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Abstract. Fractional calculus is of vital importance and its significance is increased a
lot since last many years. In this article, fractional derivatives in Caputo’s logic is used to
construct exact solutions for three-dimensional Kudryashov—Sinelshchikov (KS) equation
of fractional order, which describes the convey of nonlinear waves in a bubbly liquid. A
comprehensive fractional complex transform is appropriately used to renovate this equation
to ordinary differential equation which afterward resulted into number of exact solutions via
Exp function method. The efficiency of under study method is checked by computational work
and graphical representation. We develop the corresponding solutions containing the
periodic, solitary wave solutions for y =0, and kink wave solutions for y = 0. Effects of y

on the dilation factor, steepness and velocity of the kink wave solutions are discussed. With
the increasing magnitude of y, the dilation factor and steepness of the kink wave solutions

increase, while the velocity of the kink wave solutions first decreases and then increases.
Keywords: Bubbly liquid, Kudryashov-Sinelshchikov equation, fractional calculus,
solitons.

1. INTRODUCTION

The class of fractional calculus is one of the most expedient classes of
fractional differential equation which viewed as generalized differential equations [1]. In
the intellect that, much of the theory and, hence, applications of differential equation
can be extensive smoothly to fractional differential equations with the same taste and
character of the empire of differential equation. The seeds of fractional calculus (that is,
the theory of integrals and derivatives of any arbitrary real or complex order) were planted
over 300 years ago. Since then, many researchers have contributed to this field. Freshly, it
has twisted out those differential equations involving derivatives of non-integer [2]. For
example, the nonlinear oscillation of earthquakes can be modeled with fractional
derivatives [3]. There has been some crack to solve linear problems with multiple
fractional derivatives (the so -called multi-term equations) [3, 4]. Not much work has
been done on nonlinear problems and only a few numerical schemes have been proposed
for solving nonlinear fractional differential equations. More recently, applications have
included classes of nonlinear equation with multi-order fractional derivatives. We apply a
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generalized fractional complex transform [5-9] to convert fractional order differential
equation to ordinary differential equation. Lastly, we obtain exact solutions for it by using
a narrative practice [10, 11] called exp-function method, to obtain generalized solitary
solutions and periodic solutions. Mohyud-Din [12-15] extended the same for nonlinear
physical problems plus higher-order BVPs; Oziz [16] tried this novel approach for Fisher’s
equation; Wu et. al. [17, 18] for the extension of solitary, periodic and compacton-like
solutions; Yusufoglu [19] for MBBN equations, Zhang [20] for high-dimensional nonlinear
evolutions; Zhu [21, 22] for the Hybrid-Lattice system and discrete m KdV lattice;
Kudryashov [23] for exact soliton solutions of the generalized evolution equation of wave
dynamics; Momani [24] for an explicit and numerical solutions of the fractional KdV
equation; It is to be highlighted that Ebaid [25] proved that c¢=d and p=q are the only
relations that can be obtained by applying exp-function method to any nonlinear ordinary
differential equation. Mainly scientific problems and phenomena in different fields of
sciences and engineering occur nonlinearly. This method has been effectively and accurately
shown to solve a large class of nonlinear problems. The solution procedure of this method,
with the aid of Maple, is of sheer simplicity and this method can easily extended to other
kinds of nonlinear evolution equations. In this research, we use the Exp-function method next
to with generalized fractional complex transform to obtain new solitary wave solutions for the
three-dimensional KS equation [26]. KS equation has been measured to illustrate the physical
characteristics of nonlinear waves in a bubbly liquid[27,28], where y represent the density of

the bubbly liquid, the scalar quantity y depends on the kinematic viscosity of the bubbly

liquid x, y and z are the scaled space coordinates, t is the scaled time coordinate and the
subscripts denote the partial derivatives.

2. PRELIMINARIES AND NOTATION

In this segment, we give some fundamental definitions and properties of the fractional
calculus theory which will be used additional in this work. For the finite derivative in [a,b]
we define the following fractional integral and derivatives.

Definition 1. A real function f(x), x>0, is said to be in the space Cu, 1 € R, If there
exists a real number (p > z)such that f(x)=x" f,(x), where f,(x)=C(0,%0) and it is said to be
inthe space CJlu if f" eCu,meN.

Definition 2. The Riemann-Liouville fractional integral operator of order « >00f a
function f € Cu, £ > -1, is defined as

Some properties of the operator J* are discussed in the following

(x—t)“f (O)dt, @ > 0,x > 0,3°(x) = f (x). 1)

O ey <

Forf eCu,u>-1,,a,f>0andy >-1

WWW.josa.ro Physics Section



Some new exact solution of ... Kamran Ayub et al. 185

J I E(x) =3B f(X),

J*IBF(x) =380 f(x), (2
Jex” =F(j/—+1)xa+7_
Mo +y+1)

The Riemann--Liouville derivative has convinced disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operator suggested by M. Caputo in his struggle on the theory
of viscoelasticity [2].

