# KIRCHHOFF ELASTIC RODS IN MINKOWSKI 3-SPACE 

YASEMIN SOYLU ${ }^{1}$, AHMET YUCESAN ${ }^{2}$<br>Manuscript received: 14.06.2017; Accepted paper: 02.09.2017; Published online: 30.12.2017.


#### Abstract

We study Kirchhoff elastic rod whose centerlines are non-null curves in the Minkowski 3-space. In particular, we obtain the differential equation describing non-null Kirchhoff elastic rod centerlines. Afterwards, we solve this differential equation in terms of Jacobi elliptic functions for three different cases.


Keywords: Kirchhoff elastic rods, Jacobi elliptic functions, Minkowski 3-space, variational calculus.

## 1. INTRODUCTION

The classical mathematical models of equilibrium configurations of thin elastic rod are the elastic curves and the Kirchhoff elastic rods. Since the elastic curve is a critical curve of the energy of bending only, it is the simplest model. But the Kirchhoff elastic rod is a more complicated model and is a critical framed curve of the energy with the effects of both bending and twisting. The curve obtained by eliminating the frame of a Kirchhoff elastic rod is called a Kirchhoff elastic rod centerline. So, a Kirchhoff elastic rod centerline is a generalization of an elastic curve [10].

As mentioned above, the elastic curve is a minimizing the integral of the squared curvature among with specified boundary conditions. Many authors have studied the elastic curves in Euclidean, non-Euclidean spaces and a Riemannian manifold to date from the time of James Bernoulli in 1690s [3-6, 13, 17, 19, 22].

Kirchhoff rods in $\mathrm{R}^{3}$ have been studied by some authors [7-10, 14, 18, 19] after the study of Kirchhoff [11]. Kirchhoff rod centerlines in $\mathrm{R}^{3}$ by taking cylindrical coordinates are explicitly expressed in terms of Jacobi elliptic function and elliptic integrals in Euclidean 3space $\mathrm{R}^{3}$ by Langer and Singer [14], Shi and Hearst [18]. By using these explicit expressions, Ivey and Singer [6] completely classified the closed elastic rod centerlines in $\mathrm{R}^{3}$ and determined their knot types. Kirchhoff elastic rods are also studied by Kawakubo [7-10]. He generalized the Kirchhoff elastic rods in the 3 - dimensional Euclidean space $\mathrm{R}^{3}$ to a Riemannian manifold [7]. In 2004, he studied Kirchhoff elastic rods in the three-sphere $S^{3}$ [8]. Later, in 2008, he investigated the Kirchhoff elastic rods in the three-dimensional space forms [9]. Lastly, he examined Kirchhoff rod centerlines in five-dimensional space forms which are fully immersed and not helices [10].

It is important to work non-null curves because timelike curves correspond to the path of an observer moving at less than the speed of light and spacelike curves correspond to the

[^0]geometric equivalent of moving faster than light. Besides, the motion of a particle exposed only to gravity is modelled on a timelike geodesic in space-time [2].

In this paper, our purpose indicate the differential equation of Kirchhoff elastic rod whose centerlines are non-null curves in Minkowski 3-space $R_{1}^{3}$ and solve this differential equation in terms of Jacobi elliptic functions (see, for Jacobi elliptic functions [1]).

## 2. PRELIMINARIES

Let $\mathrm{R}_{1}^{3}$ denote a Minkowski 3-space with the Lorentzian metric given by

$$
<, .,>=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2},
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of $\mathrm{R}_{1}^{3}$. A vector $x$ of $\mathrm{R}_{1}^{3}$ is said to be spacelike if $\langle x, x\rangle\rangle 0$ or $x=0$, timelike if $\langle x, x\rangle\langle 0$ and lightlike (or null) if $\langle x, x\rangle=0$ and $x \neq 0$.

For any $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathrm{R}_{1}^{3}$, the Lorentzian vector product of $x$ and $y$ is defined by

$$
x \times y=\left(x_{3} y_{2}-x_{2} y_{3}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) .
$$

Let

$$
\begin{aligned}
\gamma: I \subset \mathrm{R} & \rightarrow \mathrm{R}_{1}^{3} \\
s & \rightarrow \gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s), \gamma_{3}(s)\right)
\end{aligned}
$$

be a smooth unit-speed curve in Minkowski 3-space $\mathrm{R}_{1}^{3}$, where $I$ is an open interval. A curve $\gamma$ is said spacelike (resp., timelike or lightlike) at $s \in I$ if $\gamma^{\prime}(s)$ is a spacelike (resp., timelike or lightlike) for all $s \in I$.

