THE CHARACTERIZATION OF SOME LINEAR MAPS USING THE RANK

VASILE POP ${ }^{1}$
Manuscript received: 20.06.2016; Accepted paper: 12.08.2016; Published online: 30.09.2016.

Abstract

For a linear map $T: V \rightarrow V$ where V is a vector space, there are two special subspaces: the kernel ($\operatorname{ker} T$) and the image ($\operatorname{Im} T=T(V)$) with dimensions $d(T)$ (the defect of T), respectively $r(T)$ (the rank of T). In this paper we characterize some special linear maps (projections, symmetries and tripotent maps) using only these subspaces and their dimensions.

Keywords: vector space, linear map, rank.
MSC 2010: 15A03, 15A04, 15A24.

1. INTRODUCTION

In general, for a linear map $T: V \rightarrow W$ between two vector spaces, the subspaces $\operatorname{ker} T$ and $\operatorname{Im} T$ give too little enough information to completely characterize the mapping's type. In this paper we study some linear maps for which this information is sufficient for a complete characterization. The starting points for this paper where [1, Theorem 4.3] which concerns the characterization of idempotent matrices and [2, Remark 26] which concerns the involutory matrices.

2. THE CHARACTERIZATION OF THE PROJECTIONS

Let V be a vector space over the field K.
Definition 2.1 A linear map $P: V \rightarrow V$ is called a projection iff $P \circ P=P$.
We will denote by $\operatorname{Im} P=P(V)$ the image of P and by $\operatorname{ker} P=\{x \in V \mid P(x)=0\}$ the kernel of V. If these subspaces are finite dimensional, we will denote by $r(P)=$ $\operatorname{dim}(\operatorname{Im} P)$ the rank of P and by $d(P)=\operatorname{dim}(\operatorname{ker} P)$ the defect of the map P.

The theorem of the dimension for linear maps (see [3]) in the finite dimensional case states that:

$$
\operatorname{dim} V=r(P)+d(P)
$$

A first characterization of the projections is given by:

[^0]Theorem 2.1 The map $P: V \rightarrow V$ is a projection if and only if V is the direct sum of the subspaces ker P and $\operatorname{ker}(I-P)(V=\operatorname{ker} P \oplus \operatorname{ker}(I-P))$, where $I: V \rightarrow V, I(x)=$ $x, \forall x \in V$ is the identity map of V.

Proof: If $P \circ P=P$ then every vector $x \in V$ has the expression $x=x_{1}+x_{2}$ with $x_{1}=x-$ $P(x) \in \operatorname{ker} P$ and $x_{2}=P(x) \in \operatorname{ker}(I-P)$ because $P\left(x_{1}\right)=P(x)-P(P(x))=0$ and $(I-P)\left(x_{2}\right)=P(x)-P(P(x))=0$, so that $V=\operatorname{ker} P+\operatorname{ker}(I-P)$. On the other side, $\operatorname{ker} P \cap \operatorname{ker}(I-P)=\{0\}$, which implies the sum is a direct sum: $V=\operatorname{ker} P \oplus \operatorname{ker}(I-P)$. If $V=\operatorname{ker} P \oplus \operatorname{ker}(I-P)$, then every $x \in V$ can be written uniquely as $x=x_{1}+x_{2}$ with $x_{1} \in \operatorname{ker} P$ and $x_{2} \in \operatorname{ker}(I-P)$. We have the following equalities: $P(x)=P\left(x_{1}\right)+$ $P\left(x_{2}\right)=0+P\left(x_{2}\right)=x_{2}+(I-P)\left(x_{2}\right)=x_{2}$ and then $P \circ P(x)=P\left(x_{2}\right)=x_{2}=P(x)$ for all $x \in V$.

Another characterization that uses the rank is:
Theorem 2.2 If V is finite-dimensional then the linear map $P: V \rightarrow V$ is a projection iff:

$$
\operatorname{dim} V=r(P)+r(I-P)
$$

Proof: If P is a projection, then from Theorem 2.1 it follows that $V=\operatorname{ker} P \oplus \operatorname{ker}(I-P)$, consequently $\operatorname{dim} V=d(P)+d(I-P)=\operatorname{dim} V-r(P)+\operatorname{dim} V-r(I-P)$, hence $\operatorname{dim} V=r(P)+r(I-P)$. Conversely, from the given equality we obtain in the same way that $\operatorname{dimV}=d(P)+d(I-P)$ and because $\operatorname{ker} P \cap \operatorname{ker}(I-P)=\{0\}$ it follows that $V=\operatorname{ker} P \oplus \operatorname{ker}(I-P)$. According to Theorem 2.1, it follows that $P \circ P=P$.

