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Abstract. The aim of this paper is to present some applications of several new Young-

type inequalities given by Alzer, H., Fonseca, C. M. and Kovacec, A.,  for positive invertible 
operators on Hilbert spaces. Also will be presented an application of some refinements of 
Young's inequality given by Dragomir S. S., for positive definite matrices using their 
eigenvalues. 
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1. INTRODUCTION  
 
 

The famous Young's inequality, state that: 
 

𝑎𝜈𝑏1−ν < 𝜈 𝑎 + (1 − 𝜈)𝑏, 
 
when a and b are positive numbers, a≠b and ν  (0,1), see [20]. 

This inequality has many applications in various fields and there are a lot of 
interesting generalizations of this well-known inequality and its reverse, see for example  [1, 
6-13, 15, 16] and references therein. 

As in [1], we consider 𝐴𝜈(𝑎, 𝑏) = 𝜈 𝑎 + (1 − 𝜈)𝑏 and  𝐺𝜈(𝑎, 𝑏) = 𝑎𝜈𝑏1−ν. 
The following result, given in [10]  is a refinement of the left-hand side of a 

refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh and Manasrah, 
[15, 16]. 
 
Proposition 1. For all a, b > 0 we have 

3𝜈 �𝐴1
3

(𝑎, 𝑏) − 𝐺1
3

(𝑎, 𝑏)� ≤ 𝐴𝜈(𝑎, 𝑏) − 𝐺𝜈(𝑎, 𝑏) 

if  0 < 𝜈 ≤ 1
3
 ,  and  

3𝜈(1 − 𝜈) �𝐴2
3

(𝑎, 𝑏) − 𝐺2
3

(𝑎, 𝑏)� ≤ 𝐴𝜈(𝑎, 𝑏) − 𝐺𝜈(𝑎, 𝑏) 

if   1
3
≤ 𝜈 < 1. 

More recently, in [1] are given new results which extend many generalizations of 
Young's inequality given before. The below result, from [1] is a generalization of the left-
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hand side of a refinement of the inequality of Young proved in 2010 and 2011 by Kittaneh 
and Manasrah in [15] and [16], being a very important tool in the demonstration of our next 
theorems. 
 
Theorem 1. Let 𝜆, 𝜈 and τ be real numbers with 𝜆 ≥ 1 and 0 < 𝜈 < 𝜏 < 1. Then  
 

�
𝜈
𝜏
�
𝜆

<
𝐴𝜈(𝑎, 𝑏)𝜆 − 𝐺𝜈(𝑎, 𝑏)𝜆

𝐴𝜏(𝑎, 𝑏)𝜆 − 𝐺𝜏(𝑎, 𝑏)𝜆
< �

1 − 𝜈
1 − 𝜏�

𝜆

 

 
for all positive and distinct real numbers a and b.  

Moreover, both bounds are sharp. 
In  [7], related to Young's inequality, often appear the weighted arithmetic mean, 

geometric mean and harmonic mean defined by 𝐴𝜈(𝑎, 𝑏) = (1 − 𝜈) 𝑎 + 𝜈𝑏,   
𝐺𝜈(𝑎, 𝑏) = 𝑎1−𝜈𝑏𝜈  and 𝐻𝜈(𝑎, 𝑏) = 𝐴𝜈−1(𝑎−1, 𝑏−1) = [(1 − 𝜈) 𝑎−1 + 𝜈𝑏−1]−1, 

      It is necessary to recall, see [1], that for two positive definite matrices A, B, the  𝜇 -
weighted arithmetic and geometric mean are defined as  
 

𝐴𝛻𝜇𝐵 = (1 − 𝜇)𝐴 + 𝜇 𝐵  and 

𝐴♯𝜇𝐵 = 𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝜇
𝐴
1
2 

when 𝜇 ∈  [0,1].  If 𝜇 = 1
2
  then we write only   𝐴𝛻𝐵, 𝐴♯B. We denote the extension of 

  the  𝜇 -weighted geometric mean  by  𝐴♯𝜇𝐵 = 𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�
𝜇
𝐴
1
2 , when 𝜇 ≥ 0. 

It is known that for any two square matrices A, B,  A < B if  B-A is positive 
semidefinite. Also, A < B if  B-A is positive definite [1, 14]. 

