ORIGINAL PAPER

A NEW EPIMORPHISM OF MATRIX COALGEBRAS

GEORGIANA VELICU¹

Manuscript received: 18.03.2016; Accepted paper: 24.05.2016; Published online: 30.06.2016.

Abstract. In this paper we construct a new morphism of matrix coalgebras, than we prove that it is an epimorphism and also that its kernel is a coideal in the matrix coalgebra. Finally we give a generalization on this type of morphism between two matrix coalgebras. Keywords: coalgebra, matrix coalgebra, coideal, morphism, kernel

1. INTRODUCTION AND PRELIMINARIES

Let *k* be a field. The aim of this paper is to construct an epimorphism between two coalgebras, namely the matrix coalgebra $M^{C}(n,k)$ and the coalgebra $T_{n}(k)$, the second is obtained in a similar way as the first one, where the comultiplication and the counity are those from the incidence coalgebra associated to the totally ordered set $X = \{1 < 2 < ... < n\}$ of all positive integers less than *n*, where $n \in \mathbb{N}^{*}$ is a positive integer.

Remember that [2] if (X, \leq) is an intervally finite partially ordered set, means that the interval $[x, y] = \{z \mid x \leq z \leq y\}$ is a finite set for any $x \leq y$, then the incidence k - coalgebra of X is the k - linear space denoted by IC(X) is a space with basis $\{f_{x,y} \mid x, y \in X, x \leq y\}$, where $f_{x,y} = [x, y]$, having the comultiplication Δ and the counity ε :

$$\Delta(f_{x,y}) = \sum_{x \le z \le y} f_{x,z} \otimes f_{z,y} \Leftrightarrow \Delta([x, y]) = \sum_{x \le z \le y} [x, z] \otimes [z, y], \text{ respectively}$$
$$\varepsilon(f_{x,y}) = \delta_{x,y} \Leftrightarrow \varepsilon([x, y]) = \delta_{x,y}.$$

Also, in [1] is presented the matrix coalgebra $M^{C}(n,k)$, where for any considered positive integer *n*, $M^{C}(n,k)$ is a *k*-linear space of dimension n^{2} with basis $(e_{ij})_{1 \le i,j \le n}$, where $e_{ij} \in M_{n}(k)$ is the matrix having 1 on the intersection of the line *i* and the column *j* as for the rest 0. The comultiplication Δ_{n} and the counity ε_{n} in $M^{C}(n,k)$ are defined by:

$$\Delta_n(e_{ij}) = \sum_{k=1}^n e_{ik} \otimes e_{kj} \text{ and } \varepsilon_n : M^C(n,k) \to k , \varepsilon_n(e_{ij}) = \delta_{ij}.$$

2. THE CONSTRUCTION OF A NEW EPIMORPHISM OF MATRIX COALGEBRAS

Now, let's consider an arbitrary positive integer $n \in \mathbb{N}^*$ and $X = \{1, 2, ..., n\}$ the set of all positive integers less than *n* ordered by \leq , so *X* is a totally ordered set. Much more, to any

¹ Valahia University of Targoviste, Faculty of Sciences and Arts, 130024 Targoviste, Romania. E-mail: <u>georgiana.velicu@yahoo.com</u>.

pair (i, j) with $i \le j$, $i, j \in X$, we can associate an interval denoted by f_{ij} , $f_{ij} := [i, j]$, from the set *S* of all intervals of *X*, where $[i, j] = \{k \in X / i \le k \le j\}$. With all these notations we can associate to *X* a matrix below:

$$egin{pmatrix} f_{11} & f_{12} & ... & f_{1n} \ 0 & f_{22} & ... & f_{2n} \ ... & ... & ... \ 0 & 0 & ... & f_{nn} \end{pmatrix}.$$

