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Abstract: The aim of this paper is to describe an efficient numerical method for
solving general elliptic Monge- Ampere type boundary value problems in two dimensions
subject to the Dirichlet boundary conditions. The order of the propose method is quadratic.
We have considered model linear and nonlinear problems and solved them to establish the
efficiency and accuracy of the propose method.
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1. INTRODUCTION

In this work, we consider a Monge-Ampere type boundary value problem in partial
differential equations of the form

O?u(x,y) 9%u(ry) (9%u(x,y)\’
gy —( T ) = 1 (%7, uC0 ) w6 ), (6 0))

for (x,y) €Q (1

where Q = {(x,y):a < x,y < b}. Let us assume that function u(x, y) is convex. So equation
(1) is an elliptic equation and possesses unique and numerically stable solution [1]. We
consider Dirichlet boundary conditions with boundary 01,

u(x,y) = g(x,y) , for (x,y) on 0Q. (2)

For a convex function u(x,y), eq. (1) is non-linear elliptic partial differential
equation. The application of this class of equations appears in dynamic meteorology,
elasticity, geometry and optimal transportation [2], theory of viscosity [3] and many more
areas of mathematics. The increasing application of this class of PDE has generated interest
in the numerical solution of the problem in last decades.
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In specific problems (1), there are many different methods and approaches such as
Lagrangian [4], least squares [5], finite difference [1,6], finite element [7,8] that are used to
derive the approximate solutions.

In this article we shall develop finite difference a popular method in science and
engineering for solving problems (1) numerically. The order of accuracy for the propose
method is at least quadratic. Numerical results validate the effectiveness and accuracy of the
method in model problems. A series of papers have recently appeared in literature on
numerical solution of Monge-Ampere elliptic partial differential equations, many of them are
excellent work. But to best of our knowledge numerical method for the solution of problems
(1) has been not discussed in literature so for.

We have presented our work in this article as follows. In the next section we will
present finite difference method and in Section 3 its derivation. In Section 4, we have
discussed local truncation error in propose method and the applications of the proposed
method to the model problems and illustrative numerical results have been produced to show
the efficiency in Section 5. Discussion and conclusion on the performance of the method are
presented in Section 6.

2. THE FINITE DIFFERENCE METHOD

Consider the square domain Q = [a, b] X [a, b] for the solution of problem (1). Let

h = (Z:) be the uniform mesh size in the x and y directions of the Cartesian coordinate

system parallel to coordinate axes. Generate mesh points (xi,y]-),xi =azti.hi=
01,2,..,N+1land y;=azj.hj=012,..,N+1. Let denote the interior central mesh
point (x;,y;) by (i,j). Consider other mesh points (i +1,/), (i,j+1) and (i+1,j+
Ineighbouring to the central mesh point z/. These nine points together constitute a compact
cell. So using these notations, we can rewrite problem (1) at mesh points (i, j) as follows,

Unexi jUyyij — Ugyij = £ (oo v wi j Ui o Uy ) 3)

Here after let further simplify the notation and denote f(xirYj'ui,j:uxi,j:uyi,j) as fij.
To discretize problem (3) at mesh point (i, j) let define following approximations,

Ui,y — Ui-g,f

Ly = — ©
_ Ujj+1 — Ui j—1
yyj = (5)
and define following function
fii = F (o v w j Ui jo Uy ) (6)

Following the ideas in [1], we propose a nine points second order finite difference
method for the problem (3) as,

1 _
4(ay —wyj)(ag —uy;) = 7@~ a)? = h*fi; (7)
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where
Ui+ Uioq Upjr1 +Ujjq
METT o T
Ujpq,jr1 T Ui-1,j-1 Ui—q,j+1 T Uip1,j-1
a3 = , a4 =
2 2

3. DERIVATION OF THE METHOD

Consider equation (4), expand each term on right side in Taylor's series about mesh
point (i, j), we will obtained

_ h? 03u(x;, y;)
Uyij = Uyij + z# +0(hY) (8)

Similarly from equation (5), we have

_ h? %u(x;, ;)
Uyij = Uyij + g5 0 (") 9)

Thus from equation (8) and (9), i, ; and %, ; respectively provides O(h?)

approximation for u,; ; and w,,; ; .
Finally from (6), we will obtained

fij=f (xilyj'ui,j'uxi,j +0(h®),uy;; + O(hz))
= f (0, ¥, Ui ) Ui jy Uyi ) + O(R?) (10)

Thus from (10), we conclude that fi,j provides 0 (h?) approximation for f; ;.
So from (7) and (10), we have

1
4(‘11 - ui,j)(az - ui,j) - Z(a3 —ay)? = h*f;; + 0(h®) (11)

Neglecting the terms with h® and higher we have our propose difference method (7)
for numerical solution of problem (1). The equation (7) at mesh point (i, j) defines a nonlinear
equation. It means method (7) defines a system of nonlinear equations of N X N in [a, b].
Thus, the method consists in finding an approximation wu;; for the theoretical solution
u(x;,y;), i,j = 1(1)N of the problem (1) by solving the system N x N non linear equations
(7) in ul-,j .

