}_{q}^{n} to \mathbb{F}_{q}^{n} given by

$$
\sigma\left(\mathrm{a}^{(\mathrm{i})}\right)=\left(\left(\mathrm{a}^{(\mathrm{i}, \mathrm{n}-1)}\right),\left(\mathrm{a}^{(\mathrm{i}, 0)}\right),\left(\mathrm{a}^{(\mathrm{i}, 1)}\right), \ldots,\left(\mathrm{a}^{(\mathrm{i}, \mathrm{n}-2)}\right)\right)
$$

for every $a^{(i)}=\left(a^{(i, 0)}, a^{(i, 1)}, \ldots, a^{(i, n-1)}\right)$, where $a^{(i, j)} \in \mathbb{F}_{q}, j=0,1, \ldots, n-1$.
A code of length $(k+1) n$ over \mathbb{F}_{q} is said to be quasi-cyclic code of index $k+1$ if $\varphi(C)=C$.

Theorem 1: The Gray map ϕ is distance preserving map from (D_{k}^{n}, Lee distance) to ($\mathbb{F}_{q}^{(k+1) n}$, Hamming distance). Moreover it is \mathbb{F}_{q}-linear.

Proof. For $k_{1}, k_{2} \in \mathbb{F}_{q}$ and $z_{1}, z_{2} \in D_{k}^{n}$, then we have $\phi\left(k_{1} z_{1}+k_{2} z_{2}\right)=k_{1} \phi\left(z_{1}\right)+$ $k_{2} \phi\left(z_{2}\right)$. So, ϕ is \mathbb{F}_{q}-linear. Let $z_{1}=\left(z_{1,0}, z_{1,1}, \ldots, z_{1, n-1}\right), z_{2}=\left(z_{2,0}, z_{2,1}, \ldots, z_{2, n-1}\right)$ be elements D_{k}^{n} where $z_{1, i}=a_{1, i}^{0}+v_{1} a_{1, i}^{1}+\cdots+v_{k} a_{1, i}^{k}$ and $z_{2, i}=a_{2, i}^{0}+v_{1} a_{2, i}^{1}+\cdots+v_{k} a_{2, i}^{k}$, $i=0,1, \ldots, n-1$. Then $z_{1}-z_{2}=\left(z_{1,0}-z_{2,0}, \ldots, z_{1, n-1}-z_{2, n-1}\right)$ and $\phi\left(z_{1}-z_{2}\right)=$ $\phi\left(z_{1}\right)-\phi\left(z_{2}\right)$. So, $d_{L}\left(z_{1}, z_{2}\right)=w_{L}\left(z_{1}-z_{2}\right)=w_{H}\left(\phi\left(z_{1}-z_{2}\right)\right)=w_{H}\left(\phi\left(z_{1}\right)-\phi\left(z_{2}\right)\right)=$ $d_{H}\left(\phi\left(z_{1}\right), \phi\left(z_{2}\right)\right)$.

Theorem 2: If C is a linear code of length n over D_{k} with rank r and minimum Lee distance d_{L}, then $\phi(C)$ is a linear code of length $(k+1) n$ over \mathbb{F}_{q} with dimension r, $d_{H}=d_{L}$.

Proposition 3: Let ϕ be the Gray map from D_{k}^{n} to $\mathbb{F}_{q}^{(k+1) n}$, let σ be the cyclic shift and let φ be a map as in the section 2 . Then $\phi \sigma=\varphi \phi$.

Proof. Let $z=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \in D_{k}^{n}$. Let $z_{i}=a_{i}^{0}+v_{1} a_{i}^{1}+\cdots+v_{k} a_{i}^{k}$, where $a_{i}^{0}, a_{i}^{1}, \ldots, a_{i}^{k} \in \mathbb{F}_{q}$ and $0 \leq i \leq n-1$. From definition ϕ, we have $\left(a_{0}^{0}, \ldots, a_{n-1}^{0}, a_{0}^{0}+\right.$ $a 01, \ldots, a n-10+a n-11, \ldots, a 00+a 0 k, \ldots, a n-10+a n-1 k$,
$\varphi(\phi(z))=\left(a_{n-1}^{0}, a_{0}^{0}, \ldots, a_{n-2}^{0}, a_{n-1}^{0}+a_{n-1}^{1}, \ldots, a_{n-2}^{0}+a_{n-2}^{1}, \ldots, a_{n-1}^{0}+a_{n-1}^{k}, \ldots, a_{n-2}^{0}+\right.$ an-2kOn the other hand, $\sigma(z)=\left(z_{\mathrm{n}-1}, z_{0}, \ldots, z_{n-2}\right)$. If we apply ϕ, we have $\phi(\sigma(z))=$ $\left(a_{n-1}^{0}, a_{0}^{0}, \ldots, a_{n-2}^{0}, a_{n-1}^{0}+a_{n-1}^{1}, \ldots, a_{n-2}^{0}+a_{n-2}^{1}, \ldots, a_{n-1}^{0}+a_{n-1}^{k}, \ldots, a_{n-2}^{0}+a_{n-2}^{k}\right)$.

