A NEW EPIMORPHISM OF MATRIX COALGEBRAS

GEORGIANA VELICU ${ }^{1}$

Manuscript received: 18.03.2016; Accepted paper: 24.05.2016;
Published online: 30.06.2016.

Abstract

In this paper we construct a new morphism of matrix coalgebras, than we prove that it is an epimorphism and also that its kernel is a coideal in the matrix coalgebra. Finally we give a generalization on this type of morphism between two matrix coalgebras.

Keywords: coalgebra, matrix coalgebra, coideal, morphism, kernel

1. INTRODUCTION AND PRELIMINARIES

Let k be a field. The aim of this paper is to construct an epimorphism between two coalgebras, namely the matrix coalgebra $M^{C}(n, k)$ and the coalgebra $T_{n}(k)$, the second is obtained in a similar way as the first one, where the comultiplication and the counity are those from the incidence coalgebra associated to the totally ordered set $X=\{1<2<\ldots<n\}$ of all positive integers less than n, where $n \in \mathbf{N}^{*}$ is a positive integer.

Remember that [2] if (X, \leq) is an intervally finite partially ordered set, means that the interval $[x, y]=\{z / x \leq z \leq y\}$ is a finite set for any $x \leq y$, then the incidence k - coalgebra of X is the k - linear space denoted by $I C(X)$ is a space with basis $\left\{f_{x, y} / x, y \in X, x \leq y\right\}$, where $f_{x, y}=[x, y]$, having the comultiplication Δ and the counity ε :

$$
\begin{gathered}
\Delta\left(f_{x, y}\right)=\sum_{x \leq z \leq y} f_{x, z} \otimes f_{z, y} \Leftrightarrow \Delta([x, y])=\sum_{x \leq z \leq y}[x, z] \otimes[z, y], \text { respectively } \\
\varepsilon\left(f_{x, y}\right)=\delta_{x, y} \Leftrightarrow \varepsilon([x, y])=\delta_{x, y} .
\end{gathered}
$$

Also, in [1] is presented the matrix coalgebra $M^{C}(n, k)$, where for any considered positive integer $n, M^{C}(n, k)$ is a k - linear space of dimension n^{2} with basis $\left(e_{i j}\right)_{1 \leq i, j \leq n}$, where $e_{i j} \in M_{n}(k)$ is the matrix having 1 on the intersection of the line i and the column j as for the rest 0 . The comultiplication Δ_{n} and the counity ε_{n} in $M^{C}(n, k)$ are defined by:

$$
\Delta_{n}\left(e_{i j}\right)=\sum_{k=1}^{n} e_{i k} \otimes e_{k j} \text { and } \varepsilon_{n}: M^{C}(n, k) \rightarrow k, \varepsilon_{n}\left(e_{i j}\right)=\delta_{i j} .
$$

2. THE CONSTRUCTION OF A NEW EPIMORPHISM OF MATRIX COALGEBRAS

Now, let's consider an arbitrary positive integer $n \in \mathbf{N}^{*}$ and $X=\{1,2, \ldots, n\}$ the set of all positive integers less than n ordered by \leq, so X is a totally ordered set. Much more, to any

[^0]pair (i, j) with $i \leq j, i, j \in X$, we can associate an interval denoted by $f_{i j}, f_{i j}:=[i, j]$, from the set S of all intervals of X, where $[i, j]=\{k \in X / i \leq k \leq j\}$. With all these notations we can associate to X a matrix below:
\[

\left($$
\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 n} \\
0 & f_{22} & \ldots & f_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & f_{n n}
\end{array}
$$\right)
\]

Also, let $T_{n}(k)$ be the k - linear space of dimension $\frac{n(n+1)}{2}$ with the base $f_{i j}=[i, j]$, where $i \leq j$ in X. Then, the triplet $\left(T_{n}(k), \Delta, \varepsilon\right)$ is a coalgebra, where the comultiplication and the counity are those from the incidence coalgebra of X :

$$
\Delta\left(f_{i j}\right)=\Delta([i, j])=\sum_{i \leq k \leq j}[i, k] \otimes[k, j]=\sum_{i \leq k \leq j} f_{i k} \otimes f_{k j} \text { and } \varepsilon\left(f_{i j}\right)=\varepsilon([i, j])=\delta_{i j} .
$$

Now, we can define the map $\varphi: M^{C}(n, k) \rightarrow T_{n}(k)$ by $\varphi\left(e_{i j}\right)=\left\{\begin{array}{l}f_{i j}, \text { if } i \leq j \\ 0, \text { else }\end{array}\right.$.
Proposition. The map φ is an epimorphism of coalgebras.

