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1. INTRODUCTION  

 

 

Norman Schaumberger [1] proposed the following double inequality: 
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Several solutions were submitted, some using the monotonicity of the sequences 
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n

n and  
1
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n

n


  (which are increasing, respective decreasing). A complete proof 

presented by Donald Batman, M.I.T. Lincoln Laboratory, Lexington, MA can be found in [2]. 

We ask a natural question, namely which of the approximations 
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or 
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is better, as n approaches infinity? 
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Moroever, in order to find the best approximation of the form 
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 we launch 

the idea of using the quotient of two polynomials of 3
rd

 degree, where a, b, c, d, e, f are any 

real numbers. 

  

 

(4) 

 

Using a software for symbolic computation such as Maple we get the following: 

 

58 52 43 67 383
,  ,  ,  ,  

15 15 180 15 180
a d b c e f         

 

This means that 

 

 

(5) 

 

is the best the approximation of the form (4) and consequently much better than (2)-(3). 

 

 

2. THE BEST APPROXIMATION 

 

 

We talked about the best approximation in the previous section, but what is it? How to 

compare the accuracy of two given approximations? 

Firstly, let us consider an approximation of the form 

 

 
 

in the sense that    f n g n  converges to zero, as n approaches infinity. In this case, we 

consider such an approximation better as the convergence rate of the sequence    f n g n is 

higher. 

This method has been widely applied in a series of papers by V.G. Cristea [3], S. 

Dumitrescu [4] and C. Mortici et al. [5-20] to improve, or to obtain some new results 

involving the gamma function and related functions. 

In order to apply these remarks to our problem, we rewrite (4) in the form 
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As we have explained, we are interested in finding when the difference 
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converges to zero with the highest possible rate of convergence. By looking carefully at the 

expression (6), we realize that  d n  can be written as n
−1

 expansion: 
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where 
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Theoretically, the expansion (7) can be obtained by using the standard Maclaurin 

series of  ln 1 x , but some difficulties appear. The salvation can be given by Maple, which 

gives the answer in less than a second. 

The representation (7) is of main role in our study. More exactly, if one of the 

coefficients , , , , , ,        is not zero, then the rate of convergence of the sequence  d n  

can be 1 2 3, , ,...n n n    possibly 7n . The highest rate of convergence of  d n is obtained when 

 
0             
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that is for 

  

58 52 43 67 383
,  ,  ,  ,  

15 15 180 15 180
a d b c e f         

 

With these values, the difference (6) converges to zero as n
−7

, since 
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via Maple software. The justification of the best approximation (5) is now completed. 

 

 

3. BOUNDS VIA ASYMPTOTIC SERIES 

 

 

It is of general knowledge that by truncation of an asymptotic series, in- creasingly 

accurate approximations can be obtained. We use (8) to present the following bounds: 

 

Theorem 1. The following double inequality is valid, for every real number 1x   in 

the left-hand side and 2x   in the right-hand side: 
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The lower bound in (9) is better than that presented in (1), since 
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The comparison of the upper bounds in (1) and (9) reduces to 0f  , where 
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This inequality is true for every real number 2x  , as the function f is strictly 

decreasing on  2, , with  lim 0
x

f x


 . The monotonicity of  f  follows by 
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The Proof of Theorem 1. Inequality (9) reduces to 0u   and 0v  , where 
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The function u is strictly concave on  1, , while v is strictly convex on  2, , since 
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are polynomials of 8
th

, respective 14
th

 degree, with all coefficients positive. Moreover, 

   lim lim 0x xu x v x   , so 0u   on  1,  and 0v   on  2,  and the proof is 

completed.  ■ 

Note that Robert E. Schafer, Berkeley, CA made some efforts to improve the lower 

bound in (1) by exploiting some inequalities related to 
1

ln
1 1

x

x x 
. More precisely, he 

proved 
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Our lower bound in (9) was obtained by truncation the series (8), but more accurate 

results can be presented when more terms are considered. As in the proof of Theorem 1, the 

following inequality can be stated: 
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Numerical computations show that this inequality is better than (10), as we can see 

from the following table: 

 

x     x x   

10 1.016786965823581943 x 10
-2

 

50 1.04597261811131268 x 10
-3

 

100 3.5942335559134891 x 10
-4

 

500 2.767503415802049 x 10
-5

 

1000 8.98813100554576 x 10
-6

 

 

 

4. CONCLUSIONS 

 

 

We presented above our method applied on a concrete case, but we invite the reader to 

keep in mind the method used. According to the personal experience of the author, this 

method using the asymptotic series theory is very useful in establishing and proving a wide 

types of inequalities. 

Randomly, or not, the following inequality due to M. S. Klamkin was listed 

 

 

(11) 
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just after Schaumberger’s problem in The College Mathematics Journal [21]. 

Pleasing for us, we can show once again the great applicability of the method 

proposed in the previous section. As 
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we can improve in a first stage the lower bound in (11) as follows: 
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This follows from the fact that 0w  , where 
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Indeed, w is strictly convex on  1, , since 

 

 

 

and  lim 0x w x  . Hence 0w   and (12) is completely justified. 

It is true that methods using means inequalities, convexity, monotonicity of some 

sequences or functions provide estimates of nice form, but of limited accuracy. If someone is 

interested to obtain estimates which become better as the variable approaches infinity, then 

arguments from the theory of asymptotic series should be considered. 
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