The first matrix version of the Young inequality was proven for invertible matrices A  
in [17]. Recent improvement of the matrix Young inequality were given for example in [1, 11, 
15, 16]. 

We use the following generalization of Young's inequality given in [6], see inequality 
(5.8), in order to obtains the matrix analogues in section 2. 

For any a, b > 0 and 𝜇 ∈ [0,1]  we have: 
          

(1)                2 𝜈(1−𝜈)
𝜈2−𝜈+1

[𝐴(𝑎, 𝑏) − 𝐿(𝑎, 𝑏)] ≤ 𝐴𝜈(𝑎, 𝑏) − 𝐺𝜈(𝑎, 𝑏) ≤ 2[𝐴(𝑎, 𝑏) − 𝐿(𝑎, 𝑏)], 
 
where 𝐴𝜈(𝑎, 𝑏) = (1 − 𝜈) 𝑎 + 𝜈𝑏,  𝐺𝜈(𝑎, 𝑏) = 𝑎1−𝜈𝑏𝜈 ,  𝐴(𝑎, 𝑏) = 𝑎+𝑏

2
,   𝐺(𝑎, 𝑏) = √𝑎𝑏  

and  

𝐿(𝑎, 𝑏) =
𝑏 − 𝑎

log 𝑏 − log 𝑎
  . 

 
We also have to mention the following inequalities used in  [7]  in the proof of 

Theorem 4: 
       For any x > 0 we have, 
 

     (2)                       1 − 𝜈 + 𝜈𝑥 − 𝑥𝜈 ≤ � 𝜈(𝑥 − 1 − log 𝑥)
(1 − 𝜈)(𝑥 log 𝑥 − 𝑥 + 1) 

and  
 
     (3)                𝑥+1

2
− 𝑥𝜈+𝑥1−𝜈

2
≤ 1

2
 𝑚𝑖𝑛{𝜈, 1 − 𝜈}(𝑥 − 1) log 𝑥      
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for any  𝜈 ∈ [0,1]. 

As in [5], it is necessary to recall that for selfadjoint operators 𝐴,𝐵 ∈ 𝐵(𝐻) we write 
𝐴 ≤ 𝐵 (or 𝐵 ≥ 𝐴) if  < 𝐴𝑥, 𝑥 > ≤ < 𝐵𝑥, 𝑥 > for every vector𝑥 ∈ 𝐻. We will consider for 
beginning A as being a selfadjoint linear operator on a complex Hilbert space (H; < . , . >). 
The Gelfand map establishes a *- isometrically isomorphism Ф between the set  C(Sp(A))  of 
all  continuous functions defined on the  spectrum of A, denoted Sp(A), and the  C* - algebra  
C*(A) generated by A and the identity operator  1H on H as follows: For any 𝑓, 𝑓 ∈
C(Sp(A)) and for any ⍺,𝛽 ∈ ℂ we have 

 
(i)   Ф(⍺f+ 𝛽g) =  ⍺ Ф(f) + 𝛽 Ф (g); 
(ii)  Ф(fg) = Ф(f) Ф (g)  and  Ф (f)= Ф (𝑓∗); 
(iii)  || Ф(f)|| = ||f|| := 𝑠𝑢𝑝𝑡∈𝑆𝑝(𝐴) |f(t)|; 
(iv)  Ф(𝑓0)=1𝐻   and    Ф (𝑓1)=A, 

where 𝑓0(𝑡) = 1and  𝑓1(𝑡) = 𝑡   for   𝑡 ∈Sp (A). 
 
Using this notation, as in  [5] for example, we define f(A) := Ф (f) for all   𝑓 ∈

C(Sp(A)) and we call it the continuous functional calculus  for a selfadjoint operator A. 
It is known that if  A  is a selfadjoint operator and  f  is a real valued continuous 

function on Sp(A), then 𝑓(𝑡) ≥ 0  for any 𝑡 ∈ Sp(A)  implies that 𝑓(𝐴) ≥ 0  i.e. 𝑓(𝐴)  is a 
positive operator on H. 

In addition, if and  f  and  g  are real valued functions on  Sp(A)  then the following 
property holds: 𝑓(𝑡) ≥ 𝑔(𝑡)  for any 𝑡 ∈ 𝑆𝑝(𝐴)  implies that 𝑓(𝐴) ≥ 𝑔(𝐴)  in the operator 
order of  B(H).  

