THE DECOMPOSITION OF SOME ANNIHILATOR POLYNOMIALS FOR LINEAR MAPS IN COPRIME POLYNOMIALS

VASILE POP ${ }^{1}$
Manuscript received: 12.08.2017; Accepted paper: 22.09.2017; Published online: 30.12.2017.

Abstract

The decomposition of annihilator polynomials for linear maps or for the matrices of product of two coprime polynomials gives a decomposition of the spectrum as a direct sum of two subspaces with annihilator polynomials of smaller degree.

Keywords: Linear Map, Range and Null space, Rank, Idempotent and Involuntary matrices.

MSC2010: 15A03, 15A04, 15A24.

1. INTRODUCTION

Let V be a vector space over a field K and let $T: V \rightarrow V$ be a linear map for which there is an annihilator polynomial $P \in K[X]$, i.e. $P(T)=0$. If the annihilator polynomial P is irreductible then there are two coprime, non-constant polynomials such that $P=P_{1} \circ P_{2}$. We give some relations in which the null spaces $\operatorname{ker}\left(P_{1}(T)\right), \quad \operatorname{ker}\left(P_{2}(T)\right)$ and the numbers $\operatorname{rank}\left(P_{1}(T)\right), \operatorname{rank}\left(P_{2}(T)\right)$ appear.

2. COMPLEMENTARY SUBSPACES $\operatorname{ker}\left(P_{1}(T)\right)$ AND $\operatorname{ker}\left(P_{2}(T)\right)$

Theorem 2.1 If V is a vector space over the field K with $T: V \rightarrow V$ an endomorphism and $P_{1}, P_{2} \in K[X]$ two coprime polynomials then the following statements are equivalent:
a) $P_{1}(T) \circ P_{2}(T)=0$ or $\left(P_{1} \cdot P_{2}\right)(T)=0$
b) $V=\operatorname{ker}\left(P_{1}(T)\right) \oplus \operatorname{ker}\left(P_{2}\right)(T)$.

Proof: Since the polynomials are coprime there are two polynomials $Q_{1}, Q_{2} \in K[X]$ so that

$$
\begin{equation*}
P_{1} Q_{1}+P_{2} Q_{2}=1 \tag{1}
\end{equation*}
$$

a) $\rightarrow \mathrm{b}$): In the hypothesis $P_{1}(T) \circ P_{2}(T)=0$. We show that any vector $x \in V$ can be decomposed uniquely as $x=x_{1}+x_{2}$ with $x_{1} \in \operatorname{ker}\left(P_{1}(T)\right)$ and $x_{2} \in \operatorname{ker}\left(P_{2}(T)\right)$. Since $(P \cdot Q)(T)=P(T) \circ Q(T)=Q(T) \circ P(T)$, from (1) we obtain $P_{1}(T) \circ Q_{1}(T)+P_{2}(T) \circ Q_{2}(T)=I$, where $I: V \rightarrow V$ is the identity map $I(x)=x, x \in V$. We select $x_{1}=P_{2}(T) \circ Q_{2}(T)(x)$ and

[^0]$x_{2}=P_{1}(T) \circ Q_{1}(T)(x) \quad$ and \quad we have $\quad P_{1}(T)\left(x_{1}\right)=\left(P_{1}(T) \circ P_{2}(T)\right)\left(Q_{2}(T)(x)\right)=0$, hence $x_{1} \in \operatorname{ker}\left(P_{1}(T)\right) \quad$ and $\quad P_{2}(T)\left(x_{2}\right)=\left(P_{2}(T) \circ P_{1}(T)\right)\left(Q_{1}(T)(x)\right)=0 \quad$ so that $\quad x_{2} \in \operatorname{ker}\left(P_{2}(T)\right)$. Moreover, if
$$
y \in \operatorname{ker}\left(P_{1}(T)\right) \cap \operatorname{ker}\left(P_{2}(T)\right) \quad \text { then } \quad P_{1}(T)(y)=0, P_{2}(T)(y)=0
$$
and
$$
y=\left(P_{1} Q_{1}+P_{2} Q_{2}\right)(T)(y)=Q_{1}(T)\left(P_{1}(T)(y)\right)+Q_{2}(T)\left(P_{2}(T)(y)\right)=0
$$
hence
$$
\operatorname{ker}\left(P_{1}(T)\right) \cap \operatorname{ker}\left(P_{2}(T)\right)=\{0\} \text { and then } V=\operatorname{ker}\left(P_{1}(T)\right) \oplus \operatorname{ker}\left(P_{2}\right)(T)
$$
b) \rightarrow a): Any vector $x \in V$ can be written uniquely as $x=x_{1}+x_{2}$ with $x_{1} \in \operatorname{ker}\left(P_{1}(T)\right)$, $x_{2} \in \operatorname{ker}\left(P_{2}(T)\right)$. We have,
\[