Now, we consider a curve $\gamma$ in Minkowski 3-space $\mathrm{R}_{1}^{3}$, parametrized by arc length $s, 0 \leq s \leq l$. At a point $\gamma(s)$ of $\gamma$, let $T=\gamma^{\prime}(s)$ denote the unit tangent vector to $\gamma$, let $N(s)$ denote the unit principal normal and $\varepsilon_{2} B(s)=T(s) \times N(s)$ is the unit binormal vector. Then $\{T, N, B\}$ is an orthonormal basis for all vectors at $\gamma(s)$ on $\gamma$ which is called the Frenet frame along $\gamma$. The derivative equations of Frenet frame $\{T, N, B\}$ are

$$
\left(\begin{array}{l}
T^{\prime}  \tag{1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \varepsilon_{1} \kappa & 0 \\
-\varepsilon_{0} \kappa & 0 & \varepsilon_{2} \tau \\
0 & -\varepsilon_{1} \tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right),
$$

where $\varepsilon_{0}=<T, T>= \pm 1, \varepsilon_{1}=<N, N>= \pm 1$ and $\varepsilon_{2}=<B, B>= \pm 1$. Also $\kappa$ and $\tau$ are the curvature and the torsion of $\gamma$, respectively (see [15, 16]).

## 3. VARIATION FORMULAS

Let $\gamma(t): I \rightarrow \mathrm{R}_{1}^{3}$ be a non-null curve in Minkowski 3- space $\mathrm{R}_{1}^{3}$. $V=V(t)$ will denote the tangent vector to $\gamma, T$ the unit tangent vector and $v$ the speed $v(t)=\| V(t)\left|=|<V(t), V(t)>|^{\frac{1}{2}}\right.$.

A variation of the curve $\gamma$ is defined by

$$
\begin{array}{rll}
\gamma:(-\delta, \delta) \times I & \rightarrow & \mathrm{R}_{1}^{3} \\
(w, t) & \rightarrow & \gamma(w, t)=\gamma_{w}(t)
\end{array}
$$

with $\gamma(0, t)=\gamma(t)$. Associated with such a variation is the variation vector field $W=\left.\frac{\partial \gamma_{w}}{\partial w}\right|_{w=0}$ along the curve $\gamma(t)$. More generally, we use $V=V(w, t), W=W(w, t), T=T(w, t)$, $v=v(w, t)$ etc., with the usual meaning. $V$ velocity vector is $V(0, t)=\frac{\partial \gamma}{\partial t}=v(0, t) T(0, t)$.

Now, we consider the functional is given by

$$
\mathrm{F}(\gamma)=\int_{0}^{1}\left(\lambda_{1}+\lambda_{2} \tau+\frac{\lambda_{3}}{2} \kappa^{2}\right) d s=\int_{0}^{1}\left(\lambda_{1}+\lambda_{2} \tau+\frac{\lambda_{3}}{2} \kappa^{2}\right) v d t .
$$

We will calculate the first variation of F in the direction of the variation vector field $W$ (see, for calculus of variations [20]). For this, we will need derivatives of $v, \kappa$ and $\tau$ in the direction of $W$.

We have the structural equations

$$
\begin{gather*}
X(Y)-Y(X)=[X, Y],  \tag{2}\\
X(Y(Z))-Y(X(Z))-[X, Y](Z)=0 \tag{3}
\end{gather*}
$$

for the vector fields $X, Y$ and $Z$ in $\mathrm{R}_{1}^{3}$ (see, [4, 13, 16, 21]). If we use equations (1), (2) and (3), we have following lemma.

Lemma 1. ([4, 5, 13, 21]) Using the above notation, the following allegations are true:

- $[W, V]=0$,
- $W(v)=\varepsilon_{0} v\left\langle W_{s}, T\right\rangle$,
- $[W, T]=-\varepsilon_{0}<W_{s}, T>T$,
- $W(\kappa)=<W_{s s}, N>-2 \varepsilon_{0} \kappa<W_{s}, T>$,
- $W(\tau)=\varepsilon_{1}\left(\left\langle W_{s s}, \frac{B}{\kappa}\right\rangle\right)_{s}-\varepsilon_{0}\left\langle W_{s}, \tau T-\kappa B\right\rangle$.


