ORIGINAL PAPER

THE DECOMPOSITION OF SOME ANNIHILATOR POLYNOMIALS FOR LINEAR MAPS IN COPRIME POLYNOMIALS

VASILE POP1

Manuscript received: 12.08.2017; Accepted paper: 22.09.2017; Published online: 30.12.2017.

Abstract. The decomposition of annihilator polynomials for linear maps or for the matrices of product of two coprime polynomials gives a decomposition of the spectrum as a direct sum of two subspaces with annihilator polynomials of smaller degree.

Keywords: Linear Map, Range and Null space, Rank, Idempotent and Involuntary matrices.

MSC2010: 15A03, 15A04, 15A24.

1. INTRODUCTION

Let V be a vector space over a field K and let $T:V\to V$ be a linear map for which there is an annihilator polynomial $P\in K[X]$, i.e. P(T)=0. If the annihilator polynomial P is irreductible then there are two coprime, non-constant polynomials such that $P=P_1\circ P_2$. We give some relations in which the null spaces $\ker(P_1(T))$, $\ker(P_2(T))$ and the numbers $\operatorname{rank}(P_1(T))$, $\operatorname{rank}(P_2(T))$ appear.

2. COMPLEMENTARY SUBSPACES $ker(P_1(T))$ *AND* $ker(P_2(T))$

Theorem 2.1 If V is a vector space over the field K with $T:V \to V$ an endomorphism and $P_1, P_2 \in K[X]$ two coprime polynomials then the following statements are equivalent:

- a) $P_1(T) \circ P_2(T) = 0$ or $(P_1 \cdot P_2)(T) = 0$
- b) $V = \ker(P_1(T)) \oplus \ker(P_2)(T)$.

Proof: Since the polynomials are coprime there are two polynomials $Q_1, Q_2 \in K[X]$ so that

$$P_1 Q_1 + P_2 Q_2 = 1 (1)$$

a) \rightarrow b): In the hypothesis $P_1(T) \circ P_2(T) = 0$. We show that any vector $x \in V$ can be decomposed uniquely as $x = x_1 + x_2$ with $x_1 \in \ker(P_1(T))$ and $x_2 \in \ker(P_2(T))$. Since $(P \cdot Q)(T) = P(T) \circ Q(T) = Q(T) \circ P(T)$, from (1) we obtain $P_1(T) \circ Q_1(T) + P_2(T) \circ Q_2(T) = I$, where $I: V \to V$ is the identity map $I(x) = x, x \in V$. We select $x_1 = P_2(T) \circ Q_2(T)(x)$ and

ISSN: 1844 – 9581 Mathematics Section

¹ Technical University of Cluj-Napoca, Department of Mathematics, Postal Code, Cluj-Napoca, Romania. E-mail: <u>Vasile.Pop@math.utcluj.ro</u>.

 $x_2 = P_1(T) \circ Q_1(T)(x)$ and we have $P_1(T)(x_1) = (P_1(T) \circ P_2(T))(Q_2(T)(x)) = 0$, hence $x_1 \in \ker(P_1(T))$ and $P_2(T)(x_2) = (P_2(T) \circ P_1(T))(Q_1(T)(x)) = 0$ so that $x_2 \in \ker(P_2(T))$. Moreover, if

$$y \in \ker(P_1(T)) \cap \ker(P_2(T))$$
 then $P_1(T)(y) = 0$, $P_2(T)(y) = 0$

and

$$y = (P_1Q_1 + P_2Q_2)(T)(y) = Q_1(T)(P_1(T)(y)) + Q_2(T)(P_2(T)(y)) = 0$$

hence

$$\ker(P_1(T)) \cap \ker(P_2(T)) = \{0\}$$
 and then $V = \ker(P_1(T)) \oplus \ker(P_2(T))$.

b) \rightarrow a): Any vector $x \in V$ can be written uniquely as $x = x_1 + x_2$ with $x_1 \in \ker(P_1(T))$, $x_2 \in \ker(P_2(T))$. We have,

$$P_1(T) \circ P_2(T)(x) = P_2(T) \circ P_1(T)(x_1) + P_1(T) \circ P_2(T)(x_2) =$$

$$= P_2(T)(P_1(T)(x_1)) + P_1(T)(P_2(T)(x_2)) = P_2(T)(0) + P_1(T)(0) = 0$$

hence $P_1(T) \circ P_2(T) = 0$.

Corollary 2.1 The linear map $T: V \to V$ is a linear projection on vector space V if and only if $V = \ker(T) \oplus \ker(I - T)$.

Proof: The map T is a linear projection if and only if the polynomial $P(x) = x - x^2$ is the annihilator polynomial for T. We consider the polynomials $P_1(x) = x$, $P_2(x) = 1 - x$ which are coprime and $P(x) = P_1(x) \cdot P_2(x)$.

We have $P(T) = 0 \Leftrightarrow (P_1 \cdot P_2)(T) = 0 \Leftrightarrow P_1(T) \circ P_2(T) = 0$ and by Theorem 2.1 this is equivalent to $V = \ker(P_1(T)) \oplus \ker(P_2(T)) = \ker(T) \oplus \ker(I - T)$.

