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Abstract. Fractional calculus is of vital importance and its significance is increased a 

lot since last many years. In this  article, fractional  derivatives  in Caputo’s logic is used  to  

construct  exact  solutions  for  three-dimensional Kudryashov–Sinelshchikov (KS) equation 

of fractional order, which describes the convey of nonlinear waves in a bubbly liquid. A 

comprehensive fractional complex transform is appropriately used to renovate this equation 

to ordinary differential equation which afterward resulted into number of exact solutions via 

Exp function method. The efficiency of under study method is checked by computational work 

and graphical representation. We develop the corresponding solutions containing the 

periodic, solitary wave solutions for 0  , and kink wave solutions for 0  . Effects of   

on the dilation factor, steepness and velocity of the kink wave solutions are discussed. With 

the increasing magnitude of  , the dilation factor and steepness of the kink wave solutions 

increase, while the velocity of the kink wave solutions first decreases and then increases.  

Keywords: Bubbly liquid, Kudryashov–Sinelshchikov equation, fractional calculus, 

solitons.   

 

 

1. INTRODUCTION  

 

 

The  class  of  fractional  calculus  is  one  of  the  most expedient classes  of  

fractional  differential  equation  which  viewed  as generalized  differential  equations  [1].  In  

the  intellect  that, much  of  the  theory  and,  hence,  applications  of   differential equation  

can  be  extensive smoothly  to  fractional  differential equations   with  the  same  taste  and  

character  of  the  empire  of differential equation. The seeds of fractional  calculus  (that  is,  

the  theory  of  integrals  and derivatives of any  arbitrary real or complex order) were planted 

over  300  years  ago.  Since then, many researchers have contributed to this field. Freshly, it 

has twisted out those differential equations involving derivatives of non-integer [2].  For  

example,  the  nonlinear  oscillation  of  earthquakes can be  modeled  with  fractional 

derivatives  [3].  There  has  been some  crack  to  solve linear problems with multiple 

fractional derivatives  (the  so -called  multi-term  equations)  [3, 4].  Not much  work  has  

been  done  on  nonlinear problems and only a few  numerical  schemes  have  been  proposed  

for  solving nonlinear  fractional  differential  equations. More recently, applications have 

included classes of nonlinear equation with multi-order fractional derivatives. We  apply  a 
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generalized  fractional  complex  transform [5-9]  to  convert  fractional order differential  

equation  to   ordinary   differential equation. Lastly, we obtain exact solutions for it by using 

a narrative practice [10, 11] called exp-function method, to obtain generalized solitary 

solutions and periodic solutions. Mohyud-Din [12-15] extended the same for nonlinear 

physical problems plus higher-order BVPs; Oziz [16] tried this novel approach for Fisher’s 

equation; Wu et. al. [17, 18] for the extension of solitary, periodic and compacton-like 

solutions; Yusufoglu [19] for MBBN equations, Zhang [20] for high-dimensional nonlinear 

evolutions; Zhu [21, 22] for the Hybrid-Lattice system and discrete m KdV lattice; 

Kudryashov [23] for exact soliton solutions of the generalized evolution equation of wave 

dynamics; Momani [24] for an explicit and numerical solutions of the fractional KdV 

equation; It is to be highlighted that Ebaid [25] proved that  c d  and p q  are the only 

relations that can be obtained by applying exp-function method to any nonlinear ordinary 

differential equation. Mainly scientific problems and phenomena in different fields of 

sciences and engineering occur nonlinearly. This method has been effectively and accurately 

shown to solve a large class of nonlinear problems. The solution procedure of this method, 

with the aid of Maple, is of sheer simplicity and this method can easily extended to other 

kinds of nonlinear evolution equations. In this research, we use the Exp-function method next 

to with generalized fractional complex transform to obtain new solitary wave solutions for the 

three-dimensional KS equation [26]. KS equation has been measured to illustrate the physical 

characteristics of nonlinear waves in a bubbly liquid[27,28], where   represent the density of 

the bubbly liquid, the scalar quantity   depends on the kinematic viscosity of the bubbly 

liquid x, y and z are the scaled space coordinates, t is the scaled time coordinate and the 

subscripts denote the partial derivatives. 