## 4. DIFFERENTIAL EQUATION OF NON-NULL KIRCHHOFF ELASTIC ROD CENTERLINES

In this section, we will obtain differential equation determining the non-null Kirchhoff elastic rod centerlines in Minkowski 3-space $R_{1}^{3}$. Now, we consider a non-null Kirchhoff elastic rod centerline as a critical point of the functional

$$
\mathrm{F}(\gamma)=\lambda_{1} \int_{0}^{l} d s+\lambda_{2} \int_{0}^{l} \tau d s+\frac{\lambda_{3}}{2} \int_{0}^{l} \kappa^{2} d s
$$

in Minkowski 3-space $\mathrm{R}_{1}^{3}$ of curves

$$
\begin{gathered}
\gamma:[0, \ell] \rightarrow \mathrm{R}_{1}^{3}, \quad\left\|\gamma^{\prime}(s)\right\|=1 \\
\gamma(0)=P_{0}, \quad \gamma(l)=P_{0}, \quad \gamma^{\prime}(0)=V_{0}, \quad \gamma^{\prime}(l)=V_{0} .
\end{gathered}
$$

Using Lemma 1 one obtains the first variation of $F$ in the direction of $W$

$$
\begin{align*}
& \delta F(\gamma)[W]=\int_{0}^{l}\left\{\left(\lambda_{3} \kappa W(\kappa)+\lambda_{2} W(\tau)\right) v+\left[\lambda_{1}+\lambda_{2} \tau+\frac{\lambda_{3}}{2} \kappa^{2}\right] W(v)\right\} d t \\
& =\int_{0}^{l}\left\{\lambda_{3} \kappa<W_{s s}, N>-\frac{3}{2} \varepsilon_{0} \lambda_{3} \kappa^{2}<W_{s}, T>+\varepsilon_{1} \lambda_{2}\left(\left\langle W_{s s}, \frac{B}{\kappa}\right\rangle\right)_{s}\right. \\
& \left.+\varepsilon_{0} \lambda_{2} \kappa<W_{s}, B>+\varepsilon_{0} \lambda_{1}<W_{s}, T>\right\} d s . \tag{4}
\end{align*}
$$

Later, if partial integration is used equation (4), we have

$$
\begin{align*}
\delta F(\gamma)[W]=\int_{0}^{l}( & \left.\lambda_{3} \kappa_{s s}+\frac{1}{2} \varepsilon_{0} \varepsilon_{1} \kappa\left(\lambda_{3} \kappa^{2}-2 \lambda_{1}\right)-\varepsilon_{1} \kappa \tau\left(-\varepsilon_{0} \lambda_{2}+\varepsilon_{2} \lambda_{3} \tau\right)\right)<W, N>d s \\
& +\int_{0}^{l}\left(\kappa_{s}\left(2 \varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)+\varepsilon_{2} \lambda_{3} \kappa \tau_{s}\right)<W, B>d s  \tag{5}\\
& +\left.\left(\frac{\varepsilon_{1} \lambda_{2}}{\kappa}<W_{s s}, B>+\lambda_{3} \kappa<W_{s}, N>\right)\right|_{0} ^{l} \\
& -\left(\left.\left\langle W, \frac{-2 \varepsilon_{0} \lambda_{1}+\varepsilon_{0} \lambda_{3} \kappa^{2}}{2} T+\lambda_{3} \kappa_{s} N+\kappa\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right) B>\right)\right|_{0} ^{l}\right.
\end{align*}
$$

The formula (5) can be written as

$$
\delta F(\gamma)[W]=\int_{0}^{l}\left\langle W, \xi[\gamma]>d s+\left.(\Psi[\gamma, W])\right|_{0} ^{l},\right.
$$

in terms of Euler and boundary operators $\xi[\gamma]$ and $\Psi[\gamma, W]$, where $l$ is the length of $\gamma$.
The term $\xi[\gamma]$ is

$$
\xi[\gamma]=\left(\lambda_{3} \kappa_{\mathrm{ss}}+\frac{1}{2} \varepsilon_{0} \varepsilon_{1} \kappa\left(\lambda_{3} \kappa^{2}-2 \lambda_{1}\right)-\varepsilon_{1} \kappa \tau\left(-\varepsilon_{0} \lambda_{2}+\varepsilon_{2} \lambda_{3} \tau\right)\right) N
$$

