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1. INTRODUCTION  
 
 

We recall a new Young-type inequality for positive and real numbers, a definition and 
a result in order to use them below in section 2. 

 
 Theorem 1[1] Let λ, ν and τ be real numbers with a, b > 0 and λ ≥ 1 and 0 ˂ ν < τ < 1. 
Then 
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for all positive and distinct real numbers  and . Moreover, both bounds are sharp. 

We also recall the definition of the isotonic linear functionals which appears in [2]. 
  

 Definition 1. ([2]) Let E be a nonempty set and L be a class of real-valued functions 
:f E    having the following properties: 

 
   (L1) If ,f g L  and ,a b  then  af bg L  . 

   (L2) 1 L  i.e. if   1f t   for all t E , then f L . 

 
An isotonic linear functional is a functional :A L   having the following 

properties: 
 
  (A1) If ,f g L  and ,a b  then      A af bg aA f bA g     

  (A2) If f L  and   0f t   for all t E  then   0A f  . 
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The mapping A is said to be normalized if  
 
   (A3)  1 1A  . 

 
Now a new generalization of Holder’s inequality for isotonic linear functionals. see  

[3], is given below staring from a new Young-type inequality given in [1]. 
 
Theorem 2. If L satisfies conditions L1, L2, A satisfies A1, A2 on the set E and 

1 1, , , ,
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, 1p , 1q  with 

1 1
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p q
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11 p p   then we have: 
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when f and g are positive functions. 

The classical integral inequality due to Hardy states that for   0f x   and 1p   

   
0 0
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pp

F x dx f x dx
x p

          
  , 

where    
0

x
F x f t dt  . 

If we suppose that all the integral exist on the respective domains of their definition, 
then a generalization of Hardy’s inequality which was given by Pachpatte in [8] is the 
following: 
 
 Theorem A. [8] Let 1,  1p m   be two constants and f a nonnegative and integrable 

function on  0, ,  0a a   . If  F x  is defined by  
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2. SEVERAL VARIANTS OF HARDY-PACHPATTE-COPSON’S INEQUALITIES 

 
  

As a consequence of Theorem 2 for the isotonic linear functional    
b

a
A f f x dx   

we have the following inequality: 
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Proposition 1. Let f and g be two positive functions and 1 1,  ,  
1

p
q p q

p



 with 

1 1

1 1
1

p q
   and 11 p p  . We suppose that all the integral exist on the respective domains of 

their definition. Then we have:  
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The following result is a new variant of Hardy-Pachpatte’s inequality from [8].  
 We suppose like in [8] that all the integral exist on the respective domains of their 

definition and that 1 1,  ,  
1

p
q p q

p



 with 

1 1

1 1
1

p q
   and 11 p p   in all then further 

theorems, without further mention. 
 

Theorem 3. Let 1 11,  1,  ,  p m p q   be constants like before and f a nonnegative and 

integrable function on  0, ,0a a   . If  F x  is defined by  
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Proof: We use the same method as in [8], but the classical Holder’s inequality will be 
replaced by an improvement given in [3]. By integrating the left side of the inequality from 
Theorem 3 by parts we obtain: 

 

1

1
1 1

2
2

 

 
and therefore  
 

1
| |

. 

 
Using now the inequality from Proposition 1 with indices  and  like below, 

we find that 
 
 

1

| |
 

1

| |
 

1
| |

 

1 1

| |

| |
. 

 
Now, dividing in previous inequality by the first integral factor and taking the pth 

power of both sides we obtain: 
 

1

| |
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1 1

| |

| |
. 

 

We take into account the expression 
| |

 and we use the same 

method like before. Integrating by parts this expression and using that the first term is 
negative, we will have: 
 

| |
1

| |
| |

4
. 

 
Using again inequality from Proposition 1 with  and  we find by calculus that 

 
 

| |

1

| |
| |

4
 

1 1
| | 4

| |

| |
| | 4

. 

Dividing again both sides of last inequality by the first integral factor and the taking 
pth power we obtain: 

| |

1
| |

4
 

1 1
| | 4

| |

| |
| | 4

. 

