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Abstract. We study Kirchhoff elastic rod whose centerlines are non-null curves in the
Minkowski 3—space. In particular, we obtain the differential equation describing non-null
Kirchhoff elastic rod centerlines. Afterwards, we solve this differential equation in terms of
Jacobi elliptic functions for three different cases.
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variational calculus.

1. INTRODUCTION

The classical mathematical models of equilibrium configurations of thin elastic rod
are the elastic curves and the Kirchhoff elastic rods. Since the elastic curve is a critical curve
of the energy of bending only, it is the simplest model. But the Kirchhoff elastic rod is a more
complicated model and is a critical framed curve of the energy with the effects of both
bending and twisting. The curve obtained by eliminating the frame of a Kirchhoff elastic rod
is called a Kirchhoff elastic rod centerline. So, a Kirchhoff elastic rod centerline is a
generalization of an elastic curve [10].

As mentioned above, the elastic curve is a minimizing the integral of the squared
curvature among with specified boundary conditions. Many authors have studied the elastic
curves in Euclidean, non-Euclidean spaces and a Riemannian manifold to date from the time
of James Bernoulli in 1690s [3-6, 13, 17, 19, 22].

Kirchhoff rods in R® have been studied by some authors [7-10, 14, 18, 19] after the
study of Kirchhoff [11]. Kirchhoff rod centerlines in R® by taking cylindrical coordinates are
explicitly expressed in terms of Jacobi elliptic function and elliptic integrals in Euclidean 3—
space R® by Langer and Singer [14], Shi and Hearst [18]. By using these explicit
expressions, lvey and Singer [6] completely classified the closed elastic rod centerlines in R®
and determined their knot types. Kirchhoff elastic rods are also studied by Kawakubo [7-10].
He generalized the Kirchhoff elastic rods in the 3— dimensional Euclidean space R® to a
Riemannian manifold [7]. In 2004, he studied Kirchhoff elastic rods in the three-sphere S°
[8]. Later, in 2008, he investigated the Kirchhoff elastic rods in the three-dimensional space
forms [9]. Lastly, he examined Kirchhoff rod centerlines in five-dimensional space forms
which are fully immersed and not helices [10].

It is important to work non-null curves because timelike curves correspond to the path
of an observer moving at less than the speed of light and spacelike curves correspond to the
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geometric equivalent of moving faster than light. Besides, the motion of a particle exposed
only to gravity is modelled on a timelike geodesic in space-time [2].
In this paper, our purpose indicate the differential equation of Kirchhoff elastic rod

whose centerlines are non-null curves in Minkowski 3—space R} and solve this differential
equation in terms of Jacobi elliptic functions (see, for Jacobi elliptic functions [1]).

2. PRELIMINARIES

Let R? denote a Minkowski 3 - space with the Lorentzian metric given by
<..>= —dxl2 +dx§ +dx§,

where (x,,X,,X,) is a rectangular coordinate system of R2. A vector x of R? is said to be
spacelike if < x,x>>0 or x =0, timelike if < x,x><0 and lightlike (or null) if <x,x>=0
and x=0.

For any x=(X,X,,%), Y=(¥,,¥,.¥s) €R?, the Lorentzian vector product of x and
y is defined by

X><y=(X3y2 _Xzya’xsyl_xlys’xlyz _Xzyl)

Let
y: 1cR — R}

s = 7(8) = (7,(5),72(8), 75(5))

be a smooth unit-speed curve in Minkowski 3—space R}, where | is an open interval. A
curve y is said spacelike (resp., timelike or lightlike) at se | if y'(s) is a spacelike (resp.,
timelike or lightlike) forall se I.