We consider  A, B  two positive operators on a complex Hilbert space (H, < . , . >) and 
the following notations for operators: 
 

𝐴𝛻𝜈𝐵 = (1 − 𝜈)𝐴 + 𝜈 𝐵,     𝜈 ∈ [0,1],   
 
the weighted operator arithmetic mean and  
 

𝐴𝛻𝜈𝐵 = 𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝜈
𝐴
1
2  ,    𝜈 ∈ [0,1], 

the weighted operator geometric mean. We denote the extension of  the weighted operator 

geometric mean by    𝐴♯𝜈𝐵 = 𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�
𝜈
𝐴
1
2  ,    𝜈 ≥ 0, see also [7].  

 
The aim of this paper is to present new inequalities for operators and matrices starting 

from new generalizations of Young's inequality. In Section 2 are presented a Young-type 
inequality for positive invertible operators on a complex Hilbert space (H, < . , . >)  in 
Theorem 2 and then, as a consequence, this inequality is given for the particular case  𝜆 = 𝑛 ∈
ℕ  in Proposition 2. In Section 3, Remark 1 is stated an extension of Theorem 3.2 from  [1]  
and then in Theorem 3 and Theorem 4 are given some matrix inequalities using the spectral 
decomposition and scalar inequalities formulated in [6, 7]. 
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2. THE YOUNG-TYPE INEQUALITIES OPERATORS  
 
 

The following inequalities operators will use the inequality from Theorem 1 given in 
previous section. 

 
Theorem 2. For any A, B  positive invertible operators on the Hilbert space  H we have 
 

�
𝜈
𝜏
�
𝜆
��𝐴−

1
2(𝜏𝐵 + (1 − 𝜏)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
�

< �𝐴−
1
2(𝜈𝐵 + (1 − 𝜈)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜈𝜆

< �
1 − 𝜈
1 − 𝜏�

𝜆

��𝐴−
1
2(𝜏𝐵 + (1 − 𝜏)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
� 

 
which can be also written, 
 

�
𝜈
𝜏
�
𝜆
��𝐴−

1
2(𝐴𝛻𝜏𝐵)𝐴−

1
2�

𝜆
− 𝐴−

1
2(𝐴♯𝜏𝐵)𝐴−

1
2� < �𝐴−

1
2(𝐴𝛻𝜈𝐵)𝐴−

1
2�

𝜆
− 𝐴−

1
2(𝐴♯𝜈𝐵)𝐴−

1
2

< �
1 − 𝜈
1 − 𝜏�

𝜆

��𝐴−
1
2(𝐴𝛻𝜏𝐵)𝐴−

1
2�

𝜆
− 𝐴−

1
2(𝐴♯𝜏𝐵)𝐴−

1
2� 

 
or 
 

�
𝜈
𝜏
�
𝜆

[𝐴♯𝜆(𝐴𝛻𝜏𝐵) − 𝐴♯𝜏𝜆𝐵] < 𝐴♯𝜏(𝐴𝛻𝜈𝐵) − 𝐴♯𝜈𝜆𝐵 < �
1 − 𝜈
1 − 𝜏�

𝜆
[𝐴♯𝜆(𝐴𝛻𝜏𝐵) − 𝐴♯𝜏𝜆𝐵], 

 
for any real numbers λ, ν  and τ  with 𝜆 ≥ 1  and   0 < 𝜈 < 𝜏 < 1. 
 
Proof: In Theorem 1 if we divide the inequality  
 

�
𝜈
𝜏
�
𝜆

<
𝐴𝜈(𝑎, 𝑏)𝜆 − 𝐺𝜈(𝑎, 𝑏)𝜆

𝐴𝜏(𝑎, 𝑏)𝜆 − 𝐺𝜏(𝑎, 𝑏)𝜆
< �

1 − 𝜈
1 − 𝜏�

𝜆

 

 
by  bλ we get the following: 
 

�
𝜈
𝜏
�
𝜆

<
�𝜈 𝑎𝑏 + (1 − 𝜈)�

𝜆
− �𝑎𝑏�

𝜈𝜆

�𝜏 𝑎𝑏 + (1 − 𝜏)�
𝜆
− �𝑎𝑏�

𝜏𝜆 < �
1 − 𝜈
1 − 𝜏�

𝜆

. 

