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Abstract. We study Kirchhoff elastic rod whose centerlines are non-null curves in the 

Minkowski 3−space. In particular, we obtain the differential equation describing non-null 
Kirchhoff elastic rod centerlines. Afterwards, we solve this differential equation in terms of 
Jacobi elliptic functions for three different cases. 

Keywords: Kirchhoff elastic rods, Jacobi elliptic functions, Minkowski 3-space, 
variational calculus. 
 
 
1. INTRODUCTION   
 
 

The classical mathematical models of equilibrium configurations of thin elastic rod 
are the elastic curves and the Kirchhoff elastic rods. Since the elastic curve is a critical curve 
of the energy of bending only, it is the simplest model. But the Kirchhoff elastic rod is a more 
complicated model and is a critical framed curve of the energy with the effects of both 
bending and twisting. The curve obtained by eliminating the frame of a Kirchhoff elastic rod 
is called a Kirchhoff elastic rod centerline. So, a Kirchhoff elastic rod centerline is a 
generalization of an elastic curve [10]. 

As mentioned above, the elastic curve is a minimizing the integral of the squared 
curvature among with specified boundary conditions. Many authors have studied the elastic 
curves in Euclidean, non-Euclidean spaces and a Riemannian manifold to date from the time 
of James Bernoulli in 1690s [3-6, 13, 17, 19, 22]. 

Kirchhoff rods in 3R  have been studied by some authors [7-10, 14, 18, 19] after the 
study of Kirchhoff [11]. Kirchhoff rod centerlines in 3R  by taking cylindrical coordinates are 
explicitly expressed in terms of Jacobi elliptic function and elliptic integrals in Euclidean −3
space 3R  by Langer and Singer [14], Shi and Hearst [18]. By using these explicit 
expressions, Ivey and Singer [6] completely classified the closed elastic rod centerlines in 3R  
and determined their knot types. Kirchhoff elastic rods are also studied by Kawakubo [7-10]. 
He generalized the Kirchhoff elastic rods in the −3 dimensional Euclidean space 3R  to a 
Riemannian manifold [7]. In 2004 , he studied Kirchhoff elastic rods in the three-sphere 3S  
[8]. Later, in 2008,  he investigated the Kirchhoff elastic rods in the three-dimensional space 
forms [9]. Lastly, he examined Kirchhoff rod centerlines in five-dimensional space forms 
which are fully immersed and not helices [10]. 

It is important to work non-null curves because timelike curves correspond to the path 
of an observer moving at less than the speed of light and spacelike curves correspond to the 
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geometric equivalent of moving faster than light. Besides, the motion of a particle exposed 
only to gravity is modelled on a timelike geodesic in space-time [2]. 

In this paper, our purpose indicate the differential equation of Kirchhoff elastic rod 
whose centerlines are non-null curves in Minkowski −3 space 3

1R  and solve this differential 
equation in terms of Jacobi elliptic functions (see, for Jacobi elliptic functions [1]). 

 
 

2. PRELIMINARIES 
 
 

Let 3
1R  denote a Minkowski −3 space with the Lorentzian metric given by  

 ,>=.,.< 2
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dxdxdx ++−  

where ( )321 ,, xxx  is a rectangular coordinate system of .3
1R  A vector x  of 3

1R  is said to be 
spacelike if 0>>,< xx  or 0,=x  timelike if 0><,< xx  and lightlike (or null) if 0>=,< xx  
and 0.≠x  

For any ( )321 ,,= xxxx , ( )321 ,,= yyyy  3
1R∈ , the Lorentzian vector product of x  and 

y  is defined by 
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be a smooth unit-speed curve in Minkowski −3 space 3

1R , where I  is an open interval. A 
curve γ  is said spacelike (resp., timelike or lightlike) at Is∈  if )(sγ ′  is a spacelike (resp., 
timelike or lightlike) for all Is∈ . 

Now, we consider a curve γ  in Minkowski −3 space 3
1R , parametrized by arc length 

s , ls ≤≤0 . At a point )(sγ  of γ , let )(= sT γ ′  denote the unit tangent vector to γ , let 
)(sN  denote the unit principal normal and )()(=)(2 sNsTsB ×ε  is the unit binormal vector. 

Then { }BNT ,,  is an orthonormal basis for all vectors at )(sγ  on γ  which is called the Frenet 
frame along γ . The derivative equations of Frenet frame },,{ BNT  are 

 

 ,
00

0
00

=

1

20

1

































−
−

















′
′
′

B
N
T

B
N
T

τε
τεκε

κε
 (1)  

 
where 1,>=,=<0 ±TTε  1>=,=<1 ±NNε  and 1>=,=<2 ±BBε . Also κ  and τ  are the 
curvature and the torsion of γ , respectively (see [15, 16]). 
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3. VARIATION FORMULAS 
 
  
            Let ( ) 3

1: R→Itγ  be a non-null curve in Minkowski −3 space 3
1R . ( )tVV =  will 

denote the tangent vector to γ , T  the unit tangent vector and v  the speed 

( ) ( ) ( ) ( ) 2
1

>,<== tVtVtVtv . 
 

            A variation of the curve γ  is defined by 
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with )(=)(0, tt γγ . Associated with such a variation is the variation vector field 
0=

=
w

w

w
W

∂
∂γ  

along the curve )(tγ . More generally, we use ),(= twVV , ),(= twWW , ),,(= twTT  

),(= twvv  etc., with the usual meaning. V  velocity vector is )(0,)(0,==)(0, tTtv
t
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Now, we consider the functional is given by  
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We will calculate the first variation of F  in the direction of the variation vector field W  (see, 
for calculus of variations [20]). For this, we will need derivatives of ,v  κ  and τ  in the 
direction of .W  

We have the structural equations  
 
 ( ) ( ) [ ],,= YXXYYX −    (2)  

 
 ( )( ) ( )( ) [ ]( ) 0=, ZYXZXYZYX −−     (3) 

 
for the vector fields YX ,  and Z  in 3

1R  (see, [4, 13, 16, 21]). If we use equations (1), (2) and 
(3), we have following lemma. 