Now, we consider a curve y in Minkowski 3—space R?, parametrized by arc length
s, 0<s<I. At a point y(s) of y, let T = y'(s) denote the unit tangent vector to y, let
N (s) denote the unit principal normal and &,B(S) =T (s)x N(s) is the unit binormal vector.
Then {T, N, B} is an orthonormal basis for all vectors at y(s) on y which is called the Frenet
frame along y . The derivative equations of Frenet frame {T,N, B} are

T’ 0 ex 0T
N'|=|-gx 0 &r|N]| (1)
B’ 0 -gr 0 /B

where &, =<T,T>=+1, ¢ =<N,N>==1 and ¢, =<B,B>=+1. Also « and r are the
curvature and the torsion of y, respectively (see [15, 16]).
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3. VARIATION FORMULAS

Let »(t):1 - R’ be a non-null curve in Minkowski 3— space R?. V =V(t) will
denote the tangent vector to y , T the unit tangent vector and v the speed

1
vit) = V() =< V)V () >]2.
A variation of the curve y is defined by

7. (-0,0)x1 — R}
(w,t) - ywt) =y,

with »(0,t) = »(t) . Associated with such a variation is the variation vector field W = W

w=0

along the curve y(t). More generally, we use V =V (w,t) , W =W (w,t) , T =T(w,t),
v =v(w,t) etc., with the usual meaning. V velocity vector is V (0,t) = 2—7{ =v(0,t)T(0,1).
Now, we consider the functional is given by

| 1
F(y) = j(ﬂl +ﬂzr+%/(2jds = J-(ﬂl +/12r+%/<2jvdt.

0 0

We will calculate the first variation of F in the direction of the variation vector field W (see,
for calculus of variations [20]). For this, we will need derivatives of v, « and 7 in the

direction of W.
We have the structural equations

X (V)= (x)=[x.Y} )
X(V(2)-Y(x(@2)-[x.Y)z)=0 ©)

for the vector fields X,Y and Z in R? (see, [4, 13, 16, 21]). If we use equations (1), (2) and
(3), we have following lemma.

Lemma 1. ([4, 5, 13, 21]) Using the above notation, the following allegations are
true:

*[wW,v]=0,
e W(V) = gv<W,,T >,
e W, T]=-¢, <W,, T>T,

e W(xk)=<W,

ss?

N >-2g,x <W,,T >,

*W(7r)= <';“1(<WSS,E>)S —&, <W,,7T —xB >.
K
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4. DIFFERENTIAL EQUATION OF NON-NULL KIRCHHOFF ELASTIC ROD
CENTERLINES

In this section, we will obtain differential equation determining the non-null
Kirchhoff elastic rod centerlines in Minkowski 3—space R}. Now, we consider a non-null
Kirchhoff elastic rod centerline as a critical point of the functional

F() = 4 jlolsm2 jlzds+% lezds
0 0 0

in Minkowski 3-space R} of curves
y:0]-RL 76 =1

y0)=P, y)=P, y0)=v, y)=v.

Il
Using Lemma 1 one obtains the first variation of F in the direction of W

SF(yw]= jl{(/13;<\N (1) + W (2 )V + {ﬂi + 7+ %KZ }W (v)}dt

0

ss? S

|
:I{ﬂgx <W(,N > —250/13/(2 <W,,T > +51/12(<Wssy%>)
0
+ gy, <W,, B> +g,4, <W,, T >}ds. 4)

Later, if partial integration is used equation (4), we have
|
SF(y W1= I (/13KSS + %goglic()tarcz —24) - gkT(— g4y + 52/13r)j <W,N >ds
0

|
+ I (k. (26,4, — 8,2, )+ €,A5x7,) <W,B > ds (5)
0

&4,

+( <W,,B>+4,x <W,N >)|;

ss!?

-2 2
—(<w, 2% 280%" T+ Ak N + x(g,4,7 — £,4,)B >] L.

The formula (5) can be written as
|

F(yIW1= [ <W,&ly1> ds+(PIrWD) |,

0

in terms of Euler and boundary operators &[y] and ¥[y,W], where | is the length of ».
The term £[y] is

&lr]= (/13/(53 + %goglx(ﬂgxz —24) —gxr(—e,l, + 82231)j N
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+ (x, (252/132' — &, )+ &,A,k7,)B
and P[y,W] is

TUMu:G%?<W B> +A,6 <W,,N >).

ss?

2

Thus, under suitable boundary conditions, y is a critical point of F(y) if and only if the
following Euler-Lagrange equation &[y] = 0 is satisfied:

ot 2 et ok = 20) — el el +1057) =0,

-2 2
-{<w, %&+%%KT+%QN+ﬂQ%erQB%%.