Definition 3. For mto be the smallest integer that exceeds, «the Caputo time
fractional derivative operator of order « >0and defined as

m-a-1

. Jox-n  f@dt-1<<mmenN
0

i f (9 = et - T(m-—a) ®

a
o7 u(x,t) a=m
atll

3. CHAIN RULE FOR FRACTIONAL CALCULUS AND FRACTIONAL COMPLEX
TRANSFORM

d°u _oud’s
ot*  os ot”
fractional differential equation with Jumarie's modification of Riemann-Liouville derivative
into its classical differential partner. In [8], the authors showed that this chain rule is invalid
and show following relation [8].

In [3-6], the authors used the following chain rule

to convert a

Diu=o, du Din and Diu=o, du D7,
dz dr

To determine o, we consider a special case as follows
s=t“and u=s"
and we have
o‘u_T(+ma)k™ ™  ou
ar F(1+ mao —a) - oS

Thus we can calculate o as

r(l+ma)
Oy=———— .
P Ilvrma-a)
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Other fractional indexes (a'x,o'y,a'z) can settle on in similar way. Li and He [2-8]

proposed following fractional complex transform for converting fractional differential
equations into ordinary differential equations, so that all analytical methods for
advanced calculus can be easily applied to fractional calculus.

kx” wt? Mx”

(+4) T+a) I+y) (4)

u(xt)=uln)n =

Where k,w and M are constants.

4. EXP-FUNCTION TECHNIQUE [29-32]

We consider the general nonlinear fractional partial differential equation of the type

P(u,ut,ux,uxx,...,Df‘U.D;"u,Dfxu,...)zo, O<a<l (5)

Where D/u,D,u,D;u are the modified Riemann-Liouville derivative of u w.r.t. t,x,xx

correspondingly.
Using a transformation [4] nonlinear ordinary differential equation in the general form
is

F(g.4.4".¢4"...)=0 (6)

Where prime represents differentiation w.r.t 77

Permitting to Exp-function method, we take up that the solitary wave solutions can be
articulated in the subsequent procedure

Z a g’
)= =—r
2.be”

i—»p

(7)

In last equation c,d and p,q are the positive integers and need to be calculated,
a and b j are constants. Equation (10) can be expressed in the subsequent corresponding way

cn —dn
o€ rrage

#n)=

- p7 -7
b,e" +--+a,e

(8)

The outcome of equivalent formulation is an imperative and vital analytic
solutions of the governing differential equation. Calculating values by using [25], finally
results in

p=c,q=d )
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5. SOLUTION PROCEDURE

Consider the following Kudryashov-Sinelshchikov (KS) equation of fraction order.

(D{”u+uux+uw—;guxx)x+%(uw+uu):0 (20)

Using (4) equation (10) can be converted to an ordinary differential equation
cu’ +£(u2)" +Uu —qu +u =0
2 ’ (11)

Where the prime denotes the differentiation with respect to . The solution of the equation
(11) can be expressed in the form, equation (8). To determine the value of c,d and p,q, by
using [25], we have

p=c,g=d. (12)

Case |. We can freely choose the values of ¢ andd, but we will illustrate that the final

solution does not strongly depend upon the choice of values of ¢ andd . For simplicity, we
set

p=c=landg=d=1

ap +a,+a @’
u(p)= 28 TR T (13)
bg +b,+b, @
Substituting equation (13) into equation (11), we have
% [c e+’ +c, "+ @'+, +c,e " +c, "+c,@ THc,e " ] =0 (14)

Where A= (bl @' +b, +b_, e’")4 and C; are the constants acquired by Maple 17. Associating

the coefficients of e"" equal to zero, we gain

c,=0,c,=0,c,=0,c, =0,c,=0,c,=0,c, =0,c, =0,c_, =0] (15)

The solution set placate the given equation (10) are given below

1% Solution set

{a,=4b,y—2(c.wp,—100,,a,=0,a =4b, y — 2(c.w)o, —10b,,b, =b,b, =0,b, =D, }

We, therefore, find the subsequent generalized solitary solution u(x,t) of equation (10)
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,X+La foa
() oz =2c) 100 ) T+ (2o, —0b T o

—X+

b_le [(l+a) + ble X_F(l+a)

: . 3o
812 x R 212 o e
-~ SIS o Pe PP O O 0 0 0 e
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813 213
B13%: 213%
B 14 214
8142: 2142
o -20 i -20
25
04 s 0.4
o 0 0
t o x t X
N
x>0,a=.25
8126 w5 <
8128 RS
813 SRR
8132:
8134
)
813 [
8138
R 14
§142:
0 -10
0.4
0
1 4 i