$$
+\left(\kappa_{s}\left(2 \varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)+\varepsilon_{2} \lambda_{3} \kappa \tau_{s}\right) B
$$

and $\Psi[\gamma, W]$ is

$$
\begin{aligned}
& \Psi[\gamma, W]=\left.\left(\frac{\varepsilon_{1} \lambda_{2}}{\kappa}<W_{s s}, B>+\lambda_{3} \kappa<W_{s}, N>\right)\right|_{0} ^{l} \\
& -\left.\left(\left\langle W, \frac{-2 \varepsilon_{0} \lambda_{1}+\varepsilon_{0} \lambda_{3} \kappa^{2}}{2} T+\lambda_{3} \kappa_{s} N+\kappa\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right) B\right\rangle\right)\right|_{0} ^{l} .
\end{aligned}
$$

Thus, under suitable boundary conditions, $\gamma$ is a critical point of $\mathrm{F}(\gamma)$ if and only if the following Euler-Lagrange equation $\xi[\gamma]=0$ is satisfied:

$$
\begin{gathered}
\lambda_{3} \kappa_{\mathrm{ss}}+\frac{1}{2} \varepsilon_{0} \varepsilon_{1} \kappa\left(\lambda_{3} \kappa^{2}-2 \lambda_{1}\right)-\varepsilon_{1} \kappa \tau\left(-\varepsilon_{0} \lambda_{2}+\varepsilon_{2} \lambda_{3} \tau\right)=0, \\
\kappa_{s}\left(2 \varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)+\varepsilon_{2} \lambda_{3} \kappa \tau_{s}=0 .
\end{gathered}
$$

In this case, the first variation formula reduces to

$$
\begin{equation*}
\delta F(\gamma)[W]=\left.(\Psi[\gamma, W])\right|_{0} ^{l}=\left.\left(\frac{\varepsilon_{1} \lambda_{2}}{\kappa}<W_{s s}, B>+\lambda_{3} \kappa<W_{s}, N>-<J, W>\right)\right|_{0} ^{l} . \tag{6}
\end{equation*}
$$

Here, we have set

$$
\begin{equation*}
J=\frac{-2 \varepsilon_{0} \lambda_{1}+\varepsilon_{0} \lambda_{3} \kappa^{2}}{2} T+\lambda_{3} \kappa_{s} N+\kappa\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right) B \tag{7}
\end{equation*}
$$

Formula (6) puts us in a position to apply the Noether to constants of motion along $\gamma$. First we consider translational their infinitesimal counterparts, the constant vector fields clearly zero, then we have

$$
0=\delta F(\gamma)[W]=\left.(<J, W>)\right|_{0} ^{l}=<J(l), W(l)>-<J(0), W(0)>.
$$

The variation formulas continue to hold when $l$ is replaced with any intermediate $l^{\prime}$, $0<l^{\prime}<l$. It follows that $\left.<J, W\right\rangle$ is constant on [0,l]. Yet, $W$ is an arbitrary constant field, so we have the following theorem:

Theorem 2. $J=\frac{-2 \varepsilon_{0} \lambda_{1}+\varepsilon_{0} \lambda_{3} \kappa^{2}}{2} T+\lambda_{3} \kappa_{s} N+\kappa\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right) B$ is a constant vector field along non-null Kirchhoff elastic rod in equilibrium.

Take into consideration $J$ corresponds to $-F$, where $F$ is the (constant) force along the rod (see, [12]). The converse to this result is an immediate consequence of the observation that $J_{s}=\xi[\gamma]$ for any non-null curve $\gamma$.

Proposition 3. If $J=\frac{-2 \varepsilon_{0} \lambda_{1}+\varepsilon_{0} \lambda_{3} \kappa^{2}}{2} T+\lambda_{3} \kappa_{s} N+\kappa\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right) B$ is a constant vector field along a non-null curve $\gamma$, then $\gamma$ satisfies the Euler equations $\xi[\gamma]$.

