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Abstract. Using some new generalizations of Young’s inequality we apply a new
refinement of Holder’s inequalities in order to give several new variants of Hardy-type
inequalities following the method of Pachpatte.
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1. INTRODUCTION

We recall a new Young-type inequality for positive and real numbers, a definition and
a result in order to use them below in section 2.
Theorem 1[1] Let A, v and t be real numbers witha,b>0andA>1and 0 <v<t<1.

Then
(XT 3 A (a,b)" -G, (a,b)’ <(1—vj‘
r) A(ab) -G (ab)" \l-7

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.
We also recall the definition of the isotonic linear functionals which appears in [2].

Definition 1. ([2]) Let E be a nonempty set and L be a class of real-valued functions
f : E > R having the following properties:

(L1) If f,geL and a,beR then (af +bg)elL.
(L2) lel ie.if f(t)=1 forallteE,then f elL.

An isotonic linear functional is a functional A:L —>R having the following
properties:

(Al) If f,geL and a,beR then A(af +bg)=aA(f)+bA(g)
(A2) If felL and f(t)ZO for all t € E then A(f)ZO.

! Politehnica University of Timisoara, Department of Mathematics, 300006 Timisoara, Romania.
E-mail: 1sc101010@yahoo.com.

ISSN: 1844 — 9581 Mathematics Section



130 Some refinements of... Loredana Ciurdariu

The mapping A is said to be normalized if
(A3) A(l) =1.

Now a new generalization of Holder’s inequality for isotonic linear functionals. see
[3], is given below staring from a new Young-type inequality given in [1].

Theorem 2. If L satisfies conditions L1, L2, A satisfies A1, A2 on the set E and
P a
fP g% fg, f" g% elL, A(fp)>0, A(gq)>0, q:il, p,, q with L+l—1 and
p- p1 ql

1< p, < p then we have:

P a
A(fplgql]
o,
1

A (17)an (g)| AP (7)A

when f and g are positive functions.
The classical integral inequality due to Hardy states that for f (X) >0 and p>1

fFerf o325 oo
where F(x)=["f (t)dt.

If we suppose that all the integral exist on the respective domains of their definition,
then a generalization of Hardy’s inequality which was given by Pachpatte in [8] is the
following:

Theorem A. [8] Let p>1, m>1 be two constants and f a nonnegative and integrable
function on (0,a), 0 <a<oo. If F(x) is defined by

F(x):jt{r fis )ds}dt, xe(0,a)

xU("2 S
then

a 2p a
J.x‘mF"(x)dxsﬁij fx‘m f(x
0 m-1 0

2. SEVERAL VARIANTS OF HARDY-PACHPATTE-COPSON’S INEQUALITIES

As a consequence of Theorem 2 for the isotonic linear functional A(f)= Ib f(x)dx

we have the following inequality:
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P

Proposition 1. Let f and g be two positive functions and (¢ =57 p,, 0, with

L +i =1 and 1< p, < p. We suppose that all the integral exist on the respective domains of

P G
their definition. Then we have:

Pl I fpl 1 gqg (x)dx B I:f(xl)g(x)dx .
P ( )p( dx)q‘ (J‘:fp(x)dx)p J‘:gq(x)dx)q
<i 1- J- fpl i

e )(fg dx)%

The following result is a new variant of Hardy-Pachpatte’s inequality from [8].
We suppose like in [8] that all the integral exist on the respective domains of their

P

definition and that q=— p,, g, with L+i—l and 1< p,<p in all then further

PG

theorems, without further mention.

Theorem 3. Let p>1, m>1, p,, g, be constants like before and f a nonnegative and
integrable function on (O, a) ,0<a<ow.If F(X ( ) is defined by

F(x):jt{r fls )ds}dt xe(0,)

;S
2
then
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Proof: We use the same method as in [8], but the classical Holder’s inequality will be
replaced by an improvement given in [3]. By integrating the left side of the inequality from

Theorem 3 by parts we obtain:

a
f x"MFP(x)dx
0

—m+1

= F?(a)

T Tm-1
X
; 1 12 {F(s)
p -m+1pp-1 _f ___f_
m 1fx F (x)x S 2Xx Ny

and therefore

jx—mpp(x)dxsmp_lofx_m,:p ‘e ){L FeI }

0
Using now the inequality from Proposition 1 with indices g = ﬁ and p like below,

we find that

If(S)I _
- -

- P f [emjarr-ico)| [{x-m}v f [ g des
; r

1

1
Smp— 1 fx—m {f; lf(SS)lds}p dx p fx‘mFP(x)dx q X
[ it (L6 ds}% n \

X|1— ? 1- T
k (fa x—m {fglfg—s)lds}p dx)pl anx_me(x)dx)qll)

