BOUNDS FOR THE ENERGY OF $\boldsymbol{A}(\boldsymbol{G}), \boldsymbol{L}(\boldsymbol{G})$ USING 2-ADJACENCY

SERIFE BUYUKKOSE ${ }^{1}$, SEMIHA BASDAS NURKAHLI ${ }^{1}$, NURSAH MUTLU ${ }^{1}$

Manuscript received: 28.12.2016; Accepted paper: 02.02.2017;
Published online: 30.03.2017.

Abstract

Let G be a simple connected graph. We redefined adjacency for any two vertices if there is connected two edges between any two vertices i and j. In this case, this vertices are called 2 -adjacency and denoted by $i \sim_{2} j$. In this study, we redefined the energy of Adjacency matrix $A(G)$ and Laplacian matrix $L(G)$ by using 2-adjacency definition. Also, we found some bounds for the energy of $A(G)$ and $L(G)$ of a graph G, respectively by using 2adjacency.

Keywords: 2-adjacency, energy, bound.

1. INTRODUCTION

Let $G=(V, E)$ be a simple graph with n vertices and m edges having vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. For $v_{i} \in V$, the degree of v_{i}, the set of neighbors of v_{i} and the average of the degrees of the vertices adjacent to v_{i} are denoted by $d_{i}, N_{G}\left(v_{i}\right)$ and m_{i}, respectively. Let $D(G)$ be the diagonal matrix of vertex degrees of a graph G. Also, let $A(G)$ be the adjacency matrix of G and $A(G)=\left(a_{i j}\right)$ be defined as the $n \times n$ matrix $\left(a_{i j}\right)$, where

$$
\left(a_{i j}\right)=\left\{\begin{array}{cc}
1 & ; \quad v_{i} v_{j} \in V \\
0 & ; \quad \text { otherwise }
\end{array}\right.
$$

It follows immediately that if G is a simple graph, then $A(G)$ is a symmetric $(0,1)$ matrix where all diagonal elements are zero. We will denote the characteristic polynomial of G by

$$
P(G)=\operatorname{det}(x I-A(G))=\sum_{i=0}^{n} a_{i} x_{i}^{n-i} .
$$

[^0]Since $A(G)$ is a real symmetric matrix, its eigenvalues must be real and may be ordered as

$$
\lambda_{1}(A(G)) \geq \lambda_{2}(A(G)) \geq \cdots \geq \lambda_{n}(A(G))
$$

Denoted $\lambda_{i}(A(G))$ simply by $\lambda_{i}(G)$. The sequence of n eigenvalues is called the spectrum of G.

The largest eigenvalue $\lambda_{1}(G)$ is often called the spectral radius of G. We now give some known upper bounds for the spectral radius $\lambda_{1}(G)$.

The energy of the graph G is defined as

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The Laplacian matrix of a graph G is defined as $L(G)=\left(l_{i j}\right)$, where

$$
l_{i j}=\left\{\begin{array}{ccc}
d_{i} & ; \quad i=j \\
-1 & ; & i \sim j \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

The Laplacian matrix of G is $L(G)=D(G)-A(G)$. Clearly, $L(G)$ is a real symmetric matrix. From this fact and Gersgorin's theorem, it follows that its eigenvalues are nonnegative real numbers. Moreover, since its rows sum to 0,0 is the smallest eigenvalue of $L(G)$. We assume that the Laplacian eigenvalues are $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0$. Especially the largest eigenvalue of $L(G)$ is called Laplacian spectral radius of G, denoted by $\mu(G)$.

The Laplacian energy of a graph G as put forward by Gutman and Zhou is defined as

$$
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

Firstly, we now give some known upper bounds for $E(G)$.
Let G be a simple graph with n vertices and m edges.

1) In 1971, McClelland [10] discovered the first upper bound for $E(G)$ as follows:

$$
\begin{equation*}
E(G) \leq \sqrt{2 m n} \tag{1}
\end{equation*}
$$

2) If $2 m \geq n$, then [6]

$$
\begin{equation*}
E(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]} \tag{2}
\end{equation*}
$$

Moreover, equality holds if and only if G is either $\frac{n}{2} K_{2}, K_{n}$ or a non-complete connected strongly regular graph with two non-trivial eigenvalues both with absolute value $\sqrt{\frac{2 m-\left(\frac{2 m}{n}\right)^{2}}{n-1}}$.