Corollary 2.2 If V is a vector space over the field K of characteristic different than 2 then the linear map $S: V \to V$ is a symmetry if and only if $V = \ker(I - S) \oplus \ker(I + S)$.

Proof: The map S is a symmetry if and only if the polynomial $P(x) = 1 - x^2$ is the annihilator polynomial of S (P(S) = 0). We consider the polynomials $P_1(x) = 1 - x$ and $P_2(x) = 1 + x$, which in the ring K[X] are coprime if the characteristic of the field K is different than 2. We have $P(x) = P_1(x)P_2(x)$ so that $0 = P(S) = P_1(S) \circ P_2(S)$ and by Theorem 2.1 this is equivalent with $V = \ker(P_1(S)) \oplus \ker(P_2(S)) = \ker(I - S) \oplus \ker(I + S)$.

www.josa.ro Mathematics Section

3. THE SUM OF THE RANKS $rank(P_1(T)) + rank(P_2(T))$

Theorem 3.1 Let V be a vector space of finite dimension over the field K, $T:V \to V$ an endomorphism and $P_1, P_2 \in K[X]$ two coprime polynomials. The following statements are equivalent:

- a) $P_1(T) \circ P_2(T) = 0$
- b) $\operatorname{rank}(P_1(T)) + \operatorname{rank}(P_2(T)) = \dim(V)$.

Proof: a) \rightarrow b): By Theorem 2.1 it follows:

$$V = \ker(P_1(T)) \oplus \ker(P_2(T)) = \dim(V) - \operatorname{rank}(P_1(T)) + \dim(V) - \operatorname{rank}(P_2(T)),$$

which implies that $\operatorname{rank}(P_1(T)) + \operatorname{rank}(P_2(T)) = \dim(V)$.

b) \rightarrow a): From the rank-nullity theorem (see [1]) it follows that

$$\dim(V) = \dim(\ker(P_1(T))) + \dim(\ker(P_2(T))).$$

On the other hand, $\ker(P_1(T)) \cap \ker(P_2(T)) = \{0\}$; since $P_1(T)(y) = P_2(T)(y) = 0$ it follows that $y = (Q_1P_1)(T)(y) + (Q_2P_2)(T)(y) = 0$ hence $V = \ker(P_1(T)) \oplus \ker(P_2(T))$ and by Theorem 2.1 we have that $P_1(T) \circ P_2(T) = 0$.

Corollary 3.2 [6] The linear map $T: V \to V$ is a projection of the vector space V if and only if $\operatorname{rank}(T) + \operatorname{rank}(I - T) = \dim(V)$.

Corollary 3.2 [5] If the field K has the characteristic different than 2 then the linear map $S: V \to V$ is a symmetry if and only if $\operatorname{rank}(I-S) + \operatorname{rank}(I+S) = \dim(V)$.

4. THE DECOMPOSITION OF ANNIHILATORS POLYNOMIALS FOR MATRICES

Theorem 4.1 If $A \in M_n(K)$ is a matrix and $P_1, P_2 \in K[X]$ are two coprime polynomials the following statements are equivalent:

- a) $P_1(A) \cdot P_2(A) = 0$
- b) $\operatorname{rank}(P_1(A)) + \operatorname{rank}(P_2(A)) = n$.

Proof: We consider the linear map $T: K^n \to K^n$, T(X) = AX, where

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^t \in K^n$$

and we have $P_1(T)(X) = P_1(A)X$, $P_2(T)(X) = P_2(A)X$, rank $(P_1(T)) = \text{rank}(P_1(A))$, rank $(P_2(T)) = \text{rank}(P_2(A))$ and then Theorem 4.1 is a consequence of Theorem 3.1.

ISSN: 1844 – 9581 Mathematics Section

Corollary 4.1 [2, 5] The matrix $A \in M_n(K)$ is an idempotent matrix $(A^2 = A)$ if and only if $\operatorname{rank}(A) + \operatorname{rank}(I_n - A) = n$.

Corollary 4.2 [2, 4] If the field K has $char(K) \neq 2$ then the matrix $A \in M_n(K)$ is an involutory matrix $(A^2 = I_n)$ if and only if $rank(I_n - A) + rank(I_n + A) = n$.

We mention that a recent book which contains a novel presentation of idempotent and involutory matrices of order two as well as properties and applications of symmetries and projections is [3].

REFERENCES

- [1] Bernstein, D.S., *Matrix Mathematics. Theory, Fact and Formulas*, Princeton Univ. Press, 2009.
- [2] Pop, V., J. Sci. Arts, 4(37), 295, 2016.
- [3] Pop. V, Furdui, O., Square Matrices of Order Two. Theory Applications and Problems, Springer, Cham, 2017.
- [4] Tyan, I., Styan, G. Linear Algebra and its Applications, 335, 101, 2001.
- [5] Tyan, I., Styan, G. Journal of Computational and Applied Mathematics, **191**(1), 77, 2006.
- [6] Zhang, F., *Matrix Theory Basics Results and Techniques*, Springer New York, 1999.

www.josa.ro Mathematics Section