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Abstract. In this paper, the normal curvatures of hypersurfaces are investigated under
conformal, homothety and isometry maps. At first, an equation is obtained between normal
curvatures of hypersurfaces, if conformal map which defined between hypersurfaces in E™ is
a homothety. In the last section, it is shown that first and second fundamental forms of
hypersurfaces are invariant if conformal map is an isometry.
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1. INTRODUCTION

Properties of connection preserving and conformal maps in n — dimensional C* —
manifolds were given by N. J. Hicks in 1963 [4]. He proved that a conformal map f which
defined between C* — class differentiable manifolds M and M’ is connection preserving if
and only if f is a homothety [4]. Furthemore, N. J. Hicks studied the connection preserving
spray maps [6]. He investigated the finding necessary and sufficient conditions for a spray
map to be connection preserving. Then F. Erkekoglu studied the differential geometry of the
connection preserving maps [2]. C. Tezer showed that for n # 3,7 a conformal diffeo
morphism of S™ into itself admits no invariant connection except the trivial case where it
admits an invariant Riemannian metric [10]. Besides, S. T. Pamuk proved that the results in
[10] without any restiriction on the dimension of spheres [8]. On the other hand, in 1989 A.
Kili¢ proved that for (n — 1) — dimensional hypersurfaces M and M’ in E™ if the conformal
map f : E™ = E™ for f(M) = M' is a homothety, then

£.8(X) = 88" (£.X) (1)

where S and S’ are Weingarten maps on M and M’, respectively, [8].

Let M and M'be for (n — 1) — dimensional hypersurfaces in E™and let f : E™ — E™
be conformal map for f(M) = M'. In this paper, we investigate that if f is a homothety, the
normal curvatures of M and M’ are invariant or not. Then, we get some results. Later if f is an
isometry, we prove first and second fundamental forms of hypersurfaces are invariant.Thus,
the q*" —fundamental form is invariant.
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2. PRELIMINARIES

M is called a hypersurface in n —dimensional Euclidean space E™ if M = f~1({c})
for a smooth function f : M —» IRandc € IR, grad f(q) # 0[1].

Let M be a hypersurface in E™and N be a unit normal vector field of M, also V be
Riemannian connection, so we have

S(X) = VyN

where X € y(M), S is Weingarten map and y (M) is the space of all vector fields on M [1].
Let M and M ' be C* — Riemannian manifolds, and f : M — M' be a C* —map. For
Jacobian map f, of f, if there is a C™ real-valued function G > 0 on M for any P in M, then

(X £Y)= G(P)(X,Y) ()

for all X,Y € y(M); f is called conformal. Here if G is a constant function, then f is
homothety. If G = 1, fis an isometry [4]. Let M and M ' be C* — manifolds with onnections
V and V', respectively. A C® —map f : M — M’ is connection preserving if

f(VxY) = Ve x Y 3)
forall X,Y € y(M) [4].

Theorem 1. Let M and M ' be n-dimensional C* — Riemannian manifolds with M
connected, and let f be a C* — conformal map of M into M’ with G. Then f is connection
preserving if and only if f is homothety [4].

Theorem 2. Let M and M ' be be (n — 1) — dimensional hypersurfaces in EV for
f(M)=M'" and f : E™ - E™ be a conformal map. If f is a homothety, then for all X €
x(M)

£(S(X)) =8 5'(f£.X) (4)

1

1s a constant
IfNl

where S and S’are Weingarten maps on M and M ', respectively. Here § =

homothety ratio [7].

Corollary 1. Let M and M ' be (n — 1) — dimensional hypersurfaces in EV for
f(M)=M"and f : E™ - E™ be a conformal map. If f is an isometry, then for all X € y(M)

[7],
£.(5X) =S'(£.X) (5)

For every P € M, Ty (P) is the tangent space to M at P. The function of k,, :
Ty (P) — IR is defined at Xp € Ty, (P) is given by

S ,
kn(XP) = (SXp)Xp) (6)

(Xp,Xp)

where k,, is a normal curvature [3].
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Let a be a regular C* — curve on n —dimensional Riemannian manifold M. If k,, = 0
for all Xp tangent to a, then « is an asymptotic curve [9].

Let M be a hypersurface in E™ and let S be Weingarten map of M . For 1 < g < n,
the function [9 : y(M) X y(M) —= ! C*(M; IR) is defined at

11X, Y) =(S171(x),y) . (7)

Then 19 is called the qt"* —fundamental form of hypersurface M [1].