If $2 m \leq n$, then

$$
E(G)=2 m
$$

Equality holds if and only if G is disjoint union of edges and isolated vertices.
3) If G is a graph with n vertices, m edges and degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ then [13]

$$
\begin{equation*}
E(G) \leq \sqrt{\frac{\sum_{i}^{n} d_{i}^{2}}{n}}+\sqrt{(n-1)\left[2 m-\frac{\sum_{i}^{n} d_{i}^{2}}{n}\right]} \tag{3}
\end{equation*}
$$

with equality holds if and only if G is either $\frac{n}{2} K_{2}$, a complete bipartite graph, a non-complete connected strongly regular graph with two non-trivial eigenvalues both with absolute value $\sqrt{\frac{2 m-\left(\frac{2 m}{n}\right)^{2}}{n-1}}$ or $n K_{1}$.

Secondly, many researchers have investigated upper bounds for $L E(G)$ is the following:

Let G be a simple graph with n vertices and m edges.

1) B.J.McClelland's bound [10]:

$$
\begin{equation*}
L E(G) \leq \sqrt{2 M n} \tag{4}
\end{equation*}
$$

where $M=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\frac{2 m}{n}\right)^{2}$.
2) J.H.Koolen, V.Moulton, I.Gutman's bound [7]:

$$
\begin{equation*}
L E(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 M-\left(\frac{2 m}{n}\right)^{2}\right]} \tag{5}
\end{equation*}
$$

2. BOUNDS FOR THE ENERGY OF GRAPHS USING 2-ADJACENCY

Let G be a simple connected graph. We redefined adjacency for any two vertices i and j. And then, we called this vertices as 2-adjacency. If this vertices are 2-adjacency, we denoted it by $i \sim_{2} j$.

In this study, we defined 2-adjacency matrix and denoted by $A^{\sim 2}(G)$. We redefined the 2-adjacency energy of the graph G by using 2-adjacency definition. We found an upper bound for the 2-adjacency energy of the graph G. Then we expanded to k-adjacency of two vertices and redefined the k -adjacency matrix and obtained a new bound for the k-adjacency energy of a graph.

Definition 2.1 If there are two connected edges between vertices of the i and j, then this vertices are called 2-adjacent and denoted by $i \sim_{2} j$.

Definition 2.2 The 2-degree of any vertex i in graph is the number of 2-adjacency vertices regarding the vertex i and the 2 -degree of a vertex i is denoted by d_{i}^{\sim}.

We can define the k -adjacency by generalizing 2 -adjacency concept further.

Definition 2.3 If there are k connected edges between vertices of the i and j, then this vertices are called k-adjacency and denoted by $i \sim_{k} j$.

Definition 2.4 The k- degree of any vertex i in graph is the number of k-adjacency regarding the vertex i and the k -degree of a vertex i is denoted by $d_{i}^{\sim^{k}}$.

Given a graph $G=(V, E)$ with $|V|=n$ the 2-adjaceny degree matrix $D^{\sim 2}(G)$ for G is a $n \times n$ diagonal matrix defined as:

$$
\left(d_{i j}^{\sim 2}\right)=\left\{\begin{array}{cc}
d_{i}^{\sim 2} & ; \quad i=j \\
0 & ; \quad \text { otherwise }
\end{array}\right.
$$

where the 2-degree d_{i}^{\sim} of a vertex i is the number of 2-adjacency regarding the vertex i.
Given a simple, connected graph G with n vertices, its 2-adjacency matrix $A^{\sim 2}(G)=$ $\left(a_{i j}^{\sim}\right)_{n \times n}$ defined as:

$$
\left(a_{i j}^{\sim}{ }^{2}\right)=\left\{\begin{array}{ccc}
1 & ; \quad i \sim_{2} j \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

Because the 2-adjacency matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$
0=\lambda_{n}^{\sim^{2}} \leq \cdots \leq \lambda_{2}^{\sim^{2}} \leq \lambda_{1}^{\sim 2} .
$$

$\lambda_{1}^{\sim 2}$ denote the largest eigenvalue of $A^{\sim 2}(G)$.