Theorem 4: Let σ and φ be as in section 2. A code C of length n over D_{k} is a cyclic code iff $\phi(C)$ is a quasi-cyclic code of index $k+1$ over \mathbb{F}_{q} with length $(k+1) n$.

Proof. Let C be a cyclic code. Then $\sigma(C)=C$. If we apply ϕ, we have $\phi(\sigma(C))=$ $\phi(C)$. By using proposition $3, \phi(\sigma(C))=\varphi(\phi(C))=\phi(C)$. Hence $\phi(C)$ is a quasi-cyclic code of index $k+1$. For the other part, $\phi(C)$ is a quasi-cyclic code of index $k+1$, then we have $\varphi(\phi(C))=\phi(C)$. From proposition 3, we have $\phi(\sigma(C))=\varphi(\phi(C))=\phi(C)$. Since ϕ is injective, it follows $\sigma(C)=C$.

Definition 5: Let $A_{1}, A_{2}, \ldots, A_{k+1}$ be linear codes.

$$
A_{1} \otimes A_{2} \otimes \ldots \otimes A_{k+1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{k+1}\right): a_{1} \in A_{1}, \ldots, a_{k+1} \in A_{k+1}\right\}
$$

and

$$
\mathrm{A}_{1} \oplus \mathrm{~A}_{2} \oplus \ldots \oplus \mathrm{~A}_{\mathrm{k}+1}=\left\{\mathrm{a}_{1}+\mathrm{a}_{2}+\cdots+\mathrm{a}_{\mathrm{k}+1}: \mathrm{a}_{1} \in \mathrm{~A}_{1}, \ldots, \mathrm{a}_{\mathrm{k}+1} \in \mathrm{~A}_{\mathrm{k}+1}\right\}
$$

Let C be a linear code of length n over D_{k}. Define

$$
\begin{gathered}
C_{1}=\left\{a_{0} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}: \exists \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}, \mathrm{a}_{0}+\mathrm{v}_{1} \mathrm{a}_{1}+\cdots+\mathrm{v}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \in \mathrm{C}\right\} \\
\mathrm{C}_{2}=\left\{\mathrm{a}_{0}+\mathrm{a}_{1} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}: \mathrm{a}_{0}+\mathrm{v}_{1} \mathrm{a}_{1}+\cdots+\mathrm{v}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \in \mathrm{C}\right\} \\
\vdots \\
C_{\mathrm{k}+1}=\left\{\mathrm{a}_{0}+\mathrm{a}_{\mathrm{k}} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}: \mathrm{a}_{0}+\mathrm{v}_{1} \mathrm{a}_{1}+\cdots+\mathrm{v}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \in \mathrm{C}\right\}
\end{gathered}
$$

It is clear that $C_{1}, C_{2}, \ldots, C_{k+1}$ are q-ary linear codes of length n.
Theorem 6: Let C be a linear code of length n over D_{k}. Then $\phi(C)=C_{1} \otimes C_{2} \otimes \ldots \otimes C_{k+1}$ and $|C|=\left|C_{1}\right|\left|C_{2}\right| \ldots\left|C_{k+1}\right|$.

Proof. It is proved as in [11].

