
Journal of Science and Arts                                                                   Year 16, No. 3(36), pp. 229-242, 2016 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

ORIGINAL PAPER

EXACT SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS 
ARISING IN MATHEMATICAL PHYSICS BY ( / , 1/ )G G G - 

EXPANSION METHOD 

MUHAMMAD SHAKEEL1, JAMSHAD AHMAD2, QAZI MAHMOOD UL HASSAN3, 
MUHAMMAD NAEEM4 

_________________________________________________ 
Manuscript received: 27.03.2016; Accepted paper: 19.07.2016; 

Published online: 30.09.2016. 

 
 
Abstract. In this article one of the most reliable and effective method, ( / , 1/ )G G G -

expansion method has been employed to obtain exact traveling wave solutions of highly 
nonlinear partial differential equations (PDEs). The set of abundant exact traveling wave 
solutions of two very important nonlinear evolution equations of mathematical physics, i.e., 
modified Benjamin-Bona-Mahony (mBBM) and (2 + 1)-dimensional Calogero-
Bogoyavlenskii-Schiff (CBS) equations are developed. The comparison of the obtained 
numerical results with the existing along with the graphical representation is presented. It is 
shown that the Bi variable ( / , 1/ )G G G -expansion method is a potent and very concise 
mathematical technique for solving nonlinear problems. 

Keywords: ( / , 1/ )G G G -expansion method; mBBM equation; CBS equation; 
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1. INTRODUCTION  
 

 
The study of Nonlinear evolution equations play a momentous role in various 

scientific and engineering fields, and is widely used to describe many important phenomena 
and dynamic processes in physics, mechanics, chemistry, biology, propagation of shallow 
water waves, etc. In recent decades, there has been a great amount of activity aiming to 
find methods for solutions of NLPDEs and exact solutions of these NLPDEs have been 
investigated by many researchers [1-45] who are concerned in nonlinear physical phenomena. 
An extensive list of non-integrable nonlinear PDEs, there is a class of equations that can be 
referred to as the partially integrable, because these equations can be transformed to 
integrable form for some values of the involved parameters. There are many different 
techniques to derive for the exact solutions of these equations. The most famous algorithms 
are the truncated Painleve expansion method [1], the tanh-function method [2-6] and the 
Jacobi elliptic function expansion method [7-10]. There are other methods which can be 
found in [11-13]. For integrable nonlinear differential equations, the inverse scattering 
transform method [14], the Hirota method [15], truncated Painleve expansion method [16], 
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Backlund transform method [17] and the Exp-function method [18-20] are used for searching 
the exact solutions.  

A direct and concise method called )/( GG -expansion method was introduced by 
Wang et al [21] to look for traveling wave solutions of nonlinear partial differential equations, 
where )(GG   satisfies the second order linear ordinary differential equation 

;0)()()(   GGG   and   are arbitrary constants. For additional references see 

the articles [22-28]. It is to be highlighted that LI et al. [29] applied the )/1,/( GGG  -
expansion method on certain nonlinear evolution equations to attain their exact traveling wave 
solutions. They constructed the set of abundant traveling wave solutions of Zakharov 
equations with arbitrary parameters and solitary wave solutions when the parameters are 
replaced by special values. Zayed et al. [30, 31] also extended the application of 

)/1,/( GGG  -expansion method to nonlinear (3+1)-dimensional Kadomtsev-Petviashvili, 
nonlinear KdV-mKdV for traveling wave solutions. A detail work on )/( GG -expansion 
method [32, 33] may be witnessed. 

Due to deep interest and motivated by the ongoing research in this hot area, we 
extended the approach )/1,/( GGG  -expansion method to find the exact traveling wave 
solutions of two well known nonlinear evolution equations; modified Benjamin-Bona-
Mahony (mBBM) and (2 +1)-dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equations. 

 
 

2. METHODOLOGY  
 
 
In this section, we present main steps of the )/1,/( GGG -expansion method for 

constructing traveling wave solutions of nonlinear evolution equation. Suppose a nonlinear 
equation for ),,( tyxP  is defined as 

 
,0),,,,,,,( ttyyxxyxt uuuuuuuP       (1) 

 
in which both nonlinear term(s) and higher order derivatives of ),,( tyxP are all 

involved. In general, the left-hand side of (1) is a polynomial in   and its various derivatives. 