Definition 2.5 The 2-adjacency energy of the graph G is defined as

$$
E^{\sim 2}(G)=\sum_{i=1}^{n}\left|\lambda_{i}^{\sim 2}\right|
$$

Theorem 2.6 If G is a graph with n vertices, m edges and degree sequence $d_{1}^{\sim}{ }^{2}, d_{2}^{\sim}, \ldots, d_{n}^{\sim}$, then

$$
E^{\sim 2}(G) \leq \sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}}{n}}+\sqrt{(n-1)\left(\sum_{i=1}^{n} d_{i}^{\sim 2}-\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}}{n}\right)}
$$

Proof: Among the known lower bounds for λ_{1} is the following [14]:

$$
\lambda_{1} \geq \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{2}}{n}}
$$

If you apply for 2-adjacency to this inequality, it is obtained

$$
\lambda_{1}^{\sim 2} \geq \sqrt{\frac{\sum_{i=1}^{n} d_{i}^{\sim 2}}{n}}
$$

By the Cauchy-Schwartz inequality,

$$
\sum_{i=2}^{n}\left|\lambda_{i}^{\sim^{2}}\right| \leq \sqrt{(n-1) \sum_{i=2}^{n}\left(\lambda_{i}^{\sim 2}\right)^{2}}=\sqrt{(n-1)\left(2 m-\left(\lambda_{1}^{\sim 2}\right)^{2}\right)}
$$

Hence

$$
E^{\sim 2}(G) \leq \lambda_{1}^{\sim 2}+\sqrt{(n-1)\left(2 m-\left(\lambda_{1}^{\sim 2}\right)^{2}\right)}
$$

Note that the function $F(x)=x+\sqrt{(n-1)\left(2 m-x^{2}\right)}$ decreases for $\sqrt{2 m / n} \leq x \leq$ $\sqrt{2 m}$ and $\sqrt{2 m / n} \leq \sqrt{\left(\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}\right) / n} \leq \lambda_{1}^{\sim^{2}}$, we see that $F\left(\lambda_{1}^{\sim^{2}}\right)=F\left(\sqrt{\left(\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}\right) / n}\right)$. Since,

$$
2 m \leq \sum_{i=1}^{n} d_{i}^{\sim 2}
$$

it is obtained

$$
E^{\sim 2}(G) \leq \sqrt{\frac{\left(\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}\right)}{n}}+\sqrt{(n-1)\left(\sum_{i=1}^{n} d_{i}^{\sim 2}-\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}}{n}\right)}
$$

Given a simple, connected graph G with n vertices, its 2 -adjacency self-adjacency matrix $A^{\approx}(G)=\left(a_{i j}\right)_{n \times n}$ defined as:

$$
\left(a_{i j}^{\approx}\right)=\left\{\begin{array}{ccc}
2 & ; \quad i \sim_{2} j \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

Because the 2-adjacency self-adjacency matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$
0=\lambda_{n}^{\widetilde{n}} \leq \cdots \leq \lambda \widetilde{\widetilde{2}} \leq \lambda \widetilde{\widetilde{1}}
$$

$\lambda_{1} \approx$ denote the largest eigenvalue of $A^{\approx}(G)$.

Definition 2.7. The 2-adjacency self energy of the graph G is defined as

$$
E^{\approx}(G)=\sum_{i=1}^{n}|\lambda \widetilde{i}|
$$

Theorem 2.8 If G is a graph with n vertices, m edges and degree sequence $d_{1}^{\sim}{ }^{2}, d_{2}^{\sim}, \ldots, d_{n}^{\sim}$, then

$$
E^{\approx}(G)>\sqrt{\frac{\left(\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}\right)}{n}}+\sqrt{(n-1)\left(\sum_{i=1}^{n} d_{i}^{\sim 2}-\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim 2}\right)^{2}}{n}\right)}
$$

Conjecture 2.9. Let G be a simple, connected graph. Then

$$
E(G) \leq E^{\sim 2}(G) \leq E^{\approx}(G)
$$

When we generalize for k -adjacency to find bound, we obtain following result.

Theorem 2.10. If G is a graph with n vertices, m edges and degree sequence $d_{1}^{\sim}{ }^{*}, d_{2}^{\sim}, \ldots, d_{n}^{\sim}$, then

$$
E^{\sim k}(G) \leq \sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim k}\right)^{2}}{n}}+\sqrt{(n-1)\left(\sum_{i=1}^{n} d_{i}^{\sim k}-\frac{\sum_{i=1}^{n}\left(d_{i}^{\sim k}\right)^{2}}{n}\right)}
$$

Specially, if we get $\mathrm{k}=1$, Theorem 2.10 will turn (3).