 

 

2. PRELIMINARIES AND NOTATION 

 

 

In this segment, we give some fundamental definitions and properties of the fractional 

calculus theory which will be used additional in this work. For the finite derivative in  ba,   

we define the following fractional integral and derivatives.  

 

Definition 1. A real function   ,0, xxf is said to be in the space ,, RC  If there 

exists a real number  p such that    ,1 xfxxf p where     ,01 Cxf  and it is said to be 

in the space  
mC  if ., NmCf m    

 

 Definition 2. The Riemann-Liouville fractional integral operator of order 0 of a 

function ,1,  Cf is defined as 

 

 
).()(,0,0,)()(

1
)( 0

0

1 xfxJxdttftxxJ

x




 
 




           (1) 

 

Some properties of the operator aJ  are discussed in the following 

 

For 0,,,1,  Cf and 1   
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The Riemann--Liouville derivative has convinced disadvantages when trying to model 

real-world phenomena with fractional differential equations. Therefore, we shall introduce a 

modified fractional differential operator suggested by M. Caputo in his struggle on the theory 

of viscoelasticity [2].  

 

Definition 3. For m to be the smallest integer that exceeds,  the Caputo time 

fractional derivative operator of order 0 and defined as 
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3. CHAIN RULE FOR FRACTIONAL CALCULUS AND FRACTIONAL COMPLEX 

TRANSFORM 
 

 

In [3-6], the authors used the following chain rule 








t

s

s

u

t

u













to convert a 

fractional differential equation with Jumarie's modification of Riemann-Liouville derivative 

into its classical differential partner. In [8], the authors showed that this chain rule is invalid 

and show following relation [8]. 

 




 a

tt

a

t D
d

du
uD '  and ,' 


 a

xx

a

x D
d

du
uD   

 

To determine s  we consider a special case as follows 
ts  and msu   

and we have  
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Thus we can calculate s as 
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Other fractional indexes  ''' ,, zyx   can settle on in similar way. Li  and  He [2-8] 

proposed  following  fractional  complex  transform  for converting  fractional  differential  

equations  into  ordinary differential  equations,  so  that  all  analytical  methods  for 

advanced calculus can be easily applied to fractional calculus.  

 

   
     

,
111

,,


















Mxtkx
utxu         (4) 

 

Where ,k  and M  are constants.   

 

 

4. EXP-FUNCTION TECHNIQUE [29-32] 

 

 

We consider the general nonlinear fractional partial differential equation of the type 

 

           ,0,,,,,,,,  uDuDuDuuuuP xxxtxxxt

           .10                                         (5) 

 

Where uDuDuD xxxt

 ,,  
 
are the modified Riemann-Liouville derivative of u  w.r.t. xxxt ,,  

correspondingly.  

Using a transformation [4] nonlinear ordinary differential equation in the general form 

is 

     0,,,,  F                               (6) 

 

Where prime represents differentiation w.r.t  

 Permitting to Exp-function method, we take up that the solitary wave solutions can be 

articulated in the subsequent procedure  
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 In last equation dc,  and qp,  are the positive integers and need to be calculated, 

ia  and jb  are constants. Equation (10) can be expressed in the subsequent corresponding way  
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 The outcome of equivalent formulation is an imperative and vital analytic 

solutions of the governing differential equation. Calculating values by using [25], finally 

results in  

 

dqcp  ,                                                                                                     (9) 
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5. SOLUTION PROCEDURE  
 

 

Consider the following Kudryashov–Sinelshchikov (KS) equation of fraction order.  

