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Abstract. In this paper, using different kind of representations for Gauss 

hypergeometric function (.)12 F , we establish seven theorems for the Saigo operators of 
fractional integration. The theorems established in this paper are of general character. 
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1. INTRODUCTION  
 
 
 

Let  ,  and   be complex numbers and )(0,=  Rx . The fractional integral 
0)>)((   and the fractional derivative 0)<)((   of the second kind of a function )(xf  on R  

are given by (cf. [3]): 
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 The (.)12 F  function occurring in the right-hand side of (1.1) is the familiar Gaussian 

hypergeometric function defined by  
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Where c is neither zero nor a negative integer, for convergence 1<x ; 1=x  and 0>)( bac  ,  

1= x  and 1>)(  bac ; and n)(  is the Pochhammer symbol defined by  
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Following Saigo [3], for   being real, the function 1x  has integral formula  
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The hypergeometric function of two variable due to Srivastava and Karlson [6] is 

defined as:  
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where, for convergence 
 (i) 1<  mlqp , 1<  nlkp , <x  and <y  or 

(ii) 1=  mlqp , 1=  nlkp   
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We also have  
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and the beta integral is defined by  
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where 0>)( p  and 0>)(q . 

Recently Singh and Singh [5], established certain theorems for the Saigo operator of 
fractional integration of first kind. In the present paper, we propose to add one more 
dimension to this study by introducing certain theorems for the Saigo operator of fractional 
integration of second kind. The theorems established in this paper are believed to be a new 
contribution in the theory of fractional calculus. 

 
 
 

  2. MAIN RESULTS 
 
 
 
 In this section, using different kind of representations for Gauss hypergeometric 

function )(12 F , we shall evaluate the following generalized fractional integrals. The main 
theorems are as under: 
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Theorem-1 If 1<x  and the familiar Gaussian hypergeometric function defined by 

equation (1.3), then we have  
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where 0>  and 1))(),(.(<   min . 
 

Proof: On multiplying equation (1.3) by 1x , and operating the generalized fractional 
integral operator (.),,

,


xI  to both the sides, the left-hand side, say L  of equation (2.1) yields 

to  
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On interchanging the order of integration and summation, which is valid under 

conditions given with (1.1)-(1.3), we obtain  
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On using the formula (1.5), the above equation leads to  
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which on further simplifications reduces to the right-hand side of the theorem-1, given by 
(2.1). 

 
Theorem-2. If 1<x , 0>)(>)( bc   and ([2, p.47, Theorem 16])  
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then the following result holds  
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where c  is neither zero nor negative integer, 0>  and 1))(),(.(<   min . 
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Proof: On making use of relation (2.5), the left-hand side, say L  of equation (2.6) 
yields to  
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On using the binomial series (1.7) and than interchanging the order of integrations and 

summation, which is valid under conditions given with (2.6), we obtain  
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On making use of (1.8) and fractional integral formula (1.5), the above equation 

reduces to the right-hand side of the theorem-2, which is same as theorem-1. 
 
Theorem-3. If 1<x  and we have [1, p.278, eqn.(8.13)]  
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then the following result holds  
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where c  and nc   is neither zero nor a negative integer, 1,2,=n , 0>  and 

1))(),(.(<   min . 
 

Proof: Operating both sides of (2.9) by the fractional integral operator 1,,
,




 xI x , then 

we obtain  
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On making use of theorem-1 in the right-hand side of above equation, we get the 

required result (2.10). 
 

  



Saigo fractional integral operator of …                                                          Daya Lal Suthar, Biniyam Shimelis 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

205

Theorem-4. If 1<x  and due to [2, p.60, eqn.(5)] we have  
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where 0>  and 1))(),(.(<   min . 
 

Proof: In view of the transformation (2.12), the left-hand side of (2.13), say L  yields 
to  
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Using (1.7) and expansion formula for Gauss hypergeometric function in the right-

hand side of the above equation, we obtain  
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On interchanging the order of integration and summations, which is valid under 

conditions given with (1.1)-(1.3) and (1.6), and than using the formula (1.5), the above 
equation leads to  
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which, in view of the definition (1.6) further reduces to right-hand side of (2.13). 

 

Theorem-5. If 1<x , 1<
1 x

x


 and we have [2, p.60, eqn.(4)]  
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then  
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where 0>  and 1))(),(.(<   min . 
 

Proof: In view of the transformation (2.17), the left-hand side of (2.18), say L  yields 
to  
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On making use of (1.7) and expansion formula for Gauss hypergeometric function in 

the right-hand side of the above equation, we obtain  
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Applying the formula mnmn anaa  )(=)()(  and changing the order of integration and 

summations, which is permissible under the conditions given with theorem, and than using 
the formula (1.5), the above equation leads to  
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which, on further simplifications arrive at right-hand side of (2.18). 

 

Theorem-6. If 1<x , 1<
1 x

x


 and we have  

 

                                 ,
1

;

;,

 )(1=

;

;,

  1212








































x

x

c

bac

Fxx

c

ba

F b                                (2.22) 

 
then  
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where 0>  and 1))(),(.(<   min . 
 

Proof: On interchanging a  and b  in the theorem-5, one can easily prove the theorem-
6. For sake of brevity we omite the proof of the theorem-6. 

 
Theorem-7. If 1<x  and we have  
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where equation (2.24) represents hypergeometric function of second kind [1, p. 285, eqn 
(28)], 0>  and 1))(),(.(<   min . 
 

Proof: Operating both sides of (2.24) by the fractional integral operator 1,,
,




 xI x , 

and then on making use of theorem-1, one can easily prove the theorem-7. 
 
 
 

3. CONCLUDING REMARKS 
 
 

The fractional integral operator with Gaussian hypergeometric function in the kernel 
defined by (1.1) includes important and useful fractional integral operators like Weyl 
fractional integral operator and Kober fractional integral operator. The results given by 
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theorems 1 to 7 can be applied to yield the corresponding results for the aformentioned 
integral operator. 

Thus if we put 0=  in (1.1) and noting the relationship  
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where (.),

,

xK  denotes the Kober fractional integral operator, we can easily deduce the 

corresponding results from theorems 1 to 7. 
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