Kk, (26,4,7 — £,4, )+ £,Ak1, = 0.
In this case, the first variation formula reduces to

F(W1=(P[r.W)ls= (gjfz <W,,B>+4x <W,N>-<JW>)|. (6)

Here, we have set

_ 2
J= 260/ ;_ EoAo T + 45N+ x(e,4,7 —£y4,)B. (")

Formula (6) puts us in a position to apply the Noether to constants of motion along y .

First we consider translational their infinitesimal counterparts, the constant vector fields
clearly zero, then we have

0=6F(y)W]=(<I,W >)i=<J(1)W(1)>-<I(0)W(0)>.

The variation formulas continue to hold when | is replaced with any intermediate I’
0<I"<I. It follows that < J,W > is constant on [0,1]. Yet, W is an arbitrary constant field,

so we have the following theorem:

2
Theorem 2. J = 28021;8013’( T + 4k N + x(e,A4,7 —€,4,)B is a constant vector

field along non-null Kirchhoff elastic rod in equilibrium.
Take into consideration J corresponds to — F , where F is the (constant) force along

the rod (see, [12]). The converse to this result is an immediate consequence of the
observation that J, = £[y] for any non-null curve y.

_ 2
Proposition 3. If J = 280/11;‘90/13’( T + A,x,N + x(e,A4,7 — £,4,) B is a constant

vector field along a non-null curve y, then y satisfies the Euler equations &[y].
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Corollary 4. The curvature and torsion of a non-null Kirchhoff elastic rod centerline
provide the following pair of equations:

2 _ 2\2
constant = 4° = g, %-‘ré‘l 2k + ek (8,45 — 4,)°

and
0= [x* (26,457 — £o4,)];- 8

In the above corollary, if the equation (8) is integrated, we have

k?(26,A,7 — £,A,) = C = constant. 9)
Using equations (7) and (9) we obtain the differential equation describing Kirchhoff elastic
rod whose centerline is non-null curve in Minkowski 3— space as follow:

(C —502.2K2)2

2
I T
u?=<J3,1>= 50(%+51ﬁ~23’<52 R I—

(10)

5. SOLUTION OF DIFFERENTIAL EQUATION

Solving the differential equation (10) are given in terms of three parameters p, w,
K, and Jacobi elliptic function sn(x, p). Making the change of variable u = x*, we arrive

i & (e, 22 —450/1143)u2 (e — 255,04, —4;12)u ety
2 7 2
3 3

3

P(u): uZ = —g,g
We then consider the three possible cases for non-null Kirchhoff elastic rod
centerlines.

Case 1: (Timelike Kirchhoff elastic rod centerlines) Let us consider the case ¢, = -1,
& =&, =1.Then, from (11) we have

2 2 2 2
(u)=ut =7 +;Ma)uz (44 20k 4 )u_;_z, 12)
3 3 3

This (u,)* =P(u)=0 equation is solved by using Jacobi elliptic functions. The cubic

2
polynomial P(u) satisfies P(O):—;—ZSO. Then, the curvature is non-zero. Moreover, if
3
u=x? is a non-constant solution to (12), it must clearly take on values at which P(u)> 0.
Now, we may assume P(u) has three real roots o, , «,, a, satisfying 0<a,<a, <c,.
Then, we can write equation (12) in the form
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(U)* ~(U-a)(u-a,)(u-a;) =0
and the solution can be written in terms of the Jacobi elliptic function as

u=u(s) = a, +q°sn’(rs, p),
where

2
2 _Cy = o _ _ /9 _1
pr=——0" =, -, = 5 —E,/ag—al.

03— 4p
Of course, o, a,, a, are related to the coefficients of P(u) by

40,2, + /122 ot
———f o ta,+a,,
12
3
c®
o — A0, As,

2 2
du 202/12 tah Q0 + o, + QL.
A

The parameter K, is maximum curvature, p and w with 0< p<w<1 control the shape.