 

    0
2

1
 zzyyxxxxxxxt uuuuuuuD                    (10) 

 

Using (4) equation (10) can be converted to an ordinary differential equation  

 

  ,0
2

1 '''''''''''2''  uuuucu                      (11)  

 

Where the prime denotes the differentiation with respect to . The solution of the equation 

(11) can be expressed in the form, equation (8). To determine the value of  and qp, , by 

using [25], we have 
 

                      (12) 

 

Case I. We can freely choose the values of c  and d , but we will illustrate that the final 

solution does not strongly depend upon the choice of values of c  and d . For simplicity, we 

set  

1 cp  and 1 dq   
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Substituting equation (13) into equation (11), we have 

 

  0
1 4

4
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3
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
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Where  4101 ee bbbA
 

 and ic  are the constants acquired by Maple 17. Associating 

the coefficients of e
n

 equal to zero, we gain     

 

 0,0,0,0,0,0,0,0,0 432101234   ccccccccc      (15) 

 

 The solution set placate the given equation (10) are given below 

 

1
st
 Solution set 

 

    11011111101111 ,0,,10.24,0,10.24 bbbbbbbbaabbba     

 

We, therefore, find the subsequent generalized solitary solution of equation (10)  

 



dc,

., dqcp 

 ,u x t
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t
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25.,0  
                             

75.,0  
 

                                                     
25.,0  

                     
75.,0  

 

                                                     
25.,0  

                     
75.,0  

 
 

2
nd

 Solution set 

 

  11001111000101111 ,,,2.,2.,2. bbbbbbbabbbabbba   

 

We, thus, observed the following generalized solitary solution of equation (10)   ,u x t
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(17)  

                                         

25.,0                                75.,0    

                                         

25.,0                                75.,0    

                                         

25.,0                        75.,0    
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3
rd

 Solution set 

 

  110011111000011 ,,,.,2.,2. bbbbbbbbabbbaba     

 

We, hence, get the generalized solitary solution of equation (10) 

 
       

)1(

10

)1(

1

1

111000

1

1 2.2.2.
,

a

t
yx

a

t
zyx

t
zyx

t
zyx

ebbeb

ebbbbbbeb
txu





























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


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 (18) 

 

                                         
25.,0                                75.,0    

                                         
25.,0                                75.,0    

                                         
25.,0                        75.,0    

 

 

 

 ,u x t
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4
th

 Solution set 

 

  11001111100001 ,,0,2.,2.,0 bbbbbbbbabbbaa     

 

Constructing the following soliton type solution of equation (10)  
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


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               (19) 

                                         
25.,0                                75.,0    

                                         
25.,0                                75.,0    

                                         
25.,0                        75.,0    

 

 

Case II.  By taking  and  then the solution, equation (10) becomes 

 ,u x t

2 cp 1 dq
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Solving in previous manner, we attain 

 

 ,,0,0,0,2.,,0,0, 2210122221101 bbbbbbbbaaaaa         

 

Hence we acquire the general solitary wave solution of equation (10)  
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    (21) 

                                         
25.,0                                75.,0    

                                         
25.,0                                75.,0    

                                         
25.,0                        75.,0    
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 In both cases, for different choices of , ,  and  we get the same soliton solutions 

which clearly illustrate that final solution does not strongly depends upon these parameters. 

 

 

6. CONCLUSION 

 

 

In this work periodic and kink wave solutions of nonlinear Kudryashov–Sinelshchikov 

(KS) equation of fractional order is obtained successfully by making use of Exp-function 

method. The steadfastness  of understudy method  is  wholly  sustained  by  the  computation 

work, the subsequent  results  and graphical  representations. It is perceived that Exp-function 

technique is much handy to affect and is very suitable for obtaining novel type solutions of 

many physical problems [33] of fractional orders. One important finding is that by using Exp-

fucntion method, we can conveniently obtain travelling wave solutions of different nonlinear 

problems whose solutions cannot be obtained by other classical techniques.  
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