3. ON THE NORMAL CURVATURES OF HYPERSURFACES UNDER THE
CONFORMAL MAPS

Throughout this section we will suppose that f: E™ - E™ for f(M)=M'" is
conformal map also f: E*n—E”nare (n — 1) — dimensional hypersurfaces in E™.

Theorem 3. Let f : E™ — E™ conformal map for f (M) = M'be a homothety. Assume
that k,, and k;, is the normal curvatures of M and M’, respectively. Then for all Xp € Ty, (P)
we have

kn(f(Xp)) = 8kn(Xp). (8)

Proof: From (6) we may write

! _ (S,(f*(XP));f*(XP»
fen (12 (X)) = (f.(Xp)f(Xp)) ®)
and
__(s(Xp).Xp)
k,(Xp) = TS (10)

where S and S’ is the Weingarten maps of M and M'.
Since f is a conformal map, we get

' _ (s(Xp).Xp)
where G > 0.
On the other hand, since the conformal map f is a homothety, by theorem 2 we get
' _ s S"R&Xp)L(XP))
en (£ (X)) = 0 e ke (12)

From (9), (10) and (12) we obtain

kn(fe(Xp)) = Skn(Xp).

This is completed the proof.
Using Theorem 3 we can give the following corollaries.

Corollary 2. Let conformal map f : E™ — E™ be a homothety. If @ is an asymptotic
curve on M, then the curve f e @ = [ is an asymptotic curve on M'.
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Proof: Assume that a is an asymptotic curve on M. Then we have k,, = 0. From (6)
we know that

kn(f(Xp)) = 8kn(Xp).

Then, substituting k,, =0 into the last equation we get k;, = 0. Then the curve
f oa =B isan asymptotic curve, too.

Corollary 3. Let f: E™ - E™ be a conformal map for f(M) =M' If f is an
isometry, then we may write

kyn (f(Xp)) = 8kn(Xp)

Proof: From (8), we know that

k;z (f* (XP)) = 8k, (XP))

where § is a constant homothety ratio. Since f is an isometry, we get & = 1. Then, for all
Xp € T),(P) we obtain

kn(f(Xp)) = 8kn(Xp).

Theorem 4. Let f : E™ — E™be a conformal map. If f is an isometry, then first and
second fundamental forms of hypersurfaces are invariant.

Proof: At first,we will show that the .first fundamental forms of hypersurfaces are
invariant under a map f. If f is an isometry, then we can write

(fX£Y) =X, Y) (13)

On the other hand, the first fundamental forms I and I'of hypersurfaces M and M’,
respectively, are
I(X,Y) =(X,Y) (14)
and

I' (f.X, 1Y) = (X £.Y). (15)
Since f is an isometry we obtain
I'(EX LY) =X, Y)= I(X,Y). (16)

Now we will show that the second fundamental forms of hypersurfaces are invariant
under a map f.

Similarly, for the second fundamental forms II and II' of hypersurfaces M and M’',
respectively, we have

H(X,Y) =(SX),Y) (17)
and
I'(£.X, £.Y) = (S"(£.X), £.Y). (18)
Using (5) we get
' (f.X, £.Y) = (f.(SCO), Y). (19)
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Since f is a isometry we obtain

I'(£.X, £.Y) = (S(X),Y). (20)
From (17) and (20) we have

HX,Y) = II'(£X, £.Y) = (S(X),Y) Q1)

Proposition 1. Let f : E™ = E™ be a conformal map. If f is an isometry, then we
have

I'DEX LY) = IDX,Y) (22)
where VX,Y € y(M).

Proof: The proof will be done by the inductive method.
STEP 1: Forq = 1, (22) is true, since
I' (X, £.Y) = I(X,)Y) =(X,Y).
STEP 2: For q = k, Suppose (22) is true for some q = k = 1; that is,
I'®Ofx, £Y) = 19(X,Y) (23)
By using (7), we get

(" VX, £.Y) = (SED(X), V). (24)

STEP 3: Prove that (22) is true for q =k + 1, that is
VX £Y) = 1040, Y) (25)
By (7) we may write

I’(k+1)(f*X,f*Y) — (S’(k)(f*X),f*Y)
= (" VS (LX), £.Y).

From (5), we get

"X, £Y) = (S E VLSO, LY.
= (5 D (LSO, 1)
— (£SO, £1).
Since f is a isometry we have
I'VEXLY) = (S® 0, YY) = 197D (X, Y)

This is completed the proof .
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