/0.0 =25
2" Solution set

{a—l =b,y—oc.ab, —2b,,a, =by,y —c.cb, —2b;,a =(Z_O--w_2))1’b—1 =b,,b, =by,b, =b1}

We, thus, observed the following generalized solitary solution u (x,t) of equation (10)
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—X—y—-z+

(b—ll —o.wb - 2b—1)e

a

ra) 1 by —o.oby —2by +(y —o.0—2)be

a

x+y+z—m

u(x,t)=

5.32

5.32

K,
X

OO0,

'

YO
YOO,
SOOOO,

X
OO,

1907
19077
1907
190
190!
19081
19082:
19083

1o

x>0,a=.25

OO0
YOO

NoOOOSOO
NoOOOOC

19077-

19078-

9’
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—X—y-Z+

b.e

X+y+z

11067-
11068
106!

HOT

1071
1072
1073
11074

11067
11068
1106

HOT

1071
11072
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a

“T(+a)

(17)

Ili,':‘.;

=%,
04 Io
1 ’ X
4
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04
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3" Solution set
{a,=(y+o.w+2b,,a, =b,y+oc.ah, + 20,8 =b y+o.0b,b, =b b, =by,b =D}

We, hence, get the generalized solitary solution u (x,t) of equation (10)

a a

X+y+z————
@) 4 by +o.oby +2b, + (b y + o.b, +2b e TE)

—X-y-z+

(y+o.0+2)e

u(x,t)= — (18)
—X— _Z+F(l ) x+y+—l_(l )
+a +a
b .e +b, +be
1 0 1
2 ‘I‘I‘
=
90:( 2 1072 255
"
o4 107
19072
1106
1907
10
19068
11064
0 11062
i 10 [ 10
04 04
0 0
t x t X
ry=0,a=.25 7=0,a=.75
N
107 et e e
o7 :1074 Serstess
2R
077 1073 u,y,
1072 4
076 1071
076 107
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075 : 1106 J
11067
o <2 oK -10 o 10
<
=
04 04
0 0
t X 1 x
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> 107 IR
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04 0.4
0 0
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4™ Solution set
{a—l =0,3, =(b0;(—0'.60b0 _2b0)7a1 =by—oc.ab, —2b,b, =0,b; =by,b, =b1}

Constructing the following soliton type solution u (x,t) of equation (10)

a

X+y+2——
u(x’t): (bol_o_.a)bo - 2b0)+ (bll—O'.a)tzl — 2b1)e [(L+a)

x+y-¢—z—r(1 )
+a
b, +be
. ™
sx SRS
o SESELOL09:
SR 1072
:ﬁ&"’ -
532 1073
107
0 o tets'
4 ¢ :E:??‘-a
2 Y 2
04 04
0 0
& x 1 x
2 2
4 4
¥ >0,a=.25 7 >0,a=.75
o Pe s
5.32 R
SeTels:
osey 1072
,"(l)(-
ix;:
1073
5.3
1074
2R
o
! 4 -4
7 rr( s
04 04
0 0
1 ) X 1 ) X
4 4
720, =.25 xZ20,a=.75

Case Il. Bytaking p=c=2 and q=d =1 then the solution, equation (10) becomes
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a,p’+ap +a +a.p’
)= 28 TR E T T e (20)
b,e" +b @ +b,+b, e

Solving in previous manner, we attain
{w=0,a,=04a,=0,a =4a,,a, =c.0b, + yb, +2b,,b, =0,b, =0,b, =0,b, =b, },

Hence we acquire the general solitary wave solution of equation (10)

a 20t%
2X+2Yy+271———
X+2y+22 r(a)

)
u(x,t)= | 2E ) 1 (o.ab, + 2b, +2b, Je (21)

2X+2y+22— 2ot

b T'(1+a)
€
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In both cases, for different choices of c, p, d and g we get the same soliton solutions
which clearly illustrate that final solution does not strongly depends upon these parameters.

6. CONCLUSION

In this work periodic and kink wave solutions of nonlinear Kudryashov—Sinelshchikov
(KS) equation of fractional order is obtained successfully by making use of Exp-function
method. The steadfastness of understudy method is wholly sustained by the computation
work, the subsequent results and graphical representations. It is perceived that Exp-function
technique is much handy to affect and is very suitable for obtaining novel type solutions of
many physical problems [33] of fractional orders. One important finding is that by using Exp-
fucntion method, we can conveniently obtain travelling wave solutions of different nonlinear
problems whose solutions cannot be obtained by other classical techniques.
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