0

Now, dividing in previous inequality by the first integral factor and taking the p"

power of both sides we obtain:
[ UOI
P S
f x™™ { f } dx X
0 4

a
f x"MFP(x)dx <
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| 2 [§
I

foax‘mF%(x) {f%xlfg—s)lds}ﬁ dx \|

b1
e 1 .
P a x| f(s)l P P1 . q 1
(fo x—m {fg S ds} dx) (fo x—me(x)dx)q1

P
We take into account the expression foax_m { ffx@ds} dx and we use the same
4

method like before. Integrating by parts this expression and using that the first term is
negative, we will have:

a x p a x p-1
om0 a2 fromf [ Ll rcon- €Yo

0 0

Using again inequality from Proposition 1 with g = ﬁ and p we find by calculus that

fx‘m {']: lfis)l ds}p dx <
0

1
<[ ] ) ([ o=y I o)
“m-1 ) x s 4

NS
=

) I LT 0 U e
|\ g1 o -y )

Dividing again both sides of last inequality by the first integral factor and the taking
p™ power we obtain:

a

o[ Ve a2 (20 01~y (I e
% S T \m-—1 4

0

Y R e e 6 e e |

=== 1 1
|\ (e 2 ) (e o - [ G )

Taking into account the obtained inequalities we get the desired inequality.
A slightly different version of Theorem 3 will be also stated below and is an extension
of Theorem 3 from [8].

Theorem 4. Let p, m, p;, q; and f be defined as in Theorem 3. If
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o = [1[1
0

Tds} dt,x € (0,a)

NIR\><

then

a

)" [enlre @) ae

0

a

—mpp <
fx F (x)dx_(m_1
0

p

x '[1 _ &/ - o {§ %ds}’i dx \
l P k (foa x—m {f%xlf(s—s)lds}p dx)p_l (foax_me(x)dx)qll)‘

P
e O (e e

X

r

| 1
X|1-— ? 1- T T .
l k (e (g asf )" (57 [reor - [ G dx)“) ‘

Proof: We use the same method as in Theorem 3.

In R we have the following two theorems which are new improvements of the variant
of the Hardy's inequality given by Izumi and Izumi in [6], Theorem 2 and [9], Theorems 3

and 4.

Theorem 5. Let p > 1,m > 1,p;,q; be constants and f(x) be a nonnegatiue and
integrable function on (0,b) where b > 0 is a constant. Let h(x) be a positive continuous

function on (0, b) and let H(x) = fox h(t)dt, for x € (0, b).

Let also w(x) and r(x) be positive and absolutely continuous functions on (0, b). If

1 Hx)w'(x) p H@)r'(x) - 1
m—1h() wx)  m—1h@) r(x) — 7

for almost all x € (0, b) and some positive constant y and G (x) is defined by

1 X
66 = L r(OREf(E)dt,
for x € (0,b), then :

b

0

p p

b -2 P4, PP
_bhfq_ Joy weh™ PL(X)HP1 (x)G91(x)AP1(x)dx

b
fw(x)H‘m(x)h(x)Gp(x)dx < (y%)pfW(x)Hp_m(x)h_(p_l)(x)Ap(x)dx.
0

p 1

where A(x) = % rh@f @) -3 () r(Z) ()|

2 2
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Proof: We use the same method like in the proof of Theorem 3 from [9] and
Proposition 1.

Theorem 6. Let p,m, f, h, H,p;, q;, w and r be like in Theorem 5 and

1 Hxw'(x) p HX)r' (x) - 1
m—1h(x) wix) m-1h(x) r(x) — &

1-—

for almost all x € (0, b) and some positive constant § and G (x) is defined by

B *h(t)f (1)
G(x) = r(x)f; Wdt,
for x € (0, b). Then we have
b , 2
f w()H™(x)h(x)GP (x)dx < (5%) j w(x)HP~™ (x)h=®=D (x) BP (x)dx.
0 0 )
b 1—L i—n'], b b

DL 1 Jo w)h P1(x)HP1 "~ (x)G91(x)BP1(x)dx

D 1 1

(Jy wR=®=D () HP=m(x)BP (x)dx P2 (3 wORGOH ™ (x)GP (x)dx ) 1t

neofe 103G
r(x) 2 r(g) |

where B(x) = r(x)

Proof: We use the same method like in the proof of Theorem 4 from [9] and inequality
from Proposition 1.

Theorem 7. Let a<b <R,p>1,q<1,a >0,p; and g; be constants with pi+
1

qi =1, 1 <p; <p and w(x),r(x) be positive and locally absolutely continuous in (a, b).
1

Let h(x) be a positive continuous function and H(x) = f(f h(t)dt, for x € (a,b). Also, let
f(x) be nonnnegative and measurable on (a, b) and
1 Hx)w'(x). H(R) p HXx)r'(x). H(R)
1-— og + og
1—qh(x) wx) H(x) 1-—gqh(x) r(x) H(x)

1
=—,
a

for almost all x in (a, b). If F(x) is defined by

Flx) = —— xr(t)h(t) f(o)dt,
r(x) Jg
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for all x € (a, b), then

b
fw(x)H‘1 (x)h(x) <log (H( )>> FP(x)dx <

b

< (1039q>pfw(x)Hp 1x)h(x) <log<H( )>> FP(x)dx.