The )/1,/( GGG  -expansion method for solving (1) proceed in the following steps: 
Step 1: Look for traveling wave solution of (1) by taking 
 

,),( tVyxPP        (2) 
 

where  is nonzero constant,  )(P  the function of . Substituting (2) into (1) yields 
an ordinary differential equation (ODE) for )(P . 

 
.0),,,,,( 2  uVuuuVuQ                               (3) 

 
Step 2: If possible, integrate (3) term by term one or more times. This yields 

constant(s) of integration. For simplicity, the integration constant(s) may be set to zero. 
Step 3: According to the bi variable )/1,/( GGG  -expansion method the solution 

)(u  can be expressed by a finite power series in the form 
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where na ( Mn ,,3,2,1  ) and nb ( Mn ,,3,2,1  ) are constants to be determine later and 

)(  and  )( are given by 
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which satisfies 
 

  )()( GG       (6) 
 
The equations (5) and (6) yields 
 

  2  ,       (7) 
 
From the three cases of general solutions of (6), we have: 
 
Case 1: When 0  the general solution of (6) is  
  

      ,coshsinh

  BAG  

we have 
 

 ,22
22

2 


 


      (8) 

 
where A  and B  are two arbitrary constants and .22 BA   

 
Case 2: When 0  the general solution of (6) is 
 

      ,cossin

  BAG  

 
we have 
 

 ,22
22

2 


 


     (9) 

 
where A  and B  are two arbitrary constants and .22 BA   
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Case 3: When 0  the general solution of (6) is 

  ,
2

2 BAG    

and we have  

 ,2
2

1 2
2

2 


 



BA

                                         (10) 

 
where A  and B  are two arbitrary constants. 

 
Step 4: Determine M . This usually can be accomplished by balancing the linear 

term(s) of highest order with the highest order nonlinear term(s) obtained in step 2. 
 
Step 5: Substituting (4) into (3) and using equations (7) and (8), will yield a 

polynomial in   and   in which the degree of   is not larger than 1.Compare the like 

powers of M  and  M  equal to zero, yields a set of algebraic equations for na

 Mn ,,3,2,1,0   and nb    BAMn ,,,,,,3,2,1  and .V  

 
Step 6: Solve the system which is obtained in step 5 for na  Mn ,,3,2,1,0   and nb

  BAMn ,,,,,,3,2,1  and V with the help of symbolic computational software Maple, 
to determine these constants. Putting the values of these constants into (4), one can obtain the 
traveling wave solutions expressed by the hyperbolic functions of (2). We can obtain the more 
general type and new exact traveling wave solution of the nonlinear partial differential 
equation (1). 

 
Step 7: Similarly substituting (4) into (3) and using equations (7) and (9) (or equations 

(7) and (10)) will yield a polynomial in   and   in which the degree of   is not larger than 

1.Compare the like powers of M  and  M  equal to zero, yields a set of algebraic equations 

for na  Mn ,,3,2,1,0   and nb   BAMn ,,,,,,3,2,1  and ,V  we obtain traveling 

wave solutions of (1) which are expressed by trigonometric functions (or expressed by 
rational functions) as proceeding before.  

 
 

3. NUMERICAL APPLICATIONS 
 
 
In this section, we will exhibit the bi variable )/1,/( GGG  -expansion method on 

two well-known nonlinear evolution equations, namely the modified Benjamin-Bona-Mahony 
(mBBM) equation and the (2 +1) – dimensional Calogero-Bogoyavlenskii-Schiff (CBS) 
equation. Numerical results are very encouraging.  
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3.1 MODIFIED BENJAMIN-BONA-MAHONY EQUATION  
 
Let us consider the nonlinear Modified Benjamin-Bona-Mahony (mBBM) Equation  

 
,02  txxxxt uuuuu                    (11) 

 
which was first derived to describe an approximation for surface long waves in nonlinear 
dispersive media The equation can also characterize the hydromagnetic waves in cold plasma, 
acoustic waves in anharmonic crystals and acoustic-gravity waves in compressible fluids [34]. 
Khan et al. [35] used the modified simple equation method to find the exact solutions for the 
modified Benjamin-Bona-Mahony (mBBM) equation. Naher and Abdullah [36] applied the 
extended generalized Riccati equation mapping method to find the exact traveling wave 
solutions including solitons and periodic solutions of this equation. Aslan [37] find exact and 
explicit solutions to this equation by utilizing the )/( GG -expansion method. Yusufoglu [38] 
find new solitonary solutions for the mBBM equation by using Exp-function method.  

