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Abstract. In this paper, we firstly present a new approach for the computation of the 

energy of the moving particle in a Lie group R  for a given reference system K . In this 
approach, we use geometrical descriptions of the curvature and torsion functions of the curve 
for the calculation. Then we consider a second reference system ,K which moves relative to 
K  for an arbitrary direction with a uniform velocity under the Galilean transformation. 
Finally, we compute the relativistic energy of the moving particle considering relative 
reference system K . 

Mathematics Subject Classifications: 53C80, 53A04. 
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1. INTRODUCTION  
 

 
 Relativity principle quest for the ultimate understanding of how does an event 

perceive in one state or place from the other. If the event taking place in one state or place of 
motion is observed differently from the other, a question appears on how should laws of 
physics are implemented to this relative concept? Before the theory of special relativity of 
Einstein, the relativity principle of the motion of a particle, whose velocity much less than 
velocity of light, is determined by the Galilean relativity. 

In the theory of the classical mechanics, time difference is the same between any two 
happenings in every coordinate system since time is assumed to be absolute. This is one of the 
major distinctions between the Galilean relativity and modern relativity theory, which states 
that velocity of light is the same for all observers in vacuum [1-3]. 

In [4], we had already investigated energy of the moving particle lying on any inertial 
frame of reference in a Lie group R.  Now, we examine relativistic energy of the observed 
moving particle lying on the relative reference frame, which moves with uniform velocity 
such that it is not comparable to the velocity of light with respect to the first inertial frame in a 
Lie group R.  By doing this, we have a chance to compare to the energy and relativistic 
energy of the moving particle and observed moving particle. 

Some advantages of choosing a Lie group can be listed as follows. Firstly, Lie group 
is not only a smooth manifold but also an algebraic group for which the operation of a group 
is given by composition of smooth invertible functions. Secondly, transformations of the 
reference time, location, state or orientation of uniform translation at uniform velocity are 
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known as Galilean transformations, which forms a Lie group except for reflections. Further, 
we also know that Galilean group (3)G  preserves consequences of relative orientation, 
measuring time and length intervals in different inertial frames of motion associated with each 
other by Galilean transformations. 

Foundations of the Lie group is based on continuous transformation group, which can 
be demonstrated as the rigid motion of a ball continuously with a painted design on it in three 
dimensional space. Another field of study that has the mechanics of continuum is elasticity 
theory in which solids are thought as nearly rigid materials and continuous such that they can 
be deformable slightly with an external force. Using this close relation, we give a correlation 
between the relativistic energy of the observed moving particle and bending energy of 
elastica, which is a variational problem proposed firstly by Daniel Bernoulli to Leonard Euler 
in 1744 [5-7]. 

Some studies that motivate us working on this topic can be listed as the following. 
Unit vector field's energy was studied by Wood [8]. Gil-Medrano [9], worked on the relation 
between energy and volume of vector fields. Other studies [10, 11] investigated energy 
distributions and corrected energy distributions on Riemannian manifolds. Altin [12] 
computed energy of Frenet vector fields for given non-lightlike curves in semi-Euclidean 
space. Körpinar [13] discussed timelike biharmonic particle's energy in Heisenberg spacetime. 
Kumar and Srivastava [14] presented changes in curvature and torsion under the relative 
motion. 

 
 

2. PRELIMINARIES 
 
 
2.1. FRENET FRAME IN LIE GROUPS 

 
 
Let R  be a Lie group with a bi-invariant metric ,  and   be a Levi-Civita 

connection of R . If h  shows Lie algebra of R,  then we get isomorphism between h  and 

R,jT  where j  is natural element of R . For a bi-invariant metric  , on R  it is obtained that 

 
     ,,, YLK,=YL,K  

and 

  LK,=LK 2

1
D

 
 

for all .hYL,K,  

Let R:γ RI  be an arc-lengthed curve and  nKKK ,...,, 21  be a orthonormal 

basis of .h  Then for any two vector fields P  and Q  it is written that aa

n

a
p K=P  1=

 and 

aa

n

a
q K=Q  1=

 along the curve γ , where RIpa :  and RIqa =  are smooth functions.

If P  and Q  are any two vector fields, then Lie bracket is written in the following form.  