From Theorem 2.2 we obtain a characterization of the idempotent matrices using the rank (see [1]):

Corollary 2.1. The matrix $A \in \mathcal{M}_{n}(K)$ is idempotent $\left(A^{2}=A\right)$ iff the following equality is satisfied:

$$
\operatorname{rank} A+\operatorname{rank}\left(I_{n}-A\right)=n
$$

Proof: If $T: V \rightarrow V$ is a linear map of the vector space V over the field K having the matrix A in some basis, then $A^{2}=A$ iff $T^{2}=T$ so that T is a projection and we can apply Theorem 2.2 and the equalities $\operatorname{rank} T=\operatorname{rank} A$ and $\operatorname{rank}\left(I_{n}-A\right)=\operatorname{rank}(I-T)$.

3. CHARACTERIZATION OF THE SYMMETRIES

Let V be a vector space over the field K with characteristic not equal with 2 .
Definition 3.1 A linear map $S: V \rightarrow V$ is called a symmetry if $S \circ S=I$.
Theorem 3.1 The linear map $S: V \rightarrow V$ is a symmetry if and only if:

$$
V=\operatorname{ker}(I-S) \oplus \operatorname{ker}(I+S)
$$

Proof: If S is a symmetry, we will prove that $\operatorname{ker}(I-S) \cap \operatorname{ker}(I+S)=\{0\}$. For $x \in$ $\operatorname{ker}(I-S)$ we have $S(x)=x$ and for $x \in \operatorname{ker}(I+S)$ we have $S(x)=-x$ so that $x=-x$.

From this equality we obtain that $x=0$. In addition, every vector $x \in V$ can be writted as: $x=x_{1}+x_{2}$, where $x_{1}=\frac{1}{2}(x+S(x)), x_{2}=\frac{1}{2}(x-S(x))$ for that we have:

$$
\begin{aligned}
& (I-S)\left(x_{1}\right)=\frac{1}{2}\left(x+S(x)-S(x)-S^{2}(x)\right)=0 \\
& (I+S)\left(x_{2}\right)=\frac{1}{2}\left(x-S(x)+S(x)-S^{2}(x)\right)=0
\end{aligned}
$$

then $x_{1} \in \operatorname{ker}(I-S)$ and $x_{2} \in \operatorname{ker}(I+S)$, so that $V=\operatorname{ker}(I-S) \oplus \operatorname{ker}(I+S)$.
Conversely, every vector $x \in V$ can be written uniquely as $x=x_{1}+x_{2}$, with $x_{1} \in$ $\operatorname{ker}(I-S)$ and $x_{2} \in \operatorname{ker}(I+S)$, so that we have $S(x)=S\left(x_{1}\right)+S\left(x_{2}\right)=x_{1}-x_{2}$. It follows that $S^{2}(x)=S\left(x_{1}-x_{2}\right)=x_{1}+x_{2}=x$. We obtain that for every $x \in V: S^{2}(x)=x$ hence S is a symmetry.

Theorem 3.2 If V is a finite-dimensional vector space, then the linear map $S: V \rightarrow V$ is a symmetry if and only if $\operatorname{dim} V=r(I-S)+r(I+S)$.

Proof: If S is a symmetry, then from Theorem 3.1 it follows that:

$$
\operatorname{dim} V=d(I-S)+d(I+S)=\operatorname{dim} V-r(I-S)+\operatorname{dim} V-r(I+S)
$$

hence $\operatorname{dim} V=r(I-S)+r(I+S)$. Conversely, from the given equality it follows that $\operatorname{dim} V=d(I-S)+d(I+S)$. But $\operatorname{ker}(I-S) \cap \operatorname{ker}(I+S)=\{0\}$, hence

$$
V=\operatorname{ker}(I-S) \oplus \operatorname{ker}(I+S)
$$

and according to Theorem 3.1, it follows that $S^{2}=I$.
Corollary 3.1. The matrix $A \in \mathcal{M}_{n}(K)$ is an involutory matrix $\left(A^{2}=I_{n}\right)$ iff the following equality is satisfied:

$$
\operatorname{rank}\left(I_{n}+\mathrm{A}\right)+\operatorname{rank}\left(\mathrm{I}_{\mathrm{n}}-\mathrm{A}\right)=\mathrm{n}
$$

Proof: Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear map of a vector space V over the field K and having the matrix A in some basis. Then it is easy to prove that $T^{2}=I$ iff $A^{2}=I_{n}$, and we can use Theorem 3.2.

4. CHARACTERIZATION OF THE TRIPOTENT MAPS

Let V be a vector space over the field K with characteristic not equal with 2 .
Definition 4.1 A linear map $T: V \rightarrow V$ is called tripotent if $T^{3}=T$.
Theorem 4.1 The linear map $T: V \rightarrow V$ satisfies the equality $T^{3}=T$ iff

$$
V=\operatorname{ker} T \oplus \operatorname{ker}(I-T) \oplus \operatorname{ker}(I+T)
$$

Proof: If $T^{3}=T$, then we will show that every vector $x \in V$ has the form

$$
\begin{equation*}
x=x_{1}+x_{2}+x_{3} \tag{1}
\end{equation*}
$$

where: $T\left(x_{1}\right)=0, T\left(x_{2}\right)=x_{2}$ and $T\left(x_{3}\right)=-x_{3}$. We have from the above equality that $T(x)=x_{2}-x_{3}$ and $T^{2}(x)=x_{2}+x_{3}$. In (1) we choose

$$
x_{2}=\frac{1}{2}\left(T(x)+T^{2}(x)\right), x_{3}=\frac{1}{2}\left(T^{2}(x)-T(x)\right) \text { and } x_{1}=x-T^{2}(x) .
$$

Conversely, if every vector $x \in V$ has the form (1) (which is unique) with $T\left(x_{1}\right)=0$, $T\left(x_{2}\right)=x_{2}$ and $T\left(x_{3}\right)=-x_{3}$ we obtain: $T(x)=x_{2}-x_{3}, T^{2}(x)=x_{2}+x_{3}$ and $T^{3}(x)=$ $x_{2}-x_{3}=T(x)$, so that $T^{3}=T$.

Theorem 4.2 If V is a vector space with finite dimension then the linear map $T: V \rightarrow V$ is tripotent iff the following equality holds:

$$
r(T)+r(I-T)+r(I+T)=2 \operatorname{dim} V
$$

Proof: If $T^{3}=T$, then from Theorem 4.1 follows that:

$$
\begin{aligned}
\operatorname{dim} V=d(T) & +d(I-T)+d(I+T)= \\
& =\operatorname{dim} V-r(T)+\operatorname{dim} V-r(I-T)+\operatorname{dim} V-r(I+T)
\end{aligned}
$$

so that $r(T)+r(I-T)+r(I+T)=2 \operatorname{dim} V$. Conversely, from the given equality it follows that $\quad d(T)+d(I-T)+d(I+T)=\operatorname{dim} V \quad$ and \quad because $\quad \operatorname{ker}(T) \cap \operatorname{ker}(I-T) \cap$ $\operatorname{ker}(I+T)=\{0\} \quad, \quad \operatorname{ker}(I-T) \cap(\operatorname{ker}(T)+\operatorname{ker}(I+T))=\{0\} \quad$ and $\quad \operatorname{ker}(I+T) \cap$ $(\operatorname{ker}(T)+\operatorname{ker}(I-T))=\{0\}, \quad$ it follows that $\quad V=\operatorname{ker} T \oplus \operatorname{ker}(I-T) \oplus \operatorname{ker}(I+T)$.

Applying Theorem 4.1 it follows that $T^{3}=T$.
From Theorem 4.2 we obtain the following result:
Corollary 4.1. The matrix $A \in \mathcal{M}_{n}(K)$ satisfies the equality $A^{3}=A$ iff the following equality holds:

$$
\operatorname{rank} A+\operatorname{rank}\left(I_{n}-A\right)+\operatorname{rank}\left(I_{n}+A\right)=2 n .
$$

Remark 4.1 Using the same ideas we can characterize some linear maps that satisfy equalities $T^{k}=T^{p}$, for example:

Problem 1. The linear map $T: V \rightarrow V$ satisfies the equality $T^{3}=T^{2}$ iff:

$$
r\left(T^{2}\right)+r(I-T)=\operatorname{dim} V
$$

Problem 2. For a linear map $T: V \rightarrow V$ the following equalities are equivalent:
a) $T^{3}=T^{5}$.
b) $r\left(T^{3}\right)+r\left(I-T^{2}\right)=\operatorname{dim} V$.
c) $r\left(T^{3}\right)+r(I-T)+r(I+T)=2 \operatorname{dim} V$.

REFERENCES

[1] Zhang, F., Matrix Theory - Basic Results and Techniques, Springer-Verlag, 1999.
[2] Prasolov, V.V. Problems and Theorems in Linear Algebra, Vol. 134. American Mathematical Soc., 1994.
[3] Pop, V., Rasa, I., Linear Algebra, Ed. Mediamira, Cluj-Napoca, 2005.
[4] Nichita, F.F., Pop, V., Symmetries, projections and Yang-Baxter Equations, Automat. Comput. Appl. Math., 21(1), 101, 2012.

[^0]: ${ }^{1}$ Technical University of Cluj-Napoca, Dept. of Mathematics, Romania. E-mail: vasile.pop@math.utcluj.ro.