 
Taking into account the obtained inequalities we get the desired inequality. 
A slightly different version of Theorem 3 will be also stated below and is an extension 

of Theorem 3 from [8]. 
  

Theorem 4. Let , , ,  and  be defined as in Theorem 3. If  
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1
, ∈ 0,  

then  

1 2
	  

 

1 1

| |

| |
 

1 1
| | 2

| |

| |
| | 2

. 

 
Proof: We use the same method as in Theorem 3. 
In  we have the following two theorems which are new improvements of the variant 

of the Hardy's inequality given by Izumi and Izumi in [6], Theorem 2 and [9], Theorems 3 
and 4.  
 

Theorem 5. Let 1, 1, ,  be constants and  be a nonnegatiue and 
integrable function on 0,  where 0 is a constant. Let  be a positive continuous 
function on 0,  and let , for ∈ 0, . 

Let also  and  be positive and absolutely continuous functions on 0, . If 

1
1
1 1

1
 

 
for almost all ∈ 0,  and some positive constant  and  is defined by  
 

1
, 

for ∈ 0, ,	then 
 

1
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 . 1 1  

 
 

 where . 
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Proof: We use the same method like in the proof of Theorem 3 from [9] and 

Proposition 1. 
 

 
Theorem 6. Let , , , , , , ,  and r be like in Theorem 5 and  
 

1
1
1 1

1
 

 
for almost all ∈ 0,  and some positive constant  and  is defined by  
 

, 

 
for ∈ 0, .	Then we have 
 

1
. 

 . 1 1  

 
 

where . 

 
Proof: We use the same method like in the proof of Theorem 4 from [9] and inequality 

from Proposition 1. 
 

Theorem 7. Let , 1, 1, 0,  and  be constants with 

1, 	1  and ,  be positive and locally absolutely continuous in , . 

Let  be a positive continuous function and , for ∈ , . Also, let 
 be nonnnegative and measurable on ,  and 

 

1
1

1
log

1
log

1
	, 

 
 
 for almost all  in , . If  is defined by  
 

1
, 
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 for all ∈ , ,	then 
 

log  

1
log . 

. 1 1 , 

  
where  
 

log
	

log
	

log

 

 
Proof: Also, we use the same method like in the proof of Theorem 7 from [9] and 

inequality from Proposition 1. 
 

 Theorem 8. Let , 1, 1, 0,  and  be constants with 

1, 	1  and , , , ,  be as in previous theorem. If  

 

1
1
1

log
1

log
1
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 for almost all ∈ ,  and if  is defined by  
 

1
, 

 
 for all ∈ , ,	then 
 

log  
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log
	

log
	

log

 

 
Proof: The same method like in the proof of Theorem 7 and 8 from [9] and 

Proposition 1 will be used. 
Using the function , the Riemann-Lioville integral of f of order r, we give an 

extension of Theorem 2.3 from [7] which proves an extension of Hardy's inequality in two 
dimensions. 
 

Theorem 9. Let , 0, 1, 0, 	= 1 and  and  be constants with 

1, 	1 . We assume that .  is a non-negative homogeneous functions 

of degree ‐2	λ with 	 1 and that 1 1. If  

Г
, and 

Г
,  

then 

,  

 

( Ѳ Ѳ  
 

1

1
,

 

 
  
where 	 1, , 	 , 1   
and 

Ѳ
Г 1 1

Г 1 1 . 

 
 

Proof: We use the same technique as in the proof of Theorem 2.3 from [7] and the 
following inequality  
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, , , ,  

1
, ,

, ,

 

which is a consequence of Proposition 1 when λ = 1, 1, 	=1 and  and  be 

constants with 1, 	1 . 

  
Remark 1.  

(a)  Now, if we take ,  in previous theorem and 1 then we also obtain a 

generalization of Theorem 1 from [10] as in [7], and therefore we have: 
 

 

,
1 1

 

1 1

,

. 

 

(b)  We assume that , 	 0 and we take the kernel ,  in previous 

theorem and then a new generalization of Theorem 1, see [10] occur: 
 

 

 

,
Ѳ Ѳ  
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1

1

,

. 

 
 

(c)  As in [7] if we take the kernel ,  in previous theorem we get: 
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