Corollary 4. The curvature and torsion of a non-null Kirchhoff elastic rod centerline provide the following pair of equations:

$$
\text { constant }=\mu^{2}=\varepsilon_{0} \frac{\left(2 \lambda_{1}-\lambda_{3} \kappa^{2}\right)^{2}}{4}+\varepsilon_{1} \lambda_{3}^{2} \kappa_{s}^{2}+\varepsilon_{2} \kappa^{2}\left(\varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)^{2}
$$

and

$$
\begin{equation*}
0=\left[\kappa^{2}\left(2 \varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)\right]_{s} . \tag{8}
\end{equation*}
$$

In the above corollary, if the equation (8) is integrated, we have

$$
\begin{equation*}
\kappa^{2}\left(2 \varepsilon_{2} \lambda_{3} \tau-\varepsilon_{0} \lambda_{2}\right)=c=\text { constant } \tag{9}
\end{equation*}
$$

Using equations (7) and (9) we obtain the differential equation describing Kirchhoff elastic rod whose centerline is non-null curve in Minkowski 3-space as follow:

$$
\begin{equation*}
\mu^{2}=<J, J>=\varepsilon_{0} \frac{\left(2 \lambda_{1}-\lambda_{3} \kappa^{2}\right)^{2}}{4}+\varepsilon_{1} \lambda_{3}^{2} \kappa_{s}^{2}+\varepsilon_{2} \frac{\left(c-\varepsilon_{0} \lambda_{2} \kappa^{2}\right)^{2}}{4 \kappa^{2}} . \tag{10}
\end{equation*}
$$

## 5. SOLUTION OF DIFFERENTIAL EQUATION

Solving the differential equation (10) are given in terms of three parameters $p, w$, $\kappa_{0}$ and Jacobi elliptic function $\operatorname{sn}(x, p)$. Making the change of variable $u=\kappa^{2}$, we arrive

$$
\begin{equation*}
P(u)=u_{s}^{2}=-\varepsilon_{0} \varepsilon_{1} u^{3}-\frac{\varepsilon_{1}\left(\varepsilon_{2} \lambda_{2}^{2}-4 \varepsilon_{0} \lambda_{1} \lambda_{3}\right)}{\lambda_{3}^{2}} u^{2}-\frac{\varepsilon_{1}\left(4 \varepsilon_{0} \lambda_{1}^{2}-2 \varepsilon_{0} \varepsilon_{2} c \lambda_{2}-4 \mu^{2}\right)}{\lambda_{3}^{2}} u-\frac{\varepsilon_{1} \varepsilon_{2} c^{2}}{\lambda_{3}^{2}} \tag{11}
\end{equation*}
$$

We then consider the three possible cases for non-null Kirchhoff elastic rod centerlines.

Case 1: (Timelike Kirchhoff elastic rod centerlines) Let us consider the case $\varepsilon_{0}=-1$, $\varepsilon_{1}=\varepsilon_{2}=1$. Then, from (11) we have

$$
\begin{equation*}
P(u)=u_{s}^{2}=u^{3}-\frac{\left(\lambda_{2}^{2}+4 \lambda_{1} \lambda_{3}\right)}{\lambda_{3}^{2}} u^{2}-\frac{\left(-4 \lambda_{1}^{2}+2 c \lambda_{2}-4 \mu^{2}\right)}{\lambda_{3}^{2}} u-\frac{c^{2}}{\lambda_{3}^{2}} . \tag{12}
\end{equation*}
$$

This $\left(u_{s}\right)^{2}=P(u)=0$ equation is solved by using Jacobi elliptic functions. The cubic polynomial $P(u)$ satisfies $P(0)=-\frac{c^{2}}{\lambda^{2}} \leq 0$. Then, the curvature is non-zero. Moreover, if $u=\kappa^{2}$ is a non-constant solution to (12), it must clearly take on values at which $P(u)>0$. Now, we may assume $P(u)$ has three real roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying $0<\alpha_{3}<\alpha_{2}<\alpha_{1}$. Then, we can write equation (12) in the form

$$
\left(u_{s}\right)^{2}-\left(u-\alpha_{1}\right)\left(u-\alpha_{2}\right)\left(u-\alpha_{3}\right)=0
$$

and the solution can be written in terms of the Jacobi elliptic function as

$$
u=u(s)=\alpha_{1}+q^{2} s n^{2}(r s, p)
$$

where

$$
p^{2}=\frac{\alpha_{2}-\alpha_{1}}{\alpha_{3}-\alpha_{1}}, q^{2}=\alpha_{2}-\alpha_{1}, r=\sqrt{\frac{q^{2}}{4 p^{2}}}=\frac{1}{2} \sqrt{\alpha_{3}-\alpha_{1}} .
$$