    .,=
1=

baaa

n

a

qp KKQP,   

 
Covariant derivative of P  along the curve γ is stated by 
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   ,
2

1
0 P,eP=P

γ

'
'D  

 

where a

n

a

'

dt

d
K

p
P  1=

=  and    .18150 'γ=e Frenet apparatus of the curve γ is represented 

by elements        ,210 ,e,e,e  in a 3-dimensional Lie group R.  

Characterization of the intrinsic geometric properties of a parameterized curve γ  can 
most subtly be determined by using Serret-Frenet equations. Frenet tetrad frame is consisted 
of three orthonormal vectors  ,


e  assuming the curve γ  is sufficiently smooth at each point. 

The index within the parenthesis is the tetrad index that describes particular member of the 
tetrad. In particular,  


0e  is the unit tangent vector,  


1e  is the unit normal, and  


2e  is the unit 

binormal vector of the curve ,  respectively. Orthonormality conditions are summarized by 

    ,= 




 ee  where   is Euclidean metric such that: diag  .1,1,1  For non-negative 

coefficients ,,  and vectors   0,1,2=ii
e  following equations and properties are satisfied 

 16,17 . 
 

  
 ,= 1

0 


e
e

ds


 

  
     ,2.1= 20

1 


 ee
e

R


ds
 (1) 

      ,= 1
2 


 e
e

R 


ds
 

 
where Lie group R  has the Levi-Civita connection   and  

 

       

210 ,

2

1
= ee,eτR  

or equivalently 

             .
4

1

2

1
=

2

0020002
'''' 


e,ee,e,eτR   

 
 
Proposition 2.1 Let R be a 3-dimensional Lie group induced with a bi-invariant 

metric, then we have following statements; 
  0=Ri  if R  is Abelian group. 

  1=Rii   if R is .2SU  

 
2

1
=Riii   if R  is  3 16,  19 .SO  
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2.2. ENERGY ON THE UNIT VECTOR FIELD IN 3R  
 
 
We firstly give the fundamental definitions and propositions, which are used to 

compute the energy of the unit vector field. 

Definition 2.2 Let  ,M  and  ,N h  be two Riemannian manifolds then energy of a 

differentiable map    hNMf
~

,,:   can be defined as  
 

        ,,
~

2

1
=

1=

vedfedfhfnergy aa

n

a
M  (2.2) 

 
where  ae  is a local basis of the tangent space and v  is the canonical volume form in M [8] . 

 
Proposition 2.3 Let   MTMTTQ 11:   be the connection map. Then following two 
conditions hold. 

i)  dQ  =  and ,~=  Q  where   MTMTT 11:~  is the tangent bundle 
projection; 

ii) for  MTx and a section MTM 1:  ; we have 

 
    ,=  dQ  (2.3) 

 
where   is the Levi-Civita covariant derivative [8,  12] . 

 
Definition 2.4 Let  ,, 1

21 MTT   then we define 

 
            .,,=, 212121  QQddS   (2.4) 

 
This yields a Riemannian metric on TM . As known S  is called the Sasaki metric that also 

makes the projection : MMT 1  a Riemannian submersion. 
 

Theorem 2.5 Let  s  be a unit speed curve defined on 3-dimensional Lie group then we can 
derive following relations on the energy of tangent, normal, and binormal vectors 
respectively. 

   ),(
2

1
= 2

00 dssnergy
s
  e  

     ),)((
2

1
= 22

01 dssnergy
s

Re      

     ),(
2

1
= 2

02 dssnergy
s

Re      

 
where  ,  are curvature and torsion of the curve  ,sγ  .12  

 
Proof. From (2.2) and (2.3) we know that 
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            .,
2

1
= 000000 dsddnergy S

s
)(ee)(eee     

 
 
 
Using the Eq. (2.4) we also have 
 

                 )))(ee))(ee)(ee)(ee   00000000 (,((=, ddddS  

         ).(,(( 0000 ))(ee))(ee  QQ  

 
Since  


0e  is a section, we get 

 
     .=)((=)()( 00 TCC ididdddd =)ee     

 
We also induce following equality by the previous statement. 
 

    
 

    .e=e))(ee
e




  10
0

00 =( Q  

 
Thus, we find from (2.1)  
 

              
 

 
 

  







 





  0

0
0

0
000000 ,,=, eeee)(ee)(ee

ee
DDddS  

 .1= 2  
 
So, we can easily obtain 
 

   ).(
2

1
= 2

00 dssnergy
s
  e  

 
This completes the proof. 