Also, let $T_n(k)$ be the k – linear space of dimension $\frac{n(n+1)}{2}$ with the base $f_{ij} = [i, j]$, where $i \le j$ in X. Then, the triplet $(T_n(k), \Delta, \varepsilon)$ is a coalgebra, where the comultiplication and the counity are those from the incidence coalgebra of X:

$$\Delta(f_{ij}) = \Delta([i, j]) = \sum_{i \le k \le j} [i, k] \otimes [k, j] = \sum_{i \le k \le j} f_{ik} \otimes f_{kj} \text{ and } \varepsilon(f_{ij}) = \varepsilon([i, j]) = \delta_{ij}$$

Now, we can define the map $\varphi: M^{C}(n,k) \to T_{n}(k)$ by $\varphi(e_{ij}) = \begin{cases} f_{ij}, & \text{if } i \leq j \\ 0, & \text{else} \end{cases}$.

Proposition. The map φ is an epimorphism of coalgebras.

Proof. From the way it is defined φ it is obvious that φ is a k - linear application. Let's prove now that φ is a morphism of coalgebras, means that we have to prove the relations:

$$(\varphi \otimes \varphi) \circ \Delta_n = \Delta \circ \varphi \text{ and } \varepsilon \circ \varphi = \varepsilon_n.$$

So, for every $i \le j$ we have:

$$(\varphi \otimes \varphi)(\Delta_n(e_{ij})) = (\varphi \otimes \varphi)(\sum_{k=1}^n e_{ik} \otimes e_{kj}) = \sum_{k=1}^n \varphi(e_{ik}) \otimes \varphi(e_{kj}) =$$
$$= \sum_{k=i}^j f_{ik} \otimes f_{kj} = \sum_{i \le k \le j} [i,k] \otimes [k,j] = \Delta([i,j]) = \Delta(f_{ij}) = \Delta(\varphi(e_{ij})).$$

In the case i > j it is obvious that $(\varphi \otimes \varphi)(\Delta_n(e_{ij})) = 0 = \Delta(\varphi(e_{ij}))$.

So we have the first relation $(\varphi \otimes \varphi) \circ \Delta_n = \Delta \circ \varphi$.

Also, for every $i \le j$ we have $\varepsilon(\varphi(e_{ij})) = \varepsilon(f_{ij}) = \varepsilon([i, j]) = \delta_{ij} = \varepsilon_n(e_{ij})$, and for i > j, $\varepsilon(\varphi(e_{ij})) = \varepsilon(0) = 0 = \delta_{ij} = \varepsilon_n(e_{ij})$. In this way we obtained the second relation, $\varepsilon \circ \varphi = \varepsilon_n$.

In conclusion, φ is a morphism of coalgebras.

Now, let's prove that φ an epimorphism, which is equivalent to prove that for any coalgebra $(C, \Delta_C, \varepsilon_C)$ and for any two morphisms $u, v: T_n(k) \to C$ with the property $u \circ \varphi = v \circ \varphi$, we have that u = v.

For this we have the following two diagrams:

Let consider $i \le j$ in *P*, and from the first diagram we obtain:

$$(\Delta_C \circ u \circ \varphi)(e_{ij}) = ((u \otimes u) \circ (\varphi \otimes \varphi) \circ \Delta_n)(e_{ij}) \Leftrightarrow$$
$$(\Delta_C \circ u)(f_{ij}) = (u \otimes u)(\varphi \otimes \varphi)(\sum_{i \le k \le j} e_{ik} \otimes e_{kj}) \Leftrightarrow$$
$$\sum u(f_{ij})_1 \otimes u(f_{ij})_2 = \sum_{i \le k \le j} u(f_{ik}) \otimes u(f_{kj}).$$

In the same way, for the map *v* we have:

$$\sum v(f_{ij})_1 \otimes v(f_{ij})_2 = \sum_{i \le k \le j} v(f_{ik}) \otimes v(f_{kj}), \text{ but } u \circ \varphi = v \circ \varphi, \text{ then } (\Delta_C \circ u \circ \varphi)(e_{ij}) = (\Delta_C \circ v \circ \varphi)(e_{ij}),$$

then

$$\sum u(f_{ij})_1 \otimes u(f_{ij})_2 = \sum v(f_{ij})_1 \otimes v(f_{ij})_2 \Leftrightarrow \sum_{i \le k \le j} u(f_{ik}) \otimes u(f_{kj}) = \sum_{i \le k \le j} v(f_{ik}) \otimes v(f_{kj}).$$