Of course, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are related to the coefficients of $P(u)$ by

$$
\begin{aligned}
\frac{4 \lambda_{1} \lambda_{3}+\lambda_{2}^{2}}{\lambda_{3}^{2}} & =\alpha_{1}+\alpha_{2}+\alpha_{3}, \\
\frac{c^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{2} \alpha_{3}, \\
\frac{4 \mu^{2}-2 c \lambda_{2}+4 \lambda_{1}^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3} .
\end{aligned}
$$

The parameter $\kappa_{0}$ is maximum curvature, $p$ and $w$ with $0 \leq p \leq w \leq 1$ control the shape. The square of maximum curvature for $\gamma$ timelike Kirchhoff elastic rod centerlines are $u(0)=\alpha_{1}=\kappa_{0}^{2}$. Then, the formula for the curvature is

$$
\kappa^{2}=\kappa_{0}^{2}+\frac{p^{2}}{w^{2}} s n^{2}(t, p) \quad \text { with } t=\frac{s}{2 w} \text {. }
$$

The parameters $p, w$ and $\kappa_{0}$ are determined by the coefficients by the following relations:

$$
\begin{aligned}
\frac{4 \lambda_{1} \lambda_{3}+\lambda_{2}^{2}}{\lambda_{3}^{2}} & =3 \kappa_{0}^{2}+\frac{1}{w^{2}}\left(p^{2}+1\right), \\
\frac{c^{2}}{\lambda_{3}^{2}} & =\kappa_{0}^{2}\left(\frac{p^{2}}{w^{2}}+\kappa_{0}^{2}\right)\left(\frac{1}{w^{2}}+\kappa_{0}^{2}\right), \\
\frac{4 \mu^{2}-2 c \lambda_{2}+4 \lambda^{2}}{\lambda_{3}^{2}} & =\kappa_{0}^{2}\left(\frac{1}{w^{2}}\left(p^{2}+1\right)+2 \kappa_{0}^{2}\right)+\left(\frac{p^{2}}{w^{2}}+\kappa_{0}^{2}\right)\left(\frac{1}{w^{2}}+\kappa_{0}^{2}\right) .
\end{aligned}
$$

Case 2: (Spacelike Kirchhoff elastic rod centerlines with timelike principal normal) In this case $\varepsilon_{1}=-1, \varepsilon_{0}=\varepsilon_{2}=1$. Then, using (11) we obtain

$$
\begin{equation*}
P(u)=u_{s}^{2}=u^{3}+\frac{\left(\lambda_{2}^{2}-4 \lambda_{1} \lambda_{3}\right)}{\lambda_{3}^{2}} u^{2}+\frac{\left(4 \lambda_{1}^{2}-2 c \lambda_{2}-4 \mu^{2}\right)}{\lambda_{3}^{2}} u+\frac{c^{2}}{\lambda_{3}^{2}} . \tag{13}
\end{equation*}
$$

The cubic polynomial $P(u)$ satisfies $P(0)=\frac{c^{2}}{\lambda_{3}^{2}}>0$. Then the curvature may be zero. We can assume $P(u)>0$ has three real roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying $\alpha_{3}<0<\alpha_{2}<\alpha_{1}$. Then, we can write equation (13) in the form

$$
\left(u_{s}\right)^{2}-\left(u-\alpha_{1}\right)\left(u-\alpha_{2}\right)\left(u-\alpha_{3}\right)=0
$$

and the solution can be written in terms of the Jacobi elliptic function as

$$
u=u(s)=\alpha_{1}+q^{2} s n^{2}(r s, p)
$$

where

$$
p^{2}=\frac{\alpha_{2}-\alpha_{1}}{\alpha_{3}-\alpha_{1}}, q^{2}=\alpha_{2}-\alpha_{1}, r=\sqrt{\frac{q^{2}}{4 p^{2}}}=\frac{1}{2} \sqrt{\alpha_{3}-\alpha_{1}} .
$$

The real roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are also related to the coefficients of $P(u)$ by the equations

$$
\begin{aligned}
\frac{4 \lambda_{1} \lambda_{3}-\lambda_{2}^{2}}{\lambda_{3}^{2}} & =\alpha_{1}+\alpha_{2}+\alpha_{3}, \\
-\frac{c^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{2} \alpha_{3}, \\
-\frac{4 \mu^{2}+2 c \lambda_{2}-4 \lambda_{1}^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3} .
\end{aligned}
$$

