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Abstract. In this paper we shall consider the various types of linear and non-linear 

fuzzy integro-differential equations of second kind like fuzzy Volterra integro-differential 

equation, fuzzy Fredholm integro-differential equation and mixed fuzzy Volterra-Fredholm 

integro-differential equation and suggested the algorithm of advanced numerical technique 

like Laplace homotopy perturbation method to find out their solutions. The application of this 

method on various types of fuzzy integro-differential equations shows the efficiency and 

reliability of the proposed method.  

Keywords: Laplace homotopy perturbation method, linear fuzzy integro-differential 

equations, non-linear fuzzy integro-differential equations. 

 

 

1. INTRODUCTION  

 

 

Integral equation plays a vital role with in many disciplines of sciences, engineering 

and mathematics. Using of integral equations with exact parameter within many modeling 

physical problems is not quite easy or better to say impossible in real problems. To overcome 

this difficulty one of the most recent approach is to use fuzzy concept. Basic concept of fuzzy 

was first introduced by professor Zadeh in 1965 after his publication on fuzzy set theory [1, 

2]. Thus in 1978 Dubois and Prade introduced the concept of arithmetic operations on fuzzy 

numbers or can say they presented the fuzzy calculus [3, 4], then as well as time pass many 

different fields of mathematics use this concept of fuzzy set theory and introduced fuzzy 

functions, relations, groups, subgroups etc. Recently twenty years ago in Japan a person name 

M. Sugeno introduced the concept of fuzzy integrals [5, 6], then it’s becoming a research 

oriented topic. Homotopy perturbation method (HPM) is a coupling of perturbation method 

and homotopy technique was firstly introduced by He JH in 1999 [7, 8], then it was farther 

developed by him [9, 10]. Laplace homotopy perturbation method (LHPM) was introduced by 

Amini khan and Hemmatnezhad in 2012 [11-13], to find the solution of non-linear ordinary 

differential equations. LHPM is combination of Laplace transformation and Homotopy 

perturbation method. The purpose to use Laplace transform is to overcome the deficiency of 

other semi-analytical methods such as HPM, VIM and ADM that is mainly caused by 

unsatisfied conditions. 
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The paper is organized as follows: In 1st Section we discuss the literature of topic and 

the method. In 2nd section we define fuzzy integro-differential equations. In 3rd section we 

introduce the method of LHPM to find solution of various types of fuzzy integro-differential 

equations. In 4th section we find the solution of numerical problems by utilizing LHPM. 

Finally a brief conclusion is given at the end.  

 

 

2. DEFINITION 

 

 

The general nth-order fuzzy integro-differential equation is as follows 
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Where   1,...,2,1,0,,  niba ii are real constants, 
  ),( xu n

is n
th

 order derivative of 

fuzzy function ),( xu  also ),( xf  is fuzzy function given in advance, is the fuzzy 

parameter whose value lies between  1,0  i.e. 10   ,   is constant parameter, ),( txk is 

known function of two variables   and   called kernel of fuzzy integro-differential equation, 

)(xa and )(xb are limits of fuzzy integro-differential equation, if  both of limits )(xa and )(xb

are constant, then integro-differential  equation is known as Fredholm fuzzy integro-

differential equation, if one of limit can say )(xa is constant and one of limit say )(xb is 

variable then equation is called fuzzy Volterra integro-differential equation and an equation 

containing both type of integrals is called mixed fuzzy integro-differential equation. 

The parametric representation of Eq. (1) is as follows, 
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3. ANALYSIS OF HPM  
 

 

To solve Eq. (1) by LHPM 1
st
 we construct homotopy as follows, 
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Thus the initial approximation is taken as 
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Substituting Eq. (3) in Eq. (2) reduces to 
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Now by applying Laplace transformation on both sides of Eq. (4), we get 
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Using the differential property of LT, we have  
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Applying inverse Laplace transformation on both sides of Eq. (6), we obtain 
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Assume the solution of Eq. (7) can be written as power series in p 
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Where ),( ii vv are unknown to determined. 

Now by putting Eq. (8) in Eq. (7) and by comparing coefficient like power of p, we 

get the following iterations are as follows 
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And so on… 

Thus the solution of FIDE-2 is given as 
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4. NUMERICAL EXAMPLES 

 

 

Example 4.1 Consider the linear fuzzy Volterra integro-differential equation of 2
nd

 kind  
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To solve Eq. (13) by LHPM 1
st
 we construct homotopy as follows, 
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Now by applying Laplace transformation on both sides of Eq. (14), we get 
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Using the differential property of LT, we have 

  

     

    




































x

x

dttvp
s

xv

dttvp
s

xv

0

0

2

),()5(
1

),(

),(
1

),(





LL

LL

          

(16) 

 

Applying inverse Laplace transformation on both sides of Eq. (16), we obtain 

 

   

  
,

),()5(
1

),(

),(
1

),(

0

0

2





















































x

x

dttvp
s

xv

dttvp
s

xv





LL

LL

1-

1-

                                                          

(17) 

 

Assume the solution of Eq. (17) can be written as power series in p 
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Now by putting Eq. (18) in Eq. (17) and by comparing coefficient like power of p, we 

get 
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and so on… 

 

As we know the solution is given as 
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Thus by utilizing above iterative results the series form solution is given as 
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And the exact solution is given as 
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Figure 1.Plot of Solution of Example 1. 