 
Lemma 1.  ([4, 5, 13, 21]) Using the above notation, the following allegations are 

true: 
    • 0=],[ VW , 
 
    • >,<=)( 0 TWvvW sε , 
 
    • TTWTW s >,<=],[ 0ε− , 
 
    • >,<2>,=<)( 0 TWNWW sss κεκ − , 

                • >,<>),(<=)( 01 BTWBWW ssss κτε
κ

ετ −− . 
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4. DIFFERENTIAL EQUATION OF NON-NULL KIRCHHOFF ELASTIC ROD 
CENTERLINES 
 

In this section, we will obtain differential equation determining the non-null 
Kirchhoff elastic rod centerlines in Minkowski −3 space .3

1R  Now, we consider a non-null 
Kirchhoff elastic rod centerline as a critical point of the functional  
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in Minkowski −3 space 3
1R  of curves  
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Using Lemma 1 one obtains the first variation of F  in the direction of W  
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Later, if partial integration is used equation (4), we have 
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The formula (5) can be written as  
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in terms of Euler and boundary operators ][γξ  and ],,[ WγΨ  where l  is the length of γ . 

The term ][γξ  is 
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Thus, under suitable boundary conditions, γ  is a critical point of ( )γF  if and only if the 
following Euler-Lagrange equation 0=][γξ  is satisfied: 
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In this case, the first variation formula reduces to 
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Formula (6) puts us in a position to apply the Noether to constants of motion along γ . 

First we consider translational their infinitesimal counterparts, the constant vector fields 
clearly zero, then we have 

 
 ( )[ ] ( ) ( ) ( ) ( ) ( ) .>0,0<>,=<|>,<==0 0 WJlWlJWJW l −γδF  
 

The variation formulas continue to hold when l  is replaced with any intermediate l′ ,
ll <<0 ′ . It follows that >,< WJ  is constant on ].[0, l  Yet, W  is an arbitrary constant field, 

so we have the following theorem: 
 

Theorem 2. BNTJ s )(
2

2= 20323

2
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+−  is a constant vector 

field along non-null Kirchhoff elastic rod in equilibrium.  
 
Take into consideration J  corresponds to F− , where F  is the (constant) force along 

the rod (see, [12]). The converse to this result is an immediate consequence of the 
observation that ][= γξsJ  for any non-null curve γ .  
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vector field along a non-null curve γ , then γ  satisfies the Euler equations ].[γξ   
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Corollary 4. The curvature and torsion of a non-null Kirchhoff elastic rod centerline 
provide the following pair of equations: 

 2
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In the above corollary, if the equation (8) is integrated, we have  
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Using equations (7) and (9) we obtain the differential equation describing Kirchhoff elastic 
rod whose centerline is non-null curve in Minkowski −3 space as follow:  
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5. SOLUTION OF DIFFERENTIAL EQUATION 
 
 

Solving the differential equation (10) are given in terms of three parameters ,p  ,w  

0
κ  and Jacobi elliptic function ( )pxsn , . Making the change of variable 2= κu , we arrive  
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We then consider the three possible cases for non-null Kirchhoff elastic rod 

centerlines. 
 
Case 1: (Timelike Kirchhoff elastic rod centerlines) Let us consider the case 1=0 −ε , 

1== 21 εε . Then, from (11) we have  
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This ( ) ( ) 0==2 uPus  equation is solved by using Jacobi elliptic functions. The cubic 

polynomial ( )uP  satisfies ( ) 0=0 2

3

2

≤−
λ
cP . Then, the curvature is non-zero. Moreover, if 

2= κu  is a non-constant solution to (12), it must clearly take on values at which ( ) 0.>uP  
Now, we may assume )(uP  has three real roots 1α , 2α , 3α  satisfying 123 <<<0 ααα . 
Then, we can write equation (12) in the form 
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and the solution can be written in terms of the Jacobi elliptic function as 
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The parameter 
0

κ  is maximum curvature, p  and w  with 10 ≤≤≤ wp  control the shape. 

The square of maximum curvature for γ  timelike Kirchhoff elastic rod centerlines are 
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01 ==(0) καu . Then, the formula for the curvature is  
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Case 2: (Spacelike Kirchhoff elastic rod centerlines with timelike principal normal) 

In this case 1=1 −ε , 1== 20 εε . Then, using (11) we obtain  
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The cubic polynomial ( )uP  satisfies ( ) 0>=0 2

3

2

λ
cP . Then the curvature may be zero. We can 

assume 0>)(uP  has three real roots 1α , 2α , 3α  satisfying 123 <<0< ααα . Then, we can 
write equation (13) in the form  
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and the solution can be written in terms of the Jacobi elliptic function as 
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The real roots 1α , 2α , 3α  are also related to the coefficients of )(uP  by the equations  
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Here, the formula for the curvature is  
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Case 3: (Spacelike Kirchhoff elastic rod centerlines with spacelike principal normal) 

Another case is 1=2 −ε , 1== 10 εε . Then, using (11) we obtain  
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           The shape of the non-null Kirchhoff elastic rod centerlines depends on 1λ , 2λ , 3λ  and 
the constant of integration c , with 0>µ  determined by (10). 
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