Corollary 7: If $\phi(C)=C_{1} \otimes C_{2} \otimes \ldots \otimes C_{k+1}$, then

$$
\mathrm{C}=\left(1-\mathrm{v}_{1}-\cdots-\mathrm{v}_{\mathrm{k}}\right) \mathrm{C}_{1} \oplus \mathrm{v}_{1} \mathrm{C}_{2} \oplus \mathrm{v}_{2} \mathrm{C}_{3} \oplus \ldots \oplus \mathrm{v}_{\mathrm{k}} \mathrm{C}_{\mathrm{k}+1} .
$$

Theorem 8: Let $C=\left(1-v_{1}-\cdots-v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus v_{2} C_{3} \oplus \ldots \oplus v_{k} C_{k+1}$ be a linear code of length n over D_{k}. Then C is a cyclic code over D_{k} if and only if $C_{1}, C_{2}, \ldots, C_{k+1}$ are all cyclic codes over \mathbb{F}_{q}.

Proof. Let $\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right) \in C_{1},\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right) \in C_{2}, \ldots,\left(a_{0}^{k+1}, a_{1}^{k+1}, \ldots, a_{n-1}^{k+1}\right) \in$ C_{k+1}. Assume that $z_{i}=\left(1-v_{1}-\cdots-v_{k}\right) a_{i}^{1}+v_{1} a_{i}^{2}+\cdots+v_{k} a_{i}^{k+1}$ for $i=0,1, \ldots, n-1$. Then the vector $\left(z_{0}, \ldots, z_{n-1}\right) \in C$. As C is a cyclic code, then $\left(z_{n-1}, z_{0}, \ldots, z_{n-2}\right) \in C$. Note that $\quad\left(z_{n-1}, z_{0}, \ldots, z_{n-2}\right)=\left(1-v_{1}-\cdots-v_{k}\right)\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\cdots+v_{k}\left(a_{n-1}^{k+1}, \ldots, a_{n-2}^{k+1}\right)$. Hence $\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right) \in C_{1}, \ldots,\left(a_{n-1}^{k+1}, \ldots, a_{n-2}^{k+1}\right) \in C_{k+1}$. So, $C_{1}, C_{2}, \ldots, C_{k+1}$ are all cyclic codes over \mathbb{F}_{q}.

Conversely, $C_{1}, C_{2}, \ldots, C_{k+1}$ are all cyclic codes over \mathbb{F}_{q}. Let $\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \in C$ where $\quad z_{i}=\left(1-v_{1}-\cdots-v_{k}\right) a_{i}^{1}+v_{1} a_{i}^{2}+\cdots+v_{k} a_{i}^{k+1} \quad$ for $\quad i=0,1, \ldots, n-1$. Then $\left(a_{0}^{1}, a_{1}^{1}, \ldots, a_{n-1}^{1}\right) \in C_{1},\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{n-1}^{2}\right) \in C_{2}, \ldots,\left(a_{0}^{k+1}, a_{1}^{k+1}, \ldots, a_{n-1}^{k+1}\right) \in C_{k+1}$. Note that $\left(z_{n-1}, z_{0}, \ldots, z_{n-2}\right)=\left(1-v_{1}-\cdots-v_{k}\right)\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\cdots+v_{k}\left(a_{n-1}^{k+1}, \ldots, a_{n-2}^{k+1}\right) \in C=$ $\left(1-v_{1}-\cdots-v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus v_{2} C_{3} \oplus \ldots \oplus v_{k} C_{k+1}$. Therefore C is a cyclic code over D_{k}.

Corollary 9: If $G_{1}, G_{2}, \ldots, G_{k+1}$ are generator matrices of q-ary linear codes $C_{1}, C_{2}, \ldots, C_{k+1}$ respectively, then the generator matrix of C is

$$
G=\left[\begin{array}{c}
\left(1-v_{1}-\cdots-v_{k}\right) G_{1} \\
v_{1} G_{2} \\
\vdots \\
v_{k} G_{k+1}
\end{array}\right]
$$

We have

$$
\phi(G)=\left[\begin{array}{c}
\phi\left(\left(1-v_{1}-\cdots-v_{k}\right) G_{1}\right) \\
\phi\left(v_{1} G_{2}\right) \\
\vdots \\
\phi\left(v_{k} G_{k+1}\right)
\end{array}\right]
$$

Let d_{L} be the minimum Lee weight of a linear code C over D_{k}. Then,

$$
d_{L}=d_{H}(\phi(C))=\min \left\{d_{H}\left(C_{1}\right), \ldots, d_{H}\left(C_{k+1}\right)\right\}
$$

where $d_{H}\left(C_{i}\right)$ denotes the minimum Hamming weights of q-ary codes C_{1}, \ldots, C_{k+1}, respectively.