 
 

3. RELATIVISTIC ENERGY ON THE MOVING INERTIAL FRAME 
 
 
Let K  be the first system that contains a moving particle in a 3-dimensional Lie gorup 

R  such that it has three position vectors with a time parameter. Then we can define another 
moving relative system K  corresponding to K  such that it moves with uniform velocity v  

relatively to the K  on the direction of       ,eeev vcba )(= 210
 



 where Rcba ,,  and 

.= v


v  

Let assume that motion of the moving particle in the 3-dimensional Lie gorup R  
corresponds to a space curve  , whose Frenet frame characterization is defined in (2.1).  
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Under the Galilean transformation we can transfer this construction to the moving relative 
inertial system K as the following. 

 

    = , = ,s s s s s


     v  (3.1) 

where  , ss are time parameters for the moving particle in the inertial sytem of K  and relative 

inertial system ,K  respectively.  We will use s  in the moving relative inertial system K  

instead of s  due to the equality given in (3.1) . Thus, we obtain the observed curve  s  for 
the relative system as 
 

           .)(= 210 scbavss  eee   (3.2) 

 
Theorem 3.1 The Frenet frame elements for the observed curve  sγ  are stated in terms of 
the element of the first system as the following. 
 

             
  100 1= eee R bscsavasbv 


 

      ,2
 eR csbv   

       
 

 0
2

1 2
1

= ee R scsabsbv ' 


 

    RR 


  cscsaasbv '' 22((
1 2  

        sascvsb RRR e 


   
2

1
2 (

1
))  

      ,)2 2
 eRR sbb '  

         sascbscsav RRRe 


 

 22
2 (((

1
=  (3.3) 

        saasbvcsbvsbb ''   2(()2 2
RRR  

        
 0

2 )))2 eRRR sbcsc '   

        RRR 


  bsascvasvbv 2(1(
1 2  

          
 1

22 )2) eRRR scsabsbcsbvsb ''   

   scsaasbvasbv ''
R


  2())(((((1

1 2  

     ))2 2 sbc RR    

      ,))2)(( 2
22  eRR scsabsbbscsav '   

 
where  ,  are curvature and torsion of the  sγ  and   is the curvature of the observed 

curve  .sγ  We can also express the curvature and torsion of the observed curve  sγ  by 
using the first system as follows.  
 

     scvsavcavssbv '''
RR   ()2(())()2(((= 22  

      RRR   2(())()2 222 bvbvs  
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       ,)))() 2

1
2 acvss'  RRR  

 

       sascbscsav
u RRR   22 (((
1

=  

         asbvcsbvsbb ' 2(()2 2  RRR  

       ''''' bvsbvsbcscsa  3))(2 2  RRR  

      RRR   cvscvscvsavav ''' 3233 2  

       scvasvbvsbvvsb 2232 (1(() RR    

       )2 sbbsa '
RRR    

       sbvscsabsbcsbv '''  3)(2 22  RR  

    '''''' cvscvsavavbv RR   333 2  

        scavbvsbv ' )(33 332
RRRR    

     sbvasbvscav 2())(((((1)))(   RR  

       ))22 2 sbcscsaa ''
RRR    

   sabsbbscsav ' 22 2)((   R  

      2332))( RRR   cvavsavsavsc ''  

          RRRRR  sbvbvscv '''' 33  

     ))),32 sbvsbv RR    
where  

       sascbscsavu RRR   22 ((=  

         ()2 csbvsbb '  RRR  

       222 )))22( sbcscsaasbv ''
RRR    

        RRR   bsascvasvbv 2(1( 2  

      222 )))(2() scsabsbcsbvsb ''
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Proof. From (3.1)  and (3.2)  we know that  
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If we take derivative of γ  with respect to s  parameter bear in the mind the fact that 

ss = and use the Frenet frame given  ,2.1  then we get  
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We can find the desired result by using standard method and usual definitions of 
Frenet frame as the following.  
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After this introductory theorem, which informs us about the Frenet frame construction 

on the relative moving inertial system, we are ready to present the core idea of this study. In 
the theory of relativity, all the energy moving through an object contributes to the body's total 
mass that measures how much it can resist to acceleration. Each kinetic and potential energy 
makes a highly proportional contribution to the mass  1513 . In this study not only we 
compute the relativistic energy of the moving particle in the moving inertial system but we 
also investigate its