3. BOUNDS FOR THE LAPLACIAN ENERGY OF GRAPHS USING 2-ADJACENCY

Let G be a simple connected graph. We redefined adjacency for any two vertices i and j. And then we called this vertices as 2 -adjacency. If this vertices are 2 -adjacency then denoted by $i \sim_{2} j$.

In this study, we defined 2-adjacency Laplacian matrix and denoted by $L^{\sim 2}(G)$. We found an upper bound for the energy of $L^{\sim}(G)$. Then we expanded to k-adjacency of two vertices and redefined the k-adjacency Laplacian matrix and obtained a new bound for the 2adjacency Laplacian energy of a graph.

Given a simple, connected graph G with n vertices, its 2-adjacency Laplacian matrix $L^{\sim 2}(G)=\left(l_{i j}^{\sim}\right)_{n \times n}$ defined as:

$$
\left(l_{i j}^{\sim}\right)=\left\{\begin{array}{ccc}
d_{i}^{\sim 2} & ; & i=j \\
-1 & ; & i \sim_{2} j \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

where $d_{i}^{\sim}{ }^{2}$ is 2-degree of the vertex i.
Because the 2-adjacency Laplacian matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$
0=\mu_{n}^{\sim}{ }^{2} \leq \cdots \leq \mu_{2}^{\sim}{ }^{2} \leq \mu_{1}^{\sim} .
$$

$\mu_{1}^{\sim 2}$ denotes the largest eigenvalue of $L^{\sim 2}(G)$. Also, every row sum and column sum of $L^{\sim 2}$ is zero. There are equality

$$
L^{\sim 2}(G)=D^{\sim 2}(G)-A^{\sim 2}(G)
$$

for 2-adjacency Laplacian matrix.

Definition 3.1 The 2-adjacency Laplacian energy of the graph G is defined as

$$
L E^{\sim 2}(G)=\sum_{i=1}^{n}\left|\gamma_{i}^{\sim 2}\right|=\sum_{i=1}^{n}\left|\mu_{i}^{\sim 2}-\frac{2 m}{n}\right|
$$

Theorem 3.2. If $2 m \geq n$ and G is a graph on n vertices with m edges, then

$$
L E^{\sim 2}(G)<\frac{2 m}{n}+\sqrt{(n-1)\left[2 M^{\sim 2}-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

where $M^{\sim 2}=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}^{\sim 2}-\frac{2 m}{n}\right)^{2}$.

Proof: We first introduce the auxiliary "eigenvalues" $\gamma_{i}^{\sim}, i=1,2, \ldots, n$, defined via

$$
\gamma_{i}^{\sim}{ }^{2}=\mu_{i}^{\sim}-\frac{2 m}{n} .
$$

The 2-adjacency Laplacian eigenvalues satisfy the conditions

$$
\sum_{i=1}^{n} \gamma_{i}^{\sim 2}=0 ; \sum_{i=1}^{n}\left(\gamma_{i}^{\sim 2}\right)^{2}=2 M^{\sim 2}
$$

where

$$
M^{\sim 2}=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}^{\sim 2}-\frac{2 m}{n}\right)^{2}
$$

with d_{i}^{\sim} denoting the 2-degree of the i-th vertex of G.

$$
\text { Since } \sum_{i=1}^{n}\left(\gamma_{i}^{\sim 2}\right)^{2}=2 M^{\sim 2} \text {, we have } \sum_{i=2}^{n}\left(\gamma_{i}^{\sim 2}\right)^{2}=2 M^{\sim 2}-\gamma_{1}^{\sim 2} .
$$

Using this together with the Cauchy-Schwartz inequality, we obtain the inequality

$$
\sum_{i=2}^{n}\left|\gamma_{i}^{\sim 2}\right|=\sqrt{(n-1) \sum_{i=2}^{n}\left(\gamma_{i}^{\sim 2}\right)^{2}}=\sqrt{(n-1)\left[2 M^{\sim 2}-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

Hence

$$
L E^{\sim 2}(G) \leq \gamma_{1}^{\sim 2}+\sqrt{(n-1)\left[2 M^{\sim 2}-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

Since $\gamma_{1}^{\sim 2} \geq \frac{2 m}{n}$, it is obtained

$$
L E^{\sim 2}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 M^{\sim 2}-\left(\frac{2 m}{n}\right)^{2}\right]} .
$$