Theorem 10: Let C be a linear code over D_{k}. Then $\phi(C)^{\perp}=\phi\left(C^{\perp}\right)$. If C is a self dual, so is $\phi(C)$.

Proof. Let $x=a_{0}+a_{1} v_{1}+\cdots+a_{k} v_{k}, x^{1}=b_{0}+b_{1} v_{1}+\cdots+b_{k} v_{k} \in C$, where $a_{0}, a_{1}, \ldots, a_{k}, b_{0}, b_{1}, \ldots, b_{k} \in \mathbb{F}_{q}^{n}$.

$$
x x^{1}=a_{0} b_{0}+v_{1}\left(a_{0} b_{1}+a_{1} b_{0}+a_{1} b_{1}\right)+\cdots+v_{k}\left(a_{0} b_{k}+a_{k} b_{0}+a_{k} b_{k}\right)
$$

Since C is a self dual code, $a_{0} b_{0}=0, a_{0} b_{1}+a_{1} b_{0}+a_{1} b_{1}=0, \ldots, a_{0} b_{k}+a_{k} b_{0}+$ $a_{k} b_{k}=0 . \phi(x) \phi\left(x^{1}\right)=\left(a_{0}, \ldots, a_{0}+a_{k}\right)\left(b_{0}, \ldots, b_{0}+b_{k}\right)=0$. We have $\phi(C)^{\perp} \subset \phi\left(C^{\perp}\right)$. By using $\left|\phi(C)^{\perp}\right|=\left|\phi\left(C^{\perp}\right)\right|$, we have $\phi(C)^{\perp}=\phi\left(C^{\perp}\right)$.

Proposition 11: Let C be a linear code of length n over D_{k} and $\phi(C)=C_{1} \otimes \ldots \otimes C_{k+1}$ then

$$
\phi\left(C^{\perp}\right)=C_{1}^{\perp} \otimes C_{2}^{\perp} \otimes \ldots \otimes C_{k+1}^{\perp}
$$

which gives $C^{\perp}=\left(1-v_{1}-\cdots-v_{k}\right) C_{1}^{\perp} \oplus v_{1} C_{2}^{\perp} \oplus \ldots \oplus v_{k} C_{k+1}^{\perp}$.
Proposition 12: Suppose $C=\left(1-v_{1}-\cdots-v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus \ldots \oplus v_{k} C_{k+1}$ is a cyclic code of length n over D_{k}. Then

$$
C=\left\langle\left(1-v_{1}-\cdots-v_{k}\right) f_{1}, v_{1} f_{2}, \ldots, v_{k} f_{k+1}\right\rangle
$$

and $|C|=q^{(k+1) n-\left(\operatorname{deg} f_{1}+\cdots+\operatorname{deg} f_{k+1}\right)}$, where $f_{1}, f_{2}, \ldots, f_{k+1}$ generator polynomials of C_{1}, \ldots, C_{k+1}, respectively.

Proposition 13: Suppose C is a cyclic code of length n over D_{k}, then there is a unique polynomial $f(x)$ such that $C=<f(x)>$ and $f(x) \mid x^{n}-1$, where $f(x)=\left(1-v_{1}-\cdots-\right.$ $v k f 1 x+v 1 f 2 x+\ldots+v k f k+1(x)$.

Proposition 14: If $C=\left(1-v_{1}-\cdots-v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus \ldots \oplus v_{k} C_{k+1}$ is a cyclic code of length n over D_{k}, then

$$
C^{\perp}=\left\langle\left(1-v_{1}-\cdots .-v_{k}\right) h_{1}^{*}+v_{1} h_{2}^{*}+\cdots+v_{k} h_{k+1}^{*}\right\rangle
$$

and $\left|C^{\perp}\right|=q^{\left(\operatorname{deg} f_{1}+\cdots+\operatorname{deg} f_{k+1}\right)}$, where h_{i}^{*} are the reciprocal polynomials of h_{i} for $i=$ $1,2, \ldots, k+1$, i.e., $h_{i}(x)=x^{n}-1 / f_{i}(x), h_{i}^{*}(x)=x^{\operatorname{deg} h_{i}} h_{i}\left(x^{-1}\right)$ for $i=1,2, \ldots, k+1$.