{1—%[1—C]}

where

D T4 p P
J2 WG (H69) "7 (1o zgg)p | R OFT () dx

(17 wenr@sreE1) ™™ (1o Z@)p qu)p_ (12 weon= @h (%(%))_q F”(")d")%

Proof: Also, we use the same method like in the proof of Theorem 7 from [9] and
inequality from Proposition 1.

Theorem 8. Let a<b<R,p>1,q>1,>0, p, and q; be constants with

p—+—— 1, 1<p; <pandw,r, h H,f be as in previous theorem. If
1 q1

1 Hw'(x)  HR) p HEr'(x), HR)

M1 w B Hm - 1he) r) EHm S B

for almost all x € (a, b) and if F(x) is defined by
1 b
PG = 55 | rOROF O,
for all x € (a, b), then
b
f w(x)H 1 (x)h(x) <log (H( )>> FP(x)dx <

b
< (%)pfw(x)Hp L(x)h(x) (log(H( )>> fP(x)dx.

{1—%[1—0]}

where
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[P weOh@) (H(0)" m( ZE’?)’“ ! R () dx

1

(1 wemerrea(a2) ™ (o)™ (1wt conco (o () rco)”

Proof: The same method like in the proof of Theorem 7 and 8 from [9] and
Proposition 1 will be used.

Using the function f,, the Riemann-Lioville integral of f of order r, we give an
extension of Theorem 2.3 from [7] which proves an extension of Hardy's inequality in two
dimensions.

Theorem 9. Let f,g =0,p > 1,r >0, l + lz 1 and p; and q; be constants with

p— + q— =1, 1 <p; <p. We assume that k(x. y) is a non-negative homogeneous functions
1 1

of degree -2 A with A > 1 and that o, = p(4 — 1) + 1. If

00 = 15 Jy @ = OOt and g, () = 15 fy 0 = 07 g (D),

then

Aq

foo foo ];:r(xl) grr(yl)) k(x, y)dxdy <

< A MBIDODO@) ([ o ()dx )P (S g% (y)dy)? x

® oo I %q A-Dp-D+@-1) _A-D(rg-D+(=1)
Prf, _Jo Jo Gr G (gr () k(x, y)x P y @ dxdy

1 1 1 1
AP )BT (J,” £ O dx )P ([ g% (y)dy) ™

where A(1) = fooo
and

t21k(1,t)dt,B(A) = [

o tk(E, 1)dt

a

1 \®
rd-4o
6(s) = —“51
F(T' +1- a—s)

Proof: We use the same technique as in the proof of Theorem 2.3 from [7] and the
following inequality
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1 1
f f £, 9)g (e, y)dxdy < f f £7(x,y)dxdy f f 910 y)dxdy | x
00 0 0 00

1P Jo Jy P y) 991 (x, y)dxdy

(o Jy fPeoy)dxdy)P(f,” [, 9%(x, y)dxdy)®
which is a consequence of Proposition 1 when A = 1,p > 1,%+%=1 and p; and q; be

constants with — -i-qi =1,1<p, <p.
1

P1

Remark 1.

(a) Now, if we take k(x,y) = m in previous theorem and r = 1 then we also obtain a

generalization of Theorem 1 from [10] as in [7], and therefore we have:

fpr(x)Gq(y)dde

(x +y)?2

1 1
%q [ o p [/ q

% P q
G P [_% 1 ap aq
<ﬁ<A,A><ap_1> (aq_1> Off ()dx f @)dy |

ap aq “A-DE-1) (A 1)(q 1)
IL P Iy Iy PP (G T = ”Ex T dxdy“l
T p B 1
[ st e )

(b) We assume that A,B >0 and we take the kernel k(x,y) = m in previous

theorem and then a new generalization of Theorem 1, see [10] occur:

Aq

fr(x)) (gr (y)>

P xr 1 r—1
ff (Ax + By)2 dxdy <
00

(0]

b 1
A A
Teewe| [ rowax ) | [ g0y | x
0

0

<
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(Ax + By)24

1 T

s (i ()" ) (1 (52" )"

A-1D)p-1)+@-1) _A-D(rq-D+(r-1)
ey foom(x))m(gr(;v))qlx = = dxdyl

(¢) Asin[7]if we take the kernel k(x,y) = m in previous theorem we get:

-Q

r(x (gr(y)> q

r—1

o0 ©0 xr 1
f f Y yz)t dxdy <
0 0

1 1
%) 5 o) a
0(p)6
<%{1@ ff“p(x)dx fg“q(y)dy X
0 0
[
I
X111
A-D(rp-D+(-1) _(A-1D(rq-1)+(r-1) 1
00 x))P1 ‘h
P Zﬂf f (fr((jzgl _Egyrz(ly))) P1 y q1 dxdy
_? 1- 1 1

()" (0 (52 o
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