4. LOCAL TRUNCATION ERROR

In this section, we consider the local truncation error associated to the proposed
difference method (7). Let the local truncation error in (7) defined as in be T; ; at mesh point

) ij =12 ...,N,
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16(ay —uij)(az —ui ;) — (az —a)* -
160w ) e -

Write each term on right side of the equation (12) in Taylor series about mesh point
(i,j) and simplify, we have

h2
Tij = Uxxi jUyyij + 12 (uxxxxi,juyyi,j + Unxi, jUyyyyi,j ) +
2

1, _
- <uxyi,j + §h (uxxxyi,j + uxyyyi,j) + ) - fL} (13)
By application of (3) and (10) in (13), we have

hZ

Ti,j =E

(uxxxxi,juyyi,j + uxxi,juyyyyi,j - 4uxyi,j (uxxxyi,j + uxyyyi,j)) - O(hz)
Thus we conclude that the local truncation error in propose method (7) is of 0(h?).

5. NUMERICAL EXPERIMENTS

In this section, we have applied the proposed method (7) to solve numerically three
different model problems. We have used Newton- Raphson method to solve the system of
nonlinear linear equations arises from equation (7). All computations were performed on a
Windows 2007 Ultimate operating system in the GNU FORTRAN environment version 99
compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC. Let u;; , the numerical value
calculated by formulae (7), an approximate value of the theoretical solution u(x,y) at the
mesh point (x,y) = (x;, ;). The maximum absolute error

MAE(u) = lsnil?)s(N|u(xi,yj)) — ui,j|

are shown in Tables 1-3, for different value of h, the mesh size. The stopping condition for
iteration was either error of order 108 or number of iterations 103.

Example 1. Consider a nonlinear problem which, when solving consists of

dx? dy? 0xdy dx dy
and (x,y) € Q.

2 2 2 2 2 2
0 u(x,y).a u(x,y) _ <6 u(x,y)) _ (u(x,y))z N <6u(x,y)> . <6u(x,y)> ’

with the boundary conditions u(x, y) on all sides of unit square Q. The maximum absolute

error computed in exact solution u(x, y) = ez  and presented in Table 1.
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Example 2. Consider a nonlinear problem which, when solving consists of

2 2 2 2
OTulxy) 07uxy) (6 u(x,y)) _ Ou(xy) ou(xy) +f(x,y), and (x,y) €Q.

0x? dy? oxdy ox oy

with the boundary conditions u(x, y) on all sides of unit square Q. f(x, y) is given such that
3

the exact solution is u(x,y) = % (x? + y?)z . The maximum absolute error computed in

considered exact solution and presented in Table 2.

Example 3. Consider a nonlinear problem which, when solving consists of

D2u(xy) 0%u(xy) _ (azu(x.w)2 _ 1 ou(xy) du(xy)

= and (x €N.
0x? dy? 0xdy ! (6, y)

2xy = oOx dy

with the boundary conditions u(x, y) on all sides of unit square Q. The maximum absolute
3
error computed in exact solution u(x,y) = % (x% + y?)= and presented in Table 3.

Table 1.Maximum absolute error |u(x;,y;)) —u;;| in example 1.
N

8 16 32 64 128
MAE | .27382374(-3) | .67949295(-4) | .12516975(-4) | .47683716(-6) | .23841858(-6)

Table 2. Maximum absolute error |u(x;,y;)) —u;;| in example 2.
N
8 16 32 64 128
MAE | .22431633(-2) | .78406668(-3) | .27571924(-3) | .97263743 (-4) | .34355708 (-4)

Table 3. Maximum absolute error [u(x;,y;)) —u;;| in example 3.
N
8 16 32 64 128
MAE | .35331196(-2) | .12530528(-2) | .44314962(-3) | .15668073(-3) | .15668073(-3)

CONCLUSION

A finite difference method for numerical solution is presented for numerical solution
of nonlinear Monge-Ampere elliptic PDEs. It follows from derivation and discussion that the
proposed method (7) is of at least quadratic order which is well evident in computational
results. We can claim, in general that our method is simple, convergent and accurate finite
difference method. Numerical results show that our method generate stable numerical results
except in example 1. Though we have developed method on square domain and used equally
spaced grid mesh size, it has good potential for efficient application to many problems on
different geometries; work in this specific direction is in progress.
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