3. SKEW CODES OVER D_{k}

We are interested in studying skew codes over the ring D_{k}, where $1 \leq k$.
For $k=1, D_{1}=\mathbb{F}_{q}\left[v_{1}\right] /\left\langle v_{1}^{2}-v_{1}\right\rangle$ where $v_{1}^{2}=v_{1}, q=p^{m}$ with ring automorphism

$$
\theta_{i}: D_{1} \rightarrow D_{1}
$$

defined by $\theta_{i}\left(a+v_{1} b\right)=a^{p^{i}}+v_{1} b^{p^{i}}$. In [15], they studied skew cyclic codes on D_{1}.
We define non-trivial ring automorphism θ_{t} on the ring D_{k} by

$$
\begin{gathered}
\theta_{t}: D_{k} \rightarrow D_{k} \\
\theta_{t}\left(a_{0}+v_{1} a_{1}+\cdots+v_{k} a_{k}\right)=a_{0} p^{t}+v_{1} a_{1} p^{t}+\cdots .+v_{k} a_{k} p^{p}
\end{gathered}
$$

The automorphism θ_{1} is Frobenious automorphism of $\mathbb{F}_{q}, q=p^{m}$ and $\theta_{t}=\theta_{1}^{t}$. The order of the automorphism θ_{t} is m / t.

The ring $D_{k}\left[x, \theta_{t}\right]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in D_{k}, n \in N\right\}$ is called a skew polynomial ring. This ring is a non-commutative ring. The addition in the ring $D_{k}\left[x, \theta_{t}\right]$ is the usual polynomial addition and multiplication is defined using the rule, $\left(a x^{i}\right)\left(b x^{j}\right)=$ $a \theta_{t}^{i}(b) x^{i+j}$.

Definition 15: A subset C of D_{k}^{n} is called a skew cyclic code of length n if C satisfies the following conditions,
i. $\quad C$ is a submodule of D_{k}^{n},
ii. If $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$, then $\sigma_{\theta_{t}}(c)=\left(\theta_{t}\left(c_{n-1}\right), \theta_{t}\left(c_{0}\right), \ldots, \theta_{t}\left(c_{n-2}\right)\right) \in C$

Let $f(x)+\left(x^{n}-1\right)$ be an element in the set $S_{k, n}=D_{k}\left[x, \theta_{t}\right] /\left(x^{n}-1\right)$ and let $r(x) \in D_{k}\left[x, \theta_{t}\right]$. Define multiplication from left as follows,

$$
r(x)\left(f(x)+\left(x^{n}-1\right)\right)=r(x) f(x)+\left(x^{n}-1\right)
$$

for any $r(x) \in D_{k}\left[x, \theta_{t}\right]$.
Theorem 16: $S_{k, n}$ is a left $D_{k}\left[x, \theta_{t}\right]$-module where multiplication defined as in above.
Theorem 17: A code C in $S_{k, n}$ is a skew cyclic code if and only if C is a left $D_{k}\left[x, \theta_{t}\right]$-submodule of the left $D_{k}\left[x, \theta_{t}\right]$-module $S_{k, n}$.

Theorem 18: Let C be a linear code of length n over D_{k} and $C=\left(1-v_{1}-\cdots-\right.$ $\left.v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus \ldots \oplus v_{k} C_{k+1}$, where C_{1}, \ldots, C_{k+1} are linear codes of length n over \mathbb{F}_{q}. Then C is a skew cyclic code in according to the automorphism θ_{t} over D_{k} if and only if C_{1}, \ldots, C_{k+1} are all skew cyclic codes over \mathbb{F}_{q} in according to the automorphism θ_{t}.