 
Now we use the continuous functional calculus as in [7] and we have for an operator C 

> 0 that 

�
𝜈
𝜏
�
𝜆
�(𝜏𝐶 + (1 − 𝜏)1𝐻)𝜆 − 𝐶𝜏𝜆� < (𝜈𝐶 + (1 − 𝜈)1𝐻)𝜆 − 𝐶𝜈𝜆

< �
1 − 𝜈
1 − 𝜏�

𝜆

�(𝜏𝐶 + (1 − 𝜏)1𝐻)𝜆 − 𝐶𝜏𝜆�. 
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We take   𝐶 = 𝐴−
1
2𝐵𝐴−

1
2  and we have 

 

�
𝜈
𝜏
�
𝜆
��𝜏𝐴−

1
2𝐵𝐴−

1
2 + (1 − 𝜏)1𝐻�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
�

< �𝜈𝐴−
1
2𝐵𝐴−

1
2 + (1 − 𝜈)1𝐻�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜈𝜆

< �
1 − 𝜈
1 − 𝜏�

𝜆

��𝜏𝐴−
1
2𝐵𝐴−

1
2 + (1 − 𝜏)1𝐻�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
� 

or  

�
𝜈
𝜏
�
𝜆
��𝐴−

1
2(𝜏𝐵 + (1 − 𝜏)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
�

< �𝐴−
1
2(𝜈𝐵 + (1 − 𝜈)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜈𝜆

< �
1 − 𝜈
1 − 𝜏�

𝜆

��𝐴−
1
2(𝜏𝐵 + (1 − 𝜏)𝐴)𝐴−

1
2�

𝜆
− �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝜆
�. 

 
Now if we multiply both sides of previous inequality with  𝐴

1
2  we deduce last 

inequality of this theorem. 
 
Proposition 2. For 𝜆 = 𝑛 ∈ ℕ  and A, B positive invertible operators on  H we have: 
 

𝜈𝑛

𝜏𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝑘
𝐴
1
2 − 𝐴

1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝑛
𝐴
1
2�

< ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝑘
𝐴
1
2 − 𝐴

1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝜈𝑛
𝐴
1
2

<
(1 − 𝜈)𝑛

(1 − 𝜏)𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝑘
𝐴
1
2

− 𝐴
1
2 �𝐴−

1
2𝐵𝐴−

1
2�

𝜏𝑛
𝐴
1
2� 

or  
 

𝜈𝑛

𝜏𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐴♯𝑘𝐵 − 𝐴♯𝜏𝑛𝐵� < ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘𝐴♯𝑘𝐵 − 𝐴♯𝜈𝑛𝐵

<
(1 − 𝜈)𝑛

(1 − 𝜏)𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐴♯𝑘𝐵 − 𝐴♯𝜏𝑛𝐵� 

 
 
for any real numbers ν and τ with  0 < 𝜈 < 𝜏 < 1. 
 
Proof: We use the same method as in Theorem 2. 
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3. A MATRIX ANALOGUE OF A REFINEMENT OF YOUNG’S INEQUALITY 
 
  

As in [1], we consider 𝑀𝑛  the set of  𝑛 × 𝑛 square matrices. We denote by 𝜆1(𝐻) ≤
𝜆2(𝐻) … ≤ 𝜆𝑛(𝐻)  the eigenvalues of a Hermitian matrix H of order n, in increasing order.  

The scalar inequality from Lemma 1 and the Ostrowski's theorem, see [14]  allows us 
to state the following result: 
 
Theorem 3.  Let  𝜈 ∈ (0,1)  and  𝐴, 𝐵  be positive definite matrices. If  𝐴 ≤ 𝐵  then we have: 
 

𝐴𝛻𝜈𝐵 − 𝐴♯𝜈𝐵 ≤ 2 �𝐴𝛻𝐵 +
𝐵 − 𝐴

log 𝜆1(𝐴)
𝜆𝑛(𝐵)

�, 

or 
 

𝐴𝛻𝜈𝐵 − 𝐴♯𝜈𝐵 ≤ 2 �𝐴𝛻𝐵 −

𝜆1(𝐴)
𝜆𝑛(𝐵) − 1

log 𝜆1(𝐴)
𝜆𝑛(𝐵)

𝐵�. 