Here, the formula for the curvature is

$$
\kappa^{2}=\kappa_{0}^{2}+\frac{p^{2}}{w^{2}} s n^{2}(t, p) \text { with } t=\frac{s}{2 w}
$$

as Case 1. The parameters $p, w$ and $\kappa_{0}$ are determined by the coefficients by the following relations:

$$
\begin{aligned}
\frac{4 \lambda_{1} \lambda_{3}-\lambda_{2}^{2}}{\lambda_{3}^{2}} & =3 \kappa_{0}^{2}+\frac{1}{w^{2}}\left(p^{2}+1\right), \\
\frac{c^{2}}{\lambda_{3}^{2}} & =-\kappa_{0}^{2}\left(\frac{p^{2}}{w^{2}}+\kappa_{0}^{2}\right)\left(\frac{1}{w^{2}}+\kappa_{0}^{2}\right), \\
\frac{-4 \mu^{2}-2 c \lambda_{2}+4 \lambda^{2}}{\lambda_{3}^{2}} & =\kappa_{0}^{2}\left(\frac{1}{w^{2}}\left(p^{2}+1\right)+2 \kappa_{0}^{2}\right)+\left(\frac{p^{2}}{w^{2}}+\kappa_{0}^{2}\right)\left(\frac{1}{w^{2}}+\kappa_{0}^{2}\right) .
\end{aligned}
$$

Case 3: (Spacelike Kirchhoff elastic rod centerlines with spacelike principal normal) Another case is $\varepsilon_{2}=-1, \varepsilon_{0}=\varepsilon_{1}=1$. Then, using (11) we obtain

$$
\begin{equation*}
P(u)=u_{s}^{2}=-u^{3}+\frac{\left(\lambda_{2}^{2}+4 \lambda_{1} \lambda_{3}\right)}{\lambda_{3}^{2}} u^{2}-\frac{\left(4 \lambda_{1}^{2}+2 c \lambda_{2}-4 \mu^{2}\right)}{\lambda_{3}^{2}} u+\frac{c^{2}}{\lambda_{3}^{2}} . \tag{14}
\end{equation*}
$$

The cubic polynomial $P(u)$ satisfies $P(0)=\frac{c^{2}}{\lambda_{3}^{2}}>0$. Then the curvature may be zero. We may assume $P(u)>0$ has three real roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$ satisfying $\alpha_{1}<0<\alpha_{2}<\alpha_{3}$. Then, we can write equation (14) in the form

$$
\left(u_{s}\right)^{2}+\left(u+\alpha_{1}\right)\left(u-\alpha_{2}\right)\left(u-\alpha_{3}\right)=0
$$

and the solution can be written in terms of the Jacobi elliptic function as

$$
u=u(s)=\alpha_{3}\left(1-q^{2} s n^{2}(r s, p)\right)
$$

where

$$
p^{2}=\frac{\alpha_{3}-\alpha_{2}}{\alpha_{3}+\alpha_{1}}, q^{2}=\frac{\alpha_{3}-\alpha_{2}}{\alpha_{3}}, r=\sqrt{\frac{\alpha_{3} q^{2}}{4 p^{2}}}=\frac{1}{2} \sqrt{\alpha_{3}+\alpha_{1}} .
$$

Also, $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are related to the coefficients of $P(u)$ by

$$
\begin{aligned}
-\frac{4 \lambda_{1} \lambda_{3}+\lambda_{2}^{2}}{\lambda_{3}^{2}} & =\alpha_{1}-\alpha_{2}-\alpha_{3}, \\
-\frac{c^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{2} \alpha_{3}, \\
\frac{4 \mu^{2}-2 c \lambda_{2}-4 \lambda_{1}^{2}}{\lambda_{3}^{2}} & =\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{2}-\alpha_{2} \alpha_{3} .
\end{aligned}
$$

The parameter $\kappa_{0}$ is maximum curvature, $p$ and $w$ with $0 \leq p \leq w \leq 1$ control the shape. The square of maximum curvature for $\gamma$ spacelike Kirchhoff elastic rod is $u(0)=\alpha_{3}=\kappa_{0}^{2}$. Then, the formula for the curvature is

$$
\kappa^{2}=\kappa_{0}^{2}\left(1-\frac{p^{2}}{w^{2}} s n^{2}(z, p)\right) \quad \text { with } \quad z=\frac{\kappa_{0} s}{2 w} .
$$