Proof. Let $\left(c_{0}^{i}, \ldots, c_{n-1}^{i}\right) \in C_{i}, i=1,2, \ldots, k+1$. Assume that $c_{j}=\left(1-v_{1}-\cdots-\right.$ $\left.v_{k}\right) c_{j}^{1}+\cdots+v_{k} c_{j}^{k+1}$ for $j=0,1,2, \ldots, n-1$, then $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$. As C is a skew cyclic code in according to the automorphism θ_{t}, we have $\sigma_{\theta_{t}}(c)=\left(\theta_{t}\left(c_{n-1}\right), \theta_{t}\left(c_{0}\right), \ldots, \theta_{t}\left(c_{n-2}\right)\right) \in C$. We know that $\sigma_{\theta_{t}}(c)=\left(1-v_{1}-\cdots-\right.$ $\left.v_{k}\right)\left(\theta_{t}\left(c_{n-1}^{1}\right), \theta_{t}\left(c_{0}^{1}\right), \ldots, \theta_{t}\left(c_{n-2}^{1}\right)\right)+\cdots+v_{k}\left(\theta_{t}\left(c_{n-1}^{k+1}\right), \theta_{t}\left(c_{0}^{k+1}\right), \ldots, \theta_{t}\left(c_{n-2}^{k+1}\right)\right)$. So, $\left(\theta_{t}\left(c_{n-1}^{i}\right), \theta_{t}\left(c_{0}^{i}\right), \ldots, \theta_{t}\left(c_{n-2}^{i}\right)\right) \in C_{i}$ for $i=1,2, \ldots, k+1$. We have C_{1}, \ldots, C_{k+1} are skew cyclic codes in according to automorphism θ_{t} over \mathbb{F}_{q}.

Conversely, assume that C_{1}, \ldots, C_{k+1} are skew cyclic codes in according to automorphism θ_{t} over \mathbb{F}_{q} and $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$ where $c_{j}=\left(1-v_{1}-\cdots-v_{k}\right) c_{j}^{1}+\cdots+$ $v_{k} c_{j}^{k+1}$ for $j=0,1, \ldots, n-1$, then $\left(c_{0}^{i}, \ldots, c_{n-1}^{i}\right) \in C_{i}, i=1,2, \ldots, k+1$. Note that $\sigma_{\theta_{t}}(c)=$ $\left(1-v_{1}-\cdots-v_{k}\right)\left(\theta_{t}\left(c_{n-1}^{1}\right), \theta_{t}\left(c_{0}^{1}\right), \ldots, \theta_{t}\left(c_{n-2}^{1}\right)\right)+\cdots+v_{k}\left(\theta_{t}\left(c_{n-1}^{k+1}\right), \ldots, \theta_{t}\left(c_{n-2}^{k+1}\right)\right) \in C$.

Corollary 19: If C is a skew cyclic code in according to the automorphism θ_{t} over D_{k}, then the dual code C^{\perp} is also a skew cyclic code in according to the automorphism θ_{t} over D_{k}.

Theorem 20: Let C_{1}, \ldots, C_{k+1} are skew cyclic codes over \mathbb{F}_{q} and $g_{i}(x)$ be the monic generator polynomials of them for $i=1,2, \ldots, k+1$, respectively. Let $C=\left(1-v_{1}-\cdots-\right.$ $\left.v_{k}\right) C_{1} \oplus v_{1} C_{2} \oplus \ldots \oplus v_{k} C_{k+1}$. Then there exist a unique polynomial $g(x)=\left(1-v_{1}-\cdots-\right.$ $\left.v_{k}\right) g_{1}(x)+v_{1} g_{2}(x)+\cdots+v_{k} g_{k+1}(x) \in D_{k}\left[x, \theta_{t}\right]$ such that $C=<g(x)>$ and $g(x)$ is a right divisor of $x^{n}-1$.

Corollary 21: Every left submodule of $D_{k}\left[x, \theta_{t}\right] /\left\langle x^{n}-1\right\rangle$ is principally generated.

Definition 22 Let \mathbb{F}_{q} be a finite field of characteristic p with q elements and θ_{t} be an automorphism of \mathbb{F}_{q}. A subset C of $\mathbb{F}_{q}^{(k+1) n}$ is called a skew quasi-cyclic code of length $(k+1) n$ and index n such that $\mid \theta_{t} \| k+1$ if,
i. $\quad C$ is subspace of $\mathbb{F}_{q}^{(k+1) n}$
ii. If $c=\left(c_{0,0}, c_{01}, \ldots, c_{0, n-1}, c_{1,0}, \ldots, c_{1, n-1}, \ldots, c_{k, 0}, \ldots, c_{k, n-1}\right) \in C$, then

$$
\tau_{\theta_{t}, k+1, n}(c)=\binom{\theta_{t}\left(c_{k, 0}\right), \ldots, \theta_{t}\left(c_{k, n-1}\right), \theta_{t}\left(c_{0,0}\right), \ldots,}{\theta_{t}\left(c_{0, n-1}\right), \ldots, \theta_{t}\left(c_{k-1,0}\right), \ldots, \theta_{t}\left(c_{k-1, n-1}\right)} \in C
$$