Equation (2) permits us to convert (11) into an ordinary differential equation,  
 

  ,01 2  uVuuuV              (12) 
 

where prime denotes the derivative with respect to . Considering the homogeneous 

balancing principle between u  and uu 2 , we deduce that .1M Therefore the trail solution 
becomes 

,110  baau       (13) 

 
where ,0a  1a and 1  b  are constants to be determined later. There are three cases to be 

discussed as follows: 
 
Case 1: If ,0  substituting (13) into (12) and using equations (7) and (8), the left-

hand side of (12) becomes a polynomial in   and . Setting the coefficients of this 

polynomial to zero yields a system of algebraic equations in 0a , 11  , ba , ,, V and   (which 

are not shown here for the sake of simplicity) as follows. 
Solving the obtained system of algebraic equation by the symbolic software Maple, 

we have the following solution sets: 
 
Result 1. We have 
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     (14)                       
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Now, the traveling wave solution of (11) becomes: 
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          (15) 

 
where 
 

.
2)1()2(

)(2
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tx 



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In particular, if we take 0 and 0,0  BA or 0 and 0,0  BA in (15), we 

have the solitary solutions 
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1

6
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 htxu                                               (17) 

 

 
 

(a)                 (b) 
Figure 1. (a)  3D and (b) 2D traveling wave solutions of Eq. (16) for different values of parameters. 

 
 

Result 2. We have 
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Now, the traveling wave solution of (11) becomes: 
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where 

.
2

2
tx 











  

 
In particular, by setting 0 and 0,0  BA or 0 and 0,0  BA in (19), we 

have the solitary wave solutions 
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3
, 






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(a)                                                                                     (b)               

Figure 2. (a)  3D and (b) 2D kink solutions of Eq. (20) for different values of parameters. 
 

Case 2:  If ,0  substituting (13) into (12) and using equations (7) and (9), the left-
hand side of (12) becomes a polynomial in  . and Similar to case 1, after solving the 
system of algebraic equations, we obtain the following results. 

 
Result 1. We have 
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Now, the traveling wave solution of (11) becomes: 
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In particular, if we take 0 and 0,0  BA or 0 and 0,0  BA in (23), we 

have the solitary solutions: 
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6
, 





txu                                           (24) 
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     (a)                                                                                          (b) 

Figure 3. (a)  3D and (b) 2D represent the periodic solutions of Eq. (25) for different values of parameters. 
 
 
Result 2. We have 
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Now, in this result the traveling wave solution of (11) becomes: 
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In particular, by setting 0 and 0,0  BA or 0 and 0,0  BA in (27), we 

have 
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(a)                                                                             (b) 

Figure 4. (a)  3D and (b) 2D represent the periodic traveling wave solutions of Eq. (29) for different values 
of parameters. 

 
Case 3: When ,0  by analogous computations like case 1 and 2, we have 
 
Result 1. We have 
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Now, the traveling wave solution of (11) becomes: 
 

    ,
2

42

342

3
,

2

2

22 















BA

BA

BA
txu





                                                        (31) 

 
where 

.
342

)2(2
22

2

t
BA

BA
x 














  

 
Result 2. We have 
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,

2

3
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2
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
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                                 (32)  

 
Now, in the traveling wave solution of (11) becomes: 

    ,
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


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
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
BA

BAA
txu




                                      (33) 
where 

.tx   
 
 

3.2 THE (2+1)-DIMENSIONAL CALOGERO-BOGOYAVLENSKII-SCHIFF (CBS) 
EQUATION  

 
Now consider the (2+1)-dimensional (CBS) equation in the form 

 
,024  yxxyxxyxxxtx uuuuuu             (34) 

 
The CBS equation was first investigated by Bogoyavlenskii and Schiff in different 

ways. Bogoyavlenskii used the modified Lax formalism, whereas Schiff derived the same 
equation by reducing the self-dual Yang-Mills equation [39-43]. Toda and Yu [44] 
constructed some new (2 +1)-dimensional integrable models using the Calogero method. 
They also derived the (2+1)-dimensional CBS equation from the Korteweg–de Vries 
equation. This equation is used to describe the interaction of a Riemann wave propagating 
along the y-axis with a long wave along the x-axis. The sine-cosine method was used by 
Najafi [45] to find the traveling wave solutions for CBS equation.  