 
Proof: We take into account the Hermitian matrix   𝐶 = 𝐵−

1
2𝐴𝐵−

1
2   which satisfy the 

inequality  0 < 𝐶 ≤ 𝐼.  As in the proof of Theorem 3.4, see [1], there is a unitary matrix U  
such that for some  𝑐𝑖 we have  𝑈∗𝐶𝑈 = 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 𝐼 and thus by Ostrowski's 
theorem we get   𝜆1(𝐴)

𝜆𝑛(𝐵)
≤ 𝑐𝑖 ≤ 1. 

If we write the inequality (1) when  0 < 𝑏 ≤ 1  for these positive real numbers  
𝑐𝑖 , 𝑖 = 1,𝑛�����  and replace b  by 𝑐𝑖  and a  by 1 then we have: 

 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 2 �
𝑐𝑖 + 1

2
−
𝑐𝑖 − 1
log 𝑐𝑖

� , 𝑖 = 1,𝑛�����, 

or  
 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 2 �
𝑐𝑖 + 1

2
+

1 − 𝑐𝑖
log 𝑐𝑖

� , 𝑖 = 1,𝑛�����, 

 
when 𝑐𝑖 ≤ 1. We consider the function  𝑓(𝑡) = 1

log(𝑡)
, 𝑡 ∈ (0,1)  defined on a compact 

subinterval of (0,1), function which attains its maximum at its left endpoint and we get: 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 2 �
𝑐𝑖 + 1

2
+

1 − 𝑐𝑖

log 𝜆1(𝐴)
𝜆𝑛(𝐵)

� , 𝑖 = 1,𝑛�����, 

when 𝑐𝑖 ≤ 1,  or by calculus, the diagonal matrix inequality, 
 

𝐼𝛻𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼♯𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 

                                             ≤ 2 �𝐼𝛻𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) + 1

log𝜆1(𝐴)
𝜆𝑛(𝐵)

�𝐼 − 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛)��.  
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Then applying the conjugation  ⦁ → 𝐵
1
2𝑈⦁𝑈∗𝐵

1
2  we get the desired inequality. 

For the second inequality we proceed like before, but in inequality 
 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 2 �
𝑐𝑖 + 1

2
−
𝑐𝑖 − 1
log 𝑐𝑖

� , 𝑖 = 1,𝑛�����, 

 

we replace  − 𝑐𝑖−1
log 𝑐𝑖

  by  −
𝜆1(𝐴)
𝜆𝑛(𝐵)−1

log𝜆1(𝐴)
𝜆𝑛(𝐵)

 , because the function  𝑓(𝑡) = − 𝑡−1
log 𝑡

 , 𝑡 ∈ (0,1)  attains its 

maximum at its left endpoint on a compact subinterval of  (0,1). 
Then by calculus, the diagonal matrix inequality, 
 

 𝐼𝛻𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼♯𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 2 �𝐼𝛻𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) −
𝜆1(𝐴)
𝜆𝑛(𝐵)−1

log𝜆1(𝐴)
𝜆𝑛(𝐵)

𝐼� . 

 
Then applying the conjugation   ⦁ → 𝐵

1
2𝑈⦁𝑈∗𝐵

1
2  we get  the desired inequality. 

The following result takes place if we put instead of  𝜆 = 1  in inequality (2.1), 
Theorem 2.1 from  [1],  𝜆 = 𝑛 ∈ ℕ∗ . 
 
Remark 1. Let  ν and τ  be real numbers. If  A, B are positive definite matrices, then 
 

𝜈𝑛

𝜏𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐵♯𝑘𝐴 − 𝐵♯𝜏𝑛𝐴� < ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘𝐵♯𝑘𝐴 − 𝐵♯𝜈𝑛𝐴

<
(1 − 𝜈)𝑛

(1 − 𝜏)𝑛 �
��

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝐵♯𝑘𝐴 − 𝐵♯𝜏𝑛𝐴� 

 
for any real numbers  ν  and  τ  with  0 < 𝜈 < 𝜏 < 1. 
 