The square of maximum curvature for y timelike Kirchhoff elastic rod centerlines are
u@) =, = K‘s . Then, the formula for the curvature is

p2 S

2 2 2 H

K° =Kk°+—sn(t, with t=—.
o w (tp) 2w

The parameters p, w and K are determined by the coefficients by the following relations:

A0+ 1
/%2 2 =3¢ 1L (p? +1)
13
Y 2
/1—2 KO(W+KO)( S+ K ),
3
Au® —2ch, +41° 1 p> 1
Je 1 :Ks(v(pz+1)+2K§)+(W+K§)(W+K‘§).

3

Case 2: (Spacelike Kirchhoff elastic rod centerlines with timelike principal normal)
In this case ¢, = -1, g, =&, =1. Then, using (11) we obtain

° A A

3

Pu)=u?=u’+ v _iﬂiﬂ?)uz - (47 ~2c2, _4ﬂ2)u +i- (13)
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2
The cubic polynomial P(u) satisfies P(0)= ;—2 > 0. Then the curvature may be zero. We can
3
assume P(u) >0 has three real roots ¢, , «,, o, satisfying a; <0< a, <a,. Then, we can

write equation (13) in the form

(U)’ ~(u-a)(u-e,)(u-a;) =0
and the solution can be written in terms of the Jacobi elliptic function as

u=u(s) = a, +q°sn’(rs, p),
where

2
a,—a / 1
pPP=—L 0=, -, r = 4qp2 :E\/as_al-

O~y
The real roots «;, «a,, a, are also related to the coefficients of P(u) by the equations

2
420~ 2
/12

3

=0, t+a, A,

2
— 7 T o 0Q;,

2 a2
Ay 2;;2 4 Q0+ oy, + A,

Here, the formula for the curvature is

p’ S
k% =kt +—sn’(t, with t=—
o w? (tp) 2w

as Case 1. The parameters p, w and K are determined by the coefficients by the following

relations:
400 =X 1
TZ = BKS +W(p2 +1),
3
¢t _ ,,p° 2y, 1 2
1—2— _KO (W+KO)(W+KO)’
3
—4u® -2cA, +4/1j

1 : 1
= _Kj(v(pz+1)+2K§)+(%+K§)(W+K§).

3

Case 3: (Spacelike Kirchhoff elastic rod centerlines with spacelike principal normal)
Another case is ¢, = -1, g, = g =1. Then, using (11) we obtain
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2 2 2 2
P(u)=u?=-u’+ G +i/u'3)u2 _ba +2;;12 —4ur), +;—2. (14)
3 3 3

2
The cubic polynomial P(u) satisfies P(O):Z—2>O. Then the curvature may be zero. We
3
may assume P(u) >0 has three real roots «;, «,, a, satisfying o, <0<, <«,. Then, we

can write equation (14) in the form

(Us)2 +tU+a)u-a,)u-a;)=0
and the solution can be written in terms of the Jacobi elliptic function as

u=u(s) = a,(1-g’sn’(rs, p)),
where

2
2 _ 03—y 5, _—a, _ |aq° _1
pr=—"—qQ =——,I= > _51/0[34_0[1'

o+ ’ oy 4p
Also, a,, a,, a, are related to the coefficients of P(u) by

430+ 7,
R

=a-a,-a
1 2 3
A

2 _ 2
du 2;;2 4 a0, + 0, — A,y

The parameter K, iS maximum curvature, p and w with 0< p<w<1 control the

shape. The square of maximum curvature for y spacelike Kirchhoff elastic rod is
u@) =a, = Ks . Then, the formula for the curvature is

K* =K (1- p° sn’(z,p)) with z= °
0 ’ 2w

W2

The parameters p, w and K are determined by the coefficients by the following relations:

b+ 72 K
TZ = W—g(3W2 - P2 -1),
3
c? K 2N fur 12 2
— = ——(1-w)(w” - p?)
2 4 !
13 W

4u® -2ch,—4X  «!
pe L :W—3(2W2—3w4+2w2p2—p2).
3
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The shape of the non-null Kirchhoff elastic rod centerlines depends on 4,, 4,, 4, and

the constant of integration ¢, with 4 >0 determined by (10).
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