Given a simple, connected graph G with n vertices, its 2-adjacency self-Laplacian matrix $L^{\approx}(G)=\left(l_{i j}^{\approx}\right)_{n \times n}$ defined as:

$$
\left(l_{i j}^{\widetilde{j}}\right)=\left\{\begin{array}{ccc}
d_{i}^{\sim 2} & ; & i=j \\
-2 & ; & i \sim_{2} j \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

where d_{i}^{\sim} is 2-degree of the vertex i.
Because the 2-adjacency self-Laplacian matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$
0=\mu_{n}^{\widetilde{n}} \leq \cdots \leq \mu_{\tilde{2}}^{\tilde{2}} \leq \mu_{1}^{\widetilde{1}} .
$$

$\mu_{1} \approx$ denotes the largest eigenvalue of $L^{\approx}(G)$. There are equality

$$
L^{\approx}(G)=D^{\sim 2}(G)-A^{\approx}(G)
$$

for 2-adjacency self-Laplacian matrix.

Definition 3.3. The 2-adjacency self-Laplacian energy of the graph G is defined as

$$
L E^{\approx}(G)=\sum_{i=1}^{n}\left|\gamma_{i} \tilde{i}\right|=\sum_{i=1}^{n}\left|\mu_{i}^{\approx}-\frac{2 m}{n}\right|
$$

Theorem 3.4. If $2 m \geq n$ and G is a graph on n vertices with m edges, then

$$
L E^{\approx}(G)>\frac{2 m}{n}+\sqrt{(n-1)\left[2 M \approx-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

where $M^{\approx}=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}^{\sim}-\frac{2 m}{n}\right)^{2}$.

Conjecture 3.5. Let G be a simple, connected graph. Then

$$
L E(G) \leq L E^{\sim 2}(G) \leq L E^{\approx}(G)
$$

When we generalize for k-adjacency to find bound, we obtain following result.

Corollary 3.6 If $2 m \geq n$ and G is a graph on n vertices with m edges, then

$$
L E^{\sim k}(G)>\frac{2 m}{n}+\sqrt{(n-1)\left[2 M^{\sim k}-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

where $M^{\sim k}=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}^{\sim k}-\frac{2 m}{n}\right)^{2}$.
Specially, if we get $\mathrm{k}=1$, Corollary 3.6 will turn (5).

REFERENCES

[1] Anderson, W.N., Morley, T.D., Linear Multilinear Algebra, 18(2), 141, 1985.
[2] Başdaş Nurkahlı, S., Büyükköse, Ş., Bounds for the Laplacian eigenvalue of graphs using 2-adjacency, Gazi University Master'Thesis, 2015.
[3] Berman, A., Zhang, X.D., J.Combin.Theory Ser.B., 83, 233, 2001.
[4] Collatz, L., Sinogowitz, U., Abh. Math. Sem. Univ. Hamburg, 21, 63, 1957.
[5] Das, K.C., Kumar, P., Discrete Mathematics, 281, 149, 2004.
[6] Koolen, J.H., Moulton, V., Adv. Appl. Math., 26, 47, 2001.
[7] Koolen, J.H., Moulton, V., Gutman, I., Chem. Phys. Lett., 320, 213, 2000.
[8] Li, J.S., Zhang, X.D., Linear Algebra and Application, 265, 93, 1997.
[9] Liu, H., Lu, M., Tian, F., Journal of Mathematical Chemistry, 41(1), 45, 2007.
[10] McClelland, B.J., J. Chem. Phys., 54, 640, 1971.
[11] Merris, R., Linear Algebra, 285(1-3), 33, 1998.
[12] Ocak, N.G., Büyükköse, Ş., Bounds for the eigenvalue of graphs using 2-adjacency, Gazi University Master'Thesis, 2015.
[13] Zhou, B., MATCH Commun. Math. Comput. Chem., 51, 111, 2004.
[14] Zhou, B., Australasian J. Combin., 22, 301, 2000.
[15] Zhou, B., Gutman, I., Linear Algebra and its Applications, 414, 29, 2006.

[^0]: ${ }^{1}$ Gazi University, Faculty of Sciences, Department of Mathematics, 06500 Ankara, Turkey. E-mail: sbuyukkose@gazi.edu.tr; semiha.basdas@gazi.edu.tr ; nursah.mutlu@gazi.edu.tr