The parameters $p, w$ and $\kappa_{0}$ are determined by the coefficients by the following relations:

$$
\begin{aligned}
\frac{4 \lambda_{1} \lambda_{3}+\lambda_{2}^{2}}{\lambda_{3}^{2}} & =\frac{\kappa_{0}^{2}}{w^{2}}\left(3 w^{2}-p^{2}-1\right), \\
\frac{c^{2}}{\lambda_{3}^{2}} & =-\frac{\kappa_{0}^{6}}{w^{4}}\left(1-w^{2}\right)\left(w^{2}-p^{2}\right), \\
\frac{4 \mu^{2}-2 c \lambda_{2}-4 \lambda_{1}^{2}}{\lambda_{3}^{2}} & =\frac{\kappa_{0}^{4}}{w^{4}}\left(2 w^{2}-3 w^{4}+2 w^{2} p^{2}-p^{2}\right) .
\end{aligned}
$$

The shape of the non-null Kirchhoff elastic rod centerlines depends on $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and the constant of integration $c$, with $\mu>0$ determined by (10).

Acknowledgments: This work is supported by the Unit of Scientific Research Projects Coordination of Süleyman Demirel University under project 1916-YL-09.

## REFERENCES

[1] Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U. S. Government Printing Office, Washington, D. C., 1964.
[2] Beem, J. K., Ehrlich, P. E., Easley, K. L., Global Lorentzian Geometry, Marcel Dekker Inc. New York, 1996.
[3] Brunnett, G., Crouch, P. E., Elastic Curves on the Sphere, Naval Postgraduate School, Monterey, California, 1993.
[4] Huang, R., Shang, D., Applied Mathematics and Mechanics, 30(9), 1193, 2009.
[5] Huang, R., Junyan, Y., International Journal of Geometric Methods in Modern Physics, 13(4), 2016.
[6] Ivey, T. A., Singer, D. A., Proceedings of the London Mathematical Society, 79(2), 429, 1999.
[7] Kawakubo, S., Tohoku Mathematical Journal, 54(2), 179, 2002.
[8] Kawakubo, S., Tohoku Mathematical Journal, 56(2), 205, 2004.
[9] Kawakubo, S., Journal of the Mathematical Society of Japan, 60(2), 551, 2008.
[10] Kawakubo, S., Journal of Geometry and Physics, 76, 158, 2014.
[11] Kirchhoff, G., J. Reine Angew. Math., 56, 285., 1859.
[12] Landau, L., Lifshitz, E., Theory of Elasticity, Pergamon Press, Elmsford, NY, Oxford, 1959.
[13] Langer, J., Singer, D. A., Journal of Differential Geometry, 20(1), 1, 1984.
[14] Langer, J., Singer, D. A., SIAM Review, 38(4), 605, 1996.
[15] Lopez, R., International Electronic Journal of Geometry, 7(1), 44, 2014.
[16] O’Neill, B., Semi-Riemann Geometry with Applications to Relativity, Academic Pres. New York, 1993.
[17] Sager, I., Abazari, N., Ekmekci, N., Yaylı, Y., Int. J. Contemp. Math. Sciences, 6(7), 309, 2011.
[18] Shi, Y., Hearst J., Journal of Chemical Physics, 101(6), 5186, 1994.
[19] Singer, D., Lectures on elastic curves and rods, AIP Conf. Proc. 1002, Amer. Inst. Phys., Melville. New York, 2008.
[20] Weinstock, R., Calculus of variations with applications to physics and engineering, Dover Pub. Inc. New York, 1974.
[21] Yay, Y., Kirchhoff Elastic Rods in Minkowski 3-Space, Msc Thesis, Süleyman Demirel University, Isparta, 2010 .
[22] Yücesan, A., Oral, M., International Journal of Geometric Methods in Modern Physics, 8(1), 1, 2011.


[^0]:    ${ }^{1}$ Giresun University, Faculty of Science and Arts, Department of Mathematics, 28100 Giresun, Turkey.
    E-mail: yasemin.soylu@giresun.edu.tr.
    ${ }^{2}$ Süleyman Demirel University, Faculty of Science and Arts, Department of Mathematics, 32260 Isparta, Turkey. E-mail: ahmetyucesan@sdu.edu.tr.