$$
\begin{aligned}
& P_{1}(T) \circ P_{2}(T)(x)=P_{2}(T) \circ P_{1}(T)\left(x_{1}\right)+P_{1}(T) \circ P_{2}(T)\left(x_{2}\right)= \\
& =P_{2}(T)\left(P_{1}(T)\left(x_{1}\right)\right)+P_{1}(T)\left(P_{2}(T)\left(x_{2}\right)\right)=P_{2}(T)(0)+P_{1}(T)(0)=0
\end{aligned}
$$
\]

hence $P_{1}(T) \circ P_{2}(T)=0$.
Corollary 2.1 The linear map $T: V \rightarrow V$ is a linear projection on vector space V if and only if $V=\operatorname{ker}(T) \oplus \operatorname{ker}(I-T)$.

Proof: The map T is a linear projection if and only if the polynomial $P(x)=x-x^{2}$ is the annihilator polynomial for T. We consider the polynomials $P_{1}(x)=x, P_{2}(x)=1-x$ which are coprime and $P(x)=P_{1}(x) \cdot P_{2}(x)$.

We have $P(T)=0 \Leftrightarrow\left(P_{1} \cdot P_{2}\right)(T)=0 \Leftrightarrow P_{1}(T) \circ P_{2}(T)=0$ and by Theorem 2.1 this is equivalent to $V=\operatorname{ker}\left(P_{1}(T)\right) \oplus \operatorname{ker}\left(P_{2}(T)\right)=\operatorname{ker}(T) \oplus \operatorname{ker}(I-T)$.

Corollary 2.2 If V is a vector space over the field K of characteristic different than 2 then the linear map $S: V \rightarrow V$ is a symmetry if and only if $V=\operatorname{ker}(I-S) \oplus \operatorname{ker}(I+S)$.

Proof: The map S is a symmetry if and only if the polynomial $P(x)=1-x^{2}$ is the annihilator polynomial of $S \quad(P(S)=0)$. We consider the polynomials $P_{1}(x)=1-x$ and $P_{2}(x)=1+x$, which in the ring $K[X]$ are coprime if the characteristic of the field K is different than 2 . We have $P(x)=P_{1}(x) P_{2}(x)$ so that $0=P(S)=P_{1}(S) \circ P_{2}(S)$ and by Theorem 2.1 this is equivalent with $V=\operatorname{ker}\left(P_{1}(S)\right) \oplus \operatorname{ker}\left(P_{2}(S)\right)=\operatorname{ker}(I-S) \oplus \operatorname{ker}(I+S)$.

3. THE SUM OF THE RANKS $\operatorname{rank}\left(P_{1}(T)\right)+\operatorname{rank}\left(P_{2}(T)\right)$

Theorem 3.1 Let V be a vector space of finite dimension over the field $K, T: V \rightarrow V$ an endomorphism and $P_{1}, P_{2} \in K[X]$ two coprime polynomials. The following statements are equivalent:
a) $P_{1}(T) \circ P_{2}(T)=0$
b) $\operatorname{rank}\left(P_{1}(T)\right)+\operatorname{rank}\left(P_{2}(T)\right)=\operatorname{dim}(V)$.