 

Example 4.2 Consider the linear fuzzy Fredholm integro-differential equation of 2
nd

 kind  
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To solve Eq. (26) by LHPM 1
st
 we construct homotopy as follows, 
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Now by applying Laplace transformation on both sides of Eq. (27), we get 
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Using the differential property of LT, we have 
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Applying inverse Laplace transformation on both sides of Eq. (29), we obtain 
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Assume the solution of Eq. (30) can be written as power series in p 
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Now by putting Eq. (31) in Eq. (30) and by comparing coefficient like power of p, we 

get 
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and so on…. 

As we know the solution is given as 
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Thus by utilizing above iterative results the series form solution is given as 
















...)6(
64

)6(
8

)6(
8

)6()6()6(cos),(

...
6488

cos),(

2
8

2
4

2
4

22

2
8

2
4

2
4

22























xxxxxxxu

xxxxxxxu

 

 (36) 

 

And the exact solution is given as 
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Figure 2. Plot of Solution of Example 2. 
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Example 4.3 Consider the linear fuzzy Volterra-Fredholm integro-differential equation of 2
nd

 

kind  
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st
 we construct homotopy as follows, 
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Now by applying Laplace transformation on both sides of Eq. (39), we get 
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Using the differential property of LT, we have 
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Applying inverse Laplace transformation on both sides of Eq. (41), we obtain 
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Assume the solution of Eq. (42) can be written as power series in  
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Now by putting Eq. (43) in Eq. (42) and by comparing coefficient like power of p, we 

get 
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Thus by utilizing above iterative results the series form solution is given as 
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And the exact solution is given as 
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Figure 3. Plot of Solution of Example 3. 

 

Example 4.4 Consider the non-linear fuzzy Volterra integro-differential equation of 2
nd

 kind 
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Now by applying Laplace transformation on both sides of Eq. (50), we get 
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Using the differential property of LT, we have 
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Applying inverse Laplace transformation on both sides of Eq. (52), we obtain 
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Assume the solution of Eq. (53) can be written as power series in p 
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Now by putting Eq. (54) in Eq. (53) and by comparing coefficient like power of p, we 

get 
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And so on… 

As we know the solution is given as 
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Thus by utilizing above iterative results the solution is given as 
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Figure 4 Plot of Solution of Example 4. 

 

Example 4.5 Consider the non-linear fuzzy Fredholm integro-differential equation of 2
nd

 kind  
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To solve Eq. (60) by LHPM 1
st
 we construct homotopy as follows, 
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Now by applying Laplace transformation on both sides of Eq. (61), we get 
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Using the differential property of LT, we have 
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Applying inverse Laplace transformation on both sides of Eq. (63), we obtain 
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(64) 

 

Assume the solution of Eq. (64) can be written as power series in p 
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Now by putting Eq. (65) in Eq. (64) and by comparing coefficient like power of p, we 

get 
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and so on… 

As we know the solution is given as 
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Thus by utilizing above iterative results the series form solution is given as 
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And the exact solution is given as 
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Figure 5. Plot of Solution of Example 5. 

 

Example 4.6 Consider the non-linear mixed fuzzy Volterra-Fredholm integro differential 

equation of 2
nd

 kind 
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 we construct homotopy as follows, 
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Now by applying Laplace transformation on both sides of Eq. (73), we get 
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Using the differential property of LT, we have 
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Applying inverse Laplace transformation on both sides of Eq. (75), we obtain 
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Assume the solution of Eq. (76) can be written as power series in p 
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Now by putting Eq. (77) in Eq. (76) and by comparing coefficient like power of p, we 

get 
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and so on… 
As we know the solution is given as 
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Thus by utilizing above iterative results the solution is given as 
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Figure 6. Plot of Solution of Example 6. 

 

 

5. CONCLUSION 

 

 

Usually it’s difficult to solve fuzzy integro-differential equations analytically. Most 

probably it’s required to obtain the approximate solutions. In this paper we developed a 

numerical technique like Laplace homotopy perturbation method for finding the solution of 

linear and non-linear fuzzy integro-differential equations. This technique proved really 

reliable and affective from achieved results. It gives fast convergence because by utilized less 

number of iterations we get approximate as well as exact solution. 
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