Proof: We use the same method as in [1], starting from inequality  
 

�
𝜈
𝜏
�
𝑛
���

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝑎𝑛−𝑘𝑏𝑘 − 𝑎𝑛(1−𝜏)𝑏𝑛𝜏�

< ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘𝑎𝑛−𝑘𝑏𝑘 − 𝑎𝑛(1−𝜈)𝑏𝑛𝜈

< �
1 − 𝜈
1 − 𝜏�

𝑛

���
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝑎𝑛−𝑘𝑏𝑘 − 𝑎𝑛(1−𝜏)𝑏𝑛𝜏� , 

 
 
here we put a = 1 and  𝑏 = 𝑙𝑖 > 0,  see the proof of  Lemma 3.1. Now, using the spectral 
theorem for Hermitian matrices,  [14]  Theorem 2.5.6, there is a unitary matrix and a real 
diagonal matrix  ∧= 𝑑𝑖𝑎𝑔(𝑙1, … , 𝑙𝑛)  so that 𝑄 = 𝑈∗ ∧ 𝑈.  Then we have the following matrix 
inequality for diagonal matrices 
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�
𝜈
𝜏
�
𝑛
���

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘 ∧𝑘−∧𝑛𝜏� < ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘 ∧𝑘−∧𝑛𝜈

< �
1 − 𝜈
1 − 𝜏�

𝑛

���
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘 ∧𝑘−∧𝑛𝜏� , 

 
which can be read, as in  [1], either as entrywise companion or in the positive semidefinite 
ordering. 

Applying the *-conjugation  ⦁ → 𝑈∗⦁𝑈    we get  
 

�
𝜈
𝜏
�
𝑛
���

𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝑄𝑘 − 𝑄𝑛𝜏� < ��
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜈)𝑛−𝑘𝜈𝑘𝑄𝑘 − 𝑄𝑛𝜈

< �
1 − 𝜈
1 − 𝜏�

𝑛

���
𝑛
𝑘
�

𝑛

𝑘=0

(1 − 𝜏)𝑛−𝑘𝜏𝑘𝑄𝑘 − 𝑄𝑛𝜏� . 

 
But  𝐴 > 0 implies  𝐴−

1
2   and  𝐴

1
2   are Hermitian positive definite and then by [14], 

page 494,  𝑄 = 𝐴−
1
2𝐵𝐴

1
2    is a positive definite *- conjugation of B. Applying here the *-

conjugation  ⦁ → 𝐴
1
2⦁𝐴

1
2  to last inequality we get the desired inequality. 

 
Theorem 4. Let  𝜈 ∈ (0,1)  and A, B  be positive definite matrices. If  𝐴 ≤ 𝐵  then we have: 
 

𝐴𝛻𝜈𝐵 − 𝐴♯𝜈𝐵 ≤ 𝜈 �𝐴 − 𝐵 − 𝐵 log
𝜆1(𝐴)
𝜆𝑛(𝐵)�, 

 
or 
 

𝐴𝛻𝜈𝐵 − 𝐴♯𝜈𝐵 ≤ 𝜈 �
𝜆1(𝐴)
𝜆𝑛(𝐵) − 1 − log

𝜆1(𝐴)
𝜆𝑛(𝐵)� 𝐵, 

 
or  

𝐴𝛻𝜈𝐵 − 𝐴♯𝜈𝐵 ≤ (1 − 𝜈) �
𝜆1(𝐴)
𝜆𝑛(𝐵) log

𝜆1(𝐴)
𝜆𝑛(𝐵) −

𝜆1(𝐴)
𝜆𝑛(𝐵) + 1� 𝐵. 

 
Moreover, the following inequality takes place: 

 

𝐴𝛻𝜈𝐵 −
1
2

(𝐴♯𝜈𝐵 + 𝐴♯1−𝜈𝐵) ≤
1
2
𝑚𝑖𝑛{𝜈, 1 − 𝜈}�

𝜆1(𝐴)
𝜆𝑛(𝐵) − 1��log

𝜆1(𝐴)
𝜆𝑛(𝐵)�𝐵. 