Proposition 23 Let $\sigma_{\theta_{t}}$ be the skew cyclic shift on D_{k}^{n}, let ϕ be the Gray map from D_{k}^{n} to $\mathbb{F}_{q}^{(k+1) n}$, let φ be as in the section 2 and let $\tau_{\theta_{t}, k+1, n}$ be the skew quasi-cyclic shift operator. So, $\phi \sigma_{\theta_{t}}=v \varphi \tau_{\theta_{t}, k+1, n} \phi$ where v is a map such that $v\left(x_{1}, \ldots, x_{k+1}\right)=$ $\left(x_{2}, \ldots, x_{k+1}, x_{1}\right)$ for $x_{i} \in \mathbb{F}_{q}^{n}$ with $i=1,2, \ldots, k+1$.

Proof. Let $r_{i}=\alpha_{0}^{i}+v_{1} \alpha_{1}^{i}+\cdots+v_{k} \alpha_{k}^{i}$ be the elements of D_{k}, for $i=0,1, \ldots, n-1$. We have $\sigma_{\theta_{t}}\left(r_{0}, \ldots, r_{n-1}\right)=\left(\theta_{t}\left(r_{n-1}\right), \theta_{t}\left(r_{0}\right), \ldots,\left(\theta_{t}\left(r_{n-2}\right)\right)\right.$. If we apply ϕ, we have $\phi\left(\sigma_{\theta_{t}}\left(r_{0}, \ldots, r_{n-1}\right)\right)=\phi\left(\left(\theta_{t}\left(r_{n-1}\right), \theta_{t}\left(r_{0}\right), \ldots .,\left(\theta_{t}\left(r_{n-2}\right)\right)\right.\right.$

$$
=\left(\left(\alpha_{0}^{n-1}\right)^{p^{t}},\left(\alpha_{0}^{0}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{n-2}\right)^{p^{t}},\left(\alpha_{0}^{n-1}\right)^{p^{t}}+\left(\alpha_{1}^{n-1}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{n-2}\right)^{p^{t}}+\right.
$$ $(\alpha 1 n-2) p t, \ldots,(\alpha 0 n-1) p t+(\alpha k n-1) p t, \ldots,(\alpha 0 n-2) p t+(\alpha k n-2) p t$.

On the other hand, $\phi\left(r_{0}, \ldots, r_{n-1}\right)=\left(\alpha_{0}^{0}, \ldots, \alpha_{0}^{n-1}, \alpha_{0}^{0}+\alpha_{1}^{0}, \ldots, \alpha_{0}^{n-1}+\alpha_{1}^{n-1}, \ldots, \alpha_{0}^{0}+\right.$ $\alpha k 0, \ldots, \quad \alpha 0 n-1+\alpha k n-1 . \quad$ By applying $\tau \theta t, k+1, n$, we have $\tau_{\theta_{t}, k+1, n}\left(\phi\left(r_{0}, \ldots, r_{n-1}\right)\right)=$ $\left(\left(\alpha_{0}^{0}\right)^{p^{t}}+\left(\alpha_{k}^{0}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{n-1}\right)^{p^{t}}+\left(\alpha_{k}^{n-1}\right)^{p^{t}},\left(\alpha_{0}^{0}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{n-1}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{0}\right)^{p^{t}}+\right.$ $\left.\left(\alpha_{k-1}^{0}\right)^{p^{t}}, \ldots,\left(\alpha_{0}^{n-1}\right)^{p^{t}}+\left(\alpha_{k-1}^{n-1}\right)^{p^{t}}\right)$. We have expected result.

Theorem 24: The Gray image a skew cyclic code over D_{k} of length n is permutation equivalent to a skew quasi-cyclic code of index n over \mathbb{F}_{q} with length $(k+1) n$.

Proof. Let C be a skew cyclic codes over D_{k} of length n. So, $\sigma_{\theta_{t}}(C)=C$. If we apply ϕ, we have $\phi\left(\sigma_{\theta_{t}}(C)\right)=\phi(C)$. From the Proposition 23, $\phi\left(\sigma_{\theta_{t}}(C)\right)=\phi(C)=v\left(\varphi\left(\tau_{\theta_{t}, k+1, n}(\phi(C))\right)\right)$. So, $\phi(C)$ is permutation equivalent to a skew quasi-cyclic code of index n over \mathbb{F}_{q} with length $(k+1) n$.