Proof. From the way it is defined φ it is obvious that φ is a k-linear application. Let's prove now that φ is a morphism of coalgebras, means that we have to prove the relations:

$$
(\varphi \otimes \varphi) \circ \Delta_{n}=\Delta \circ \varphi \text { and } \varepsilon \circ \varphi=\varepsilon_{n} .
$$

So, for every $i \leq j$ we have:

$$
\begin{aligned}
& (\varphi \otimes \varphi)\left(\Delta_{n}\left(e_{i j}\right)\right)=(\varphi \otimes \varphi)\left(\sum_{k=1}^{n} e_{i k} \otimes e_{k j}\right)=\sum_{k=1}^{n} \varphi\left(e_{i k}\right) \otimes \varphi\left(e_{k j}\right)= \\
& \quad=\sum_{k=i}^{j} f_{i k} \otimes f_{k j}=\sum_{i \leq k \leq j}[i, k] \otimes[k, j]=\Delta([i, j])=\Delta\left(f_{i j}\right)=\Delta\left(\varphi\left(e_{i j}\right)\right) .
\end{aligned}
$$

In the case $i>j$ it is obvious that $(\varphi \otimes \varphi)\left(\Delta_{n}\left(e_{i j}\right)\right)=0=\Delta\left(\varphi\left(e_{i j}\right)\right)$.
So we have the first relation $(\varphi \otimes \varphi) \circ \Delta_{n}=\Delta \circ \varphi$.
Also, for every $i \leq j$ we have $\varepsilon\left(\varphi\left(e_{i j}\right)\right)=\varepsilon\left(f_{i j}\right)=\varepsilon([i, j])=\delta_{i j}=\varepsilon_{n}\left(e_{i j}\right)$, and for $i>j$, $\varepsilon\left(\varphi\left(e_{i j}\right)\right)=\varepsilon(0)=0=\delta_{i j}=\varepsilon_{n}\left(e_{i j}\right)$. In this way we obtained the second relation, $\varepsilon \circ \varphi=\varepsilon_{n}$.

In conclusion, φ is a morphism of coalgebras.

Now, let's prove that φ an epimorphism, which is equivalent to prove that for any coalgebra $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ and for any two morphisms $u, v: T_{n}(k) \rightarrow C$ with the property $u \circ \varphi=v \circ \varphi$, we have that $u=v$.

For this we have the following two diagrams:

Let consider $i \leq j$ in P, and from the first diagram we obtain:

$$
\begin{aligned}
& \left(\Delta_{C} \circ u \circ \varphi\right)\left(e_{i j}\right)=\left((u \otimes u) \circ(\varphi \otimes \varphi) \circ \Delta_{n}\right)\left(e_{i j}\right) \Leftrightarrow \\
& \left(\Delta_{C} \circ u\right)\left(f_{i j}\right)=(u \otimes u)(\varphi \otimes \varphi)\left(\sum_{i \leq k \leq j} e_{i k} \otimes e_{k j}\right) \Leftrightarrow \\
& \sum u\left(f_{i j}\right)_{1} \otimes u\left(f_{i j}\right)_{2}=\sum_{i \leq k \leqslant j} u\left(f_{i k}\right) \otimes u\left(f_{k j}\right) .
\end{aligned}
$$

In the same way, for the map v we have:
$\sum v\left(f_{i j}\right)_{1} \otimes v\left(f_{i j}\right)_{2}=\sum_{i \leq k \leq j} v\left(f_{i k}\right) \otimes v\left(f_{k j}\right)$, but $u \circ \varphi=v \circ \varphi$, then $\left(\Delta_{C} \circ u \circ \varphi\right)\left(e_{i j}\right)=\left(\Delta_{C} \circ v \circ \varphi\right)\left(e_{i j}\right)$, then

$$
\sum u\left(f_{i j}\right)_{1} \otimes u\left(f_{i j}\right)_{2}=\sum v\left(f_{i j}\right)_{1} \otimes v\left(f_{i j}\right)_{2} \Leftrightarrow \sum_{i \leq k \leq j} u\left(f_{i k}\right) \otimes u\left(f_{k j}\right)=\sum_{i \leq k \leq j} v\left(f_{i k}\right) \otimes v\left(f_{k j}\right) .
$$