From the second diagram we obtain:

$$(\varepsilon_C \circ u)(f_{ij}) = \varepsilon(f_{ij}) = \delta_{ij} = (\varepsilon_C \circ v)(f_{ij}) \text{ and } (\varepsilon_C \circ u \circ \varphi)(e_{ij}) = \varepsilon_n(e_{ij}) = \delta_{ij} = (\varepsilon_C \circ v \circ \varphi)(e_{ij}).$$

In conclusion, we have that u = v, so the map φ is an epimorphism of coalgebras between the matrix coalgebra $M^{C}(n,k)$ and the new coalgebra $T_{n}(k)$.

Remark. From the way it was defined φ , we obtain that it's kernel is $Ker(\varphi) = \sum_{i \le i} k \cdot e_{ij}.$

Consequence. If we denote $K = Ker(\varphi)$, we have that K is a coideal in the matrix coalgebra $M^{C}(n,k)$.

Georgiana Velicu

Proof. Remind that for any k – coalgebra (C, Δ, ε) , a k – subspace I of C is a coideal

if:

$$\Delta(I) \subseteq C \otimes I + I \otimes C \text{ and } \varepsilon(I) = 0.$$

It is obvious that, for any j < i, we have $\varepsilon_n(e_{ij}) = \delta_{ij} = 0$ and $\varepsilon(K) = 0$ (1)

More, for j < i we have:

$$\Delta_n(e_{ij}) = \sum_{k=1}^n e_{ik} \otimes e_{kj} = \sum_{k < i} e_{ik} \otimes e_{kj} + \sum_{k > i} e_{ik} \otimes e_{kj} \in K \otimes M^C(n,k) + M^C(n,k) \otimes K,$$

then

$$\Delta_n(K) \subseteq K \otimes M^C(n,k) + M^C(n,k) \otimes K.$$
⁽²⁾

From the relations (1) and (2) we have that $K = Ker(\varphi)$ is a coideal in the matrix coalgebra $M^{C}(n,k)$.

Generalization. Let $M_N(k)$ be the k – linear space of all matrices with finite columns having the base $(e_{ij})_{j \in N}$, where Λ_j is a finite set, for any positive integer $j \in \mathbb{N}$. On this linear $i \in \Lambda_j$

space we define a comultiplication $\Delta_N : M_N(k) \to M_N(k) \otimes M_N(k)$ by $\Delta_N(e_{ij}) = \sum_{k \in \Lambda_j} e_{ik} \otimes e_{kj}$,

and a counity $\varepsilon_N : M_N(k) \to k$ by $\varepsilon_N(e_{ij}) = \delta_{ij}$. In this way, $M_N(k)$ becomes a coalgebra, named *the matrix coalgebra with finite columns*.

Like above, we associate to the set of all positive integers N a matrix coalgebra $T_N(k)$ of base $(f_{ij})_{j \in N}$, where $f_{ij} := [i, j]$, where the comultiplication and the counity are the same $\underset{i \in \Lambda_j}{i \in \Lambda_j}$

with those of the incidence coalgebra associated to N, considered as a totally ordered set.

In these conditions, and in a similar way, we have an epimorphism between the matrix coalgebra $M_N(k)$ and the coalgebra $T_N(k)$.

REFERENCES:

[1] Dăscălescu, S., Năstăsescu, C., Raianu, S., *Hopf algebras – An introduction*, Marcel Dekker Inc., New York, 2001.

[2] Dăscălescu, S., Năstăsescu, C., Velicu, G., *Balanced blinear forms and finiteness properties for incidence colgebras over a field*, Revista Unión Matemática Argentina, 51(1), 19-26, 2010.

[3] Velicu, G., *Coradical filtration for incidence coalgebra and path coalgebra*, Carpathian J.Math, 24 (2008), No.3, 425-431