4. CONCLUSION

The algebraic structures of cyclic and skew cyclic codes over the finite ring D_{k} are studied. A new Gray map from D_{k} to \mathbb{F}_{q}^{k+1} is defined. The non trivial automorphism over D_{k} is given and the skew cyclic codes over D_{k} are introduced. A linear code over D_{k} is represented by means of $k+1 q$-ary codes. It is shown that C is a (cyclic) skew cyclic code over D_{k} if and only if $C_{1}, C_{2}, \ldots, C_{k+1}$ are all (cyclic) skew cyclic codes over \mathbb{F}_{q}. The algebraic structures of (cyclic) skew cyclic codes and its duality properties are investigated. The Gray images of skew cyclic and cyclic codes are obtained.

REFERENCES

[1] Abualrub, T., Seneviratne, P., Skew Codes over Rings, Proceeding of the International Multiconference of Engineers and Computer Scientist 2010, II, 846, 2010.
[2] Abualrub T., Ghrayeb A., Aydın N., Siap I., IEEE Transactions on Information Theory, 56(5), 2081, 2010.
[3] Ashraf, M., Mohammed, G., Int. J. Inf. Coding Theory, 2(4), 218, 2014.
[4] Ashraf, M., Mohammed, G., Discrete Math. Algorithm and Appl., 7(3), 1550042, 2015.
[5] Ashraf, M., Mohammed, G., Skew cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}$, arXiv:1504.04326v1, 2015.
[6] Bhaintwal, M., Designs, Codes and Cryptography, 62(1), 85, 2012.
[7] Boucher D., Geiselmann W., Ulmer F., Appl. Algebra. Eng. Commun Comput., 18(4), 379, 2007.
[8] Boucher, D., Sole, P., Ulmer, F., Advance of Mathematics of Communications, 2(3), 273, 2008.
[9] Boucher, D., Ulmer, F., Journal of Symbolic Computation, 44, 1644, 2009.
[10] Dertli, A., Cengellenmis, Y., Eren, S., Palestine Journal of Math, 4, 540, 2015.
[11] Dertli A., Cengellenmis Y., Eren S., Int Journal Adv. Comp Science and Appl., 6(10), 283, 2015.
[12] Gao, J., Shen, L., Fu, F. W., Skew generalized quasi-cyclic codes over finite fields, arXiv: 13091621v1, 2013.
[13] Gao J., J. Appl. Math. \& Informatics, 31(3-4), 337, 2013.
[14] Gao J., Wu L. T., Fu F., Skew Cyclic Codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}+v^{2} \mathbb{F}_{q}+v^{3} \mathbb{F}_{q}$, ResearchGate, 2016.
[15] Gursoy F., Siap I., Yıldız B., Adv. Math Commun, 8, 313, 2014.
[16] Jitman, S., Ling, S., Udomkovanich, P., Adv. Math Commun., 6, 29, 2012.
[17] Prange, E., Cyclic error-correcting codes in two symbols, Air Force Cambridge Research Center-TN-57-103, Cambridge, MA, 1957.
[18] Prange, E., Some cyclic error-correcting codes with simple decoding algorithm, Air Force Cambridge Research Center-TN-58-156, Cambridge, MA, 1958.
[19] Shi, M., Yao, T., Alahmadi, A., Sole, P., IECE Trans. Fundamentals, E89-A, 1845, 2015.
[20] Shi, M., Sole, P., Journal of Algebra Combinatoric Dis. Struc. and Appl., 2, 163, 2015.
[21] Siap I., Abualrub T., Aydın N., Seneviratne P., Int. J.Information and Coding Theory, 2(1), 10, 2010.

[^0]: ${ }^{1}$ Ondokuz Mayıs University, Faculty of Arts and Sciences, Mathematics Department, Samsun, Turkey. E-mail: abdullah.dertli@gmail.com.
 ${ }^{2}$ Trakya University, Faculty of Sciences, Mathematics Department, Edirne, Turkey.
 E-mail: ycengellenmis@gmail.com.