From the second diagram we obtain:
$\left(\varepsilon_{C} \circ u\right)\left(f_{i j}\right)=\varepsilon\left(f_{i j}\right)=\delta_{i j}=\left(\varepsilon_{C} \circ v\right)\left(f_{i j}\right)$ and $\left(\varepsilon_{C} \circ u \circ \varphi\right)\left(e_{i j}\right)=\varepsilon_{n}\left(e_{i j}\right)=\delta_{i j}=\left(\varepsilon_{C} \circ v \circ \varphi\right)\left(e_{i j}\right)$.
In conclusion, we have that $u=v$, so the map φ is an epimorphism of coalgebras between the matrix coalgebra $M^{C}(n, k)$ and the new coalgebra $T_{n}(k)$.

Remark. From the way it was defined φ, we obtain that it's kernel is $\operatorname{Ker}(\varphi)=\sum_{j<i} k \cdot e_{i j}$.

Consequence. If we denote $K=\operatorname{Ker}(\varphi)$, we have that K is a coideal in the matrix coalgebra $M^{C}(n, k)$.

Proof. Remind that for any k - coalgebra (C, Δ, ε), a k-subspace I of C is a coideal if:

$$
\begin{equation*}
\Delta(I) \subseteq C \otimes I+I \otimes C \text { and } \varepsilon(I)=0 \tag{1}
\end{equation*}
$$

It is obvious that, for any $j<i$, we have $\varepsilon_{n}\left(e_{i j}\right)=\delta_{i j}=0$ and $\varepsilon(K)=0$
More, for $j<i$ we have:

$$
\Delta_{n}\left(e_{i j}\right)=\sum_{k=1}^{n} e_{i k} \otimes e_{k j}=\sum_{k<i} e_{i k} \otimes e_{k j}+\sum_{k>i} e_{i k} \otimes e_{k j} \in K \otimes M^{C}(n, k)+M^{C}(n, k) \otimes K,
$$

then

$$
\begin{equation*}
\Delta_{n}(K) \subseteq K \otimes M^{C}(n, k)+M^{C}(n, k) \otimes K . \tag{2}
\end{equation*}
$$

From the relations (1) and (2) we have that $K=\operatorname{Ker}(\varphi)$ is a coideal in the matrix coalgebra $M^{C}(n, k)$.

Generalization. Let $M_{N}(k)$ be the k - linear space of all matrices with finite columns having the base $\left(e_{i j}\right)_{j \in N}$, where Λ_{j} is a finite set, for any positive integer $j \in \mathbf{N}$. On this linear ${ }_{i \in \Lambda_{j}}$
space we define a comultiplication $\Delta_{N}: M_{N}(k) \rightarrow M_{N}(k) \otimes M_{N}(k)$ by $\Delta_{N}\left(e_{i j}\right)=\sum_{k \in \Lambda_{j}} e_{i k} \otimes e_{k j}$, and a counity $\varepsilon_{N}: M_{N}(k) \rightarrow k$ by $\varepsilon_{N}\left(e_{i j}\right)=\delta_{i j}$. In this way, $M_{N}(k)$ becomes a coalgebra, named the matrix coalgebra with finite columns.

Like above, we associate to the set of all positive integers N a matrix coalgebra $T_{N}(k)$ of base $\left(f_{i j}\right)_{\substack{j \in N \\ i \in \Lambda_{j}}}$, where $f_{i j}:=[i, j]$, where the comultiplication and the counity are the same with those of the incidence coalgebra associated to \mathbf{N}, considered as a totally ordered set.

In these conditions, and in a similar way, we have an epimorphism between the matrix coalgebra $M_{N}(k)$ and the coalgebra $T_{N}(k)$.

REFERENCES:

[1] Dăscălescu, S., Năstăsescu, C., Raianu, S., Hopf algebras - An introduction, Marcel Dekker Inc., New York, 2001.
[2] Dăscălescu, S., Năstăsescu, C., Velicu, G., Balanced blinear forms and finiteness properties for incidence colgebras over a field, Revista Unión Matemática Argentina, 51(1), 19-26, 2010.
[3] Velicu, G., Coradical filtration for incidence coalgebra and path coalgebra, Carpathian J.Math, 24 (2008), No.3, 425-431

[^0]: ${ }^{1}$ Valahia University of Targoviste, Faculty of Sciences and Arts, 130024 Targoviste, Romania.
 E-mail: georgiana.velicu@yahoo.com.