 
Proof: We take into account the Hermitian matrix  𝐶 = 𝐵−

1
2𝐴𝐵−

1
2   which satisfy the 

inequality  0 < 𝐶 ≤ 𝐼. As in the proof of Theorem 3.4, see  [1], there is a unitary matrix U  
such that for some 𝑐𝑖 we have  𝑈∗𝐶𝑈 = 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 𝐼  and thus by Ostrowski's 
theorem we get  𝜆1(𝐴)

𝜆𝑛(𝐵)
≤ 𝑐𝑖 ≤ 1. 

If we write the inequalities (2) and (3) when 0 < 𝑥 ≤ 1  for these positive real 
numbers  𝑐𝑖 , 𝑖 = 1,𝑛�����  then we have: 
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1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 𝜈(𝑐𝑖 − 1 − log 𝑐𝑖), 𝑖 = 1,𝑛�����, 

 
or  
 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ (1 − 𝜈)[𝑐𝑖 log 𝑐𝑖 − 𝑐𝑖 + 1], 𝑖 = 1,𝑛�����, 
 
Moreover, we also have: 
 

𝑐𝑖 + 1
2

−
𝑐𝑖𝜈 + 𝑐𝑖1−𝜈

2
≤

1
2
𝑚𝑖𝑛{𝜈, 1 − 𝜈}(𝑐𝑖 − 1) log 𝑐𝑖 , 𝑖 = 1,𝑛�����. 

 
We consider the functions 𝑓(𝑥) = − log 𝑥,   𝑔(𝑥) = 𝑥 − 1 − log 𝑥,  ℎ(𝑥) = 𝑥 log 𝑥 −

𝑥 + 1   and  𝑡(𝑥) = (𝑥 − 1) log 𝑥 ,   𝑥 ∈ (0,1)  defined on a compact subinterval of (0,1), 
function which attains its maximum at its left endpoint and we get: 

 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 𝜈 �𝑐𝑖 − 1 − log
𝜆1(𝐴)
𝜆𝑛(𝐵)� , 𝑖 = 1,𝑛�����, 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ 𝜈 �
𝜆1(𝐴)
𝜆𝑛(𝐵) − 1 − log

𝜆1(𝐴)
𝜆𝑛(𝐵)� , 𝑖 = 1,𝑛�����, 

1 − 𝜈 + 𝜈𝑐𝑖 − 𝑐𝑖𝜈 ≤ (1 − 𝜈)�
𝜆1(𝐴)
𝜆𝑛(𝐵) log

𝜆1(𝐴)
𝜆𝑛(𝐵) −

𝜆1(𝐴)
𝜆𝑛(𝐵) + 1� , 𝑖 = 1,𝑛�����, 

and 
𝑐𝑖 + 1

2
−
𝑐𝑖𝜈 + 𝑐𝑖1−𝜈

2
≤

1
2
𝑚𝑖𝑛{𝜈, 1 − 𝜈}�

𝜆1(𝐴)
𝜆𝑛(𝐵) − 1� log

𝜆1(𝐴)
𝜆𝑛(𝐵) , 𝑖 = 1,𝑛�����. 

 
when 𝑐𝑖 ≤ 1. 

 
By calculus, the diagonal matrix inequalities become, 
 

𝐼𝛻𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼♯𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 𝜈 �𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼 − log
𝜆1(𝐴)
𝜆𝑛(𝐵) 𝐼�, 

 

𝐼𝛻𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼♯𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ 𝜈 �𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 1 − log
𝜆1(𝐴)
𝜆𝑛(𝐵)� 𝐼, 

 

𝐼𝛻𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) − 𝐼♯𝜈𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) ≤ (1 − 𝜈)�
𝜆1(𝐴)
𝜆𝑛(𝐵) log

𝜆1(𝐴)
𝜆𝑛(𝐵) −

𝜆1(𝐴)
𝜆𝑛(𝐵) + 1� 𝐼 

 
and  

𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛) + 𝐼
2

−
[𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛)]𝜈 + [𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛)]1−𝜈

2
≤

≤
1
2
𝑚𝑖𝑛{𝜈, 1 − 𝜈}�

𝜆1(𝐴)
𝜆𝑛(𝐵) − 1��log

𝜆1(𝐴)
𝜆𝑛(𝐵)� 𝐼, 𝑖 = 1,𝑛�����. 

 
respectively. 

Then applying the conjugation  ⦁ → 𝐵
1
2𝑈⦁𝑈∗𝐵

1
2    we get the desired inequalities.         
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