  Consider the transformation (2) that converts (34) into ordinary differential equation 
 

.06)4(  uuuuV      (35) 
 

Integrating (35) with respect to  and setting the constant of integration to zero yields:  
 

,0)(3 2  uuuV                          (36) 
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where prime denotes the derivative with respect to . Applying the homogeneous balancing 

principle between u  and 2)(u  we have 1M . Therefore the trail solution is 
 

,110  u           (37) 

where 110  and,   are constants to be determined later. Now, we discuss the following 

cases: 
 
Case 1: If ,0  substituting (37) into (36) and by means of equations (7) and (8), the 

left-hand side of (36) becomes a polynomial in   and . Setting the coefficients of this 
polynomial to zero yields a system of algebraic equations (which are omitted here for 
simplicity) in 110  ,,  , ,, V and .  

 Solving the system of algebraic equations, we have 
 

.,,,1, 22
22

1100 BAV 


 

                        (38) 

 
Now, the traveling wave solution of Eq. (34) becomes: 
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
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




BA

BA

BA
tzxu

                        (39) 

 
where 

.tyx    
 

In particular, if we take 0 and 0,0  BA or 0 and 0,0  BA in (39), we 
have the following solution 

 
       ,sectanh,, 0   hiktzxu                                    (40) 

 

      .csccoth,, 0   htzxu                                     (41) 
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(a)                                                                                    (b)          
     Figure 5. (a)  3D and (b) 2D symbolize the kink solutions of Eq. (40) for different values of parameters. 

  
(a)                                                                                     (b) 

Figure 6. (a) 3D and (b) 2D represent the singular kink solutions of Eq. (41) for different values 
of parameters. 

 
Case 2:  If 0 , substituting (37) into (36) and by means of equations (7) and (9), the 

left-hand side of (36) becomes a polynomial in  . and Similar to case 1, after solving the 
system of algebraic equations, we obtain 

 

.,,,1, 22
22

1100 BAV 


 

                                                   (42) 

 
Now, we get the traveling wave solution of Eq. (10) as follows: 
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BA
tyxu

                                              (43) 

 
where 

.tyx    
 
In meticulous, if we set 0 and 0,0  BA or 0 and 0,0  BA in (43), we 

have the following solitary solutions 
 

      ,sectan,, 0  tyxu                                                                      (44) 

 
      .csccot,, 0  tzxu                                                                         (45)            
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      (a)                                                                            (b)         

Figure 7. (a)  3D and (b) 2D characterize the periodic traveling wave solutions of Eq. (44) for different 
values of parameters. 

         
(a)                                                                            (b) 

 
Figure 8. (a)  3D and (b) 2D show the singular periodic solutions of Eq. (45) for different values of 

parameters. 

Remark: If we take 
c

c 1
  in equations (16), (24) and (25), our results are identical 

to the results (5.19), (5.20) and (5.21) obtained by [38].  
 
 

5. CONCLUSIONS  
 
 
In this article, we have applied the )/1,/( GGG  - expansion method to obtain 

solitary solutions of modified Benjamin-Bona-Mahony (mBBM) equation and the (2+1) -
dimensional Calogero-Bogoyavlenskii-Schiff (CBS) equation. For different values of 
parameters  and , BA , we obtained the solitary wave solutions. The method used in this 

article is more effective and general than the basic )/( GG - expansion method. The main 
advantage of this method over other methods is that, it possesses all types of the solutions; i.e. 
hyperbolic function solution, trigonometric function solution and rational solution. It is 
decisive to mention out that three of our obtained solutions are identical with the existing 
solutions. From this analysis we can conclude that the proposed method is quite resourceful 
and practically well suited to be used in finding exact solutions of NLEEs. Numerical results 
and graphical presentation reveal the complete reliability of the method.  
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