Proof: a) \rightarrow b): By Theorem 2.1 it follows:

$$
V=\operatorname{ker}\left(P_{1}(T)\right) \oplus \operatorname{ker}\left(P_{2}(T)\right)=\operatorname{dim}(V)-\operatorname{rank}\left(P_{1}(T)\right)+\operatorname{dim}(V)-\operatorname{rank}\left(P_{2}(T)\right)
$$

which implies that $\operatorname{rank}\left(P_{1}(T)\right)+\operatorname{rank}\left(P_{2}(T)\right)=\operatorname{dim}(V)$.
b) \rightarrow a): From the rank-nullity theorem (see [1]) it follows that

$$
\operatorname{dim}(V)=\operatorname{dim}\left(\operatorname{ker}\left(P_{1}(T)\right)\right)+\operatorname{dim}\left(\operatorname{ker}\left(P_{2}(T)\right)\right)
$$

On the other hand, $\operatorname{ker}\left(P_{1}(T)\right) \cap \operatorname{ker}\left(P_{2}(T)\right)=\{0\}$; since $P_{1}(T)(y)=P_{2}(T)(y)=0$ it follows that $y=\left(Q_{1} P_{1}\right)(T)(y)+\left(Q_{2} P_{2}\right)(T)(y)=0$ hence $V=\operatorname{ker}\left(P_{1}(T)\right) \oplus \operatorname{ker}\left(P_{2}(T)\right)$ and by Theorem 2.1 we have that $P_{1}(T) \circ P_{2}(T)=0$.

Corollary 3.2 [6] The linear map $T: V \rightarrow V$ is a projection of the vector space V if and only if $\operatorname{rank}(T)+\operatorname{rank}(I-T)=\operatorname{dim}(V)$.

Corollary 3.2 [5] If the field K has the characteristic different than 2 then the linear map $S: V \rightarrow V$ is a symmetry if and only if $\operatorname{rank}(I-S)+\operatorname{rank}(I+S)=\operatorname{dim}(V)$.

4. THE DECOMPOSITION OF ANNIHILATORS POLYNOMIALS FOR MATRICES

Theorem 4.1 If $A \in \mathrm{M}_{n}(K)$ is a matrix and $P_{1}, P_{2} \in K[X]$ are two coprime polynomials the following statements are equivalent:
a) $P_{1}(A) \cdot P_{2}(A)=0$
b) $\operatorname{rank}\left(P_{1}(A)\right)+\operatorname{rank}\left(P_{2}(A)\right)=n$.

Proof: We consider the linear map $T: K^{n} \rightarrow K^{n}, T(X)=A X$, where

$$
X=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{t} \in K^{n}
$$

and \quad we have $\quad P_{1}(T)(X)=P_{1}(A) X, \quad P_{2}(T)(X)=P_{2}(A) X, \quad \operatorname{rank}\left(P_{1}(T)\right)=\operatorname{rank}\left(P_{1}(A)\right)$, $\operatorname{rank}\left(P_{2}(T)\right)=\operatorname{rank}\left(P_{2}(A)\right)$ and then Theorem 4.1 is a consequence of Theorem 3.1.

Corollary 4.1 $[2,5]$ The matrix $A \in M_{n}(K)$ is an idempotent matrix $\left(A^{2}=A\right)$ if and only if $\operatorname{rank}(A)+\operatorname{rank}\left(I_{n}-A\right)=n$.

Corollary $4.2[2,4]$ If the field K has $\operatorname{char}(K) \neq 2$ then the matrix $A \in M_{n}(K)$ is an involutory matrix $\left(A^{2}=I_{n}\right)$ if and only if $\operatorname{rank}\left(I_{n}-A\right)+\operatorname{rank}\left(I_{n}+A\right)=n$.

We mention that a recent book which contains a novel presentation of idempotent and involutory matrices of order two as well as properties and applications of symmetries and projections is [3].

REFERENCES

[1] Bernstein, D.S., Matrix Mathematics. Theory, Fact and Formulas, Princeton Univ. Press, 2009.
[2] Pop, V., J. Sci. Arts, 4(37), 295, 2016.
[3] Pop. V, Furdui, O., Square Matrices of Order Two. Theory Applications and Problems, Springer, Cham, 2017.
[4] Tyan, I., Styan, G. Linear Algebra and its Applications, 335, 101, 2001.
[5] Tyan, I., Styan, G. Journal of Computational and Applied Mathematics, 191(1), 77, 2006.
[6] Zhang, F., Matrix Theory - Basics Results and Techniques, Springer New York, 1999.

[^0]: ${ }^{1}$ Technical University of Cluj-Napoca, Department of Mathematics, Postal Code, Cluj-Napoca, Romania. E-mail: Vasile.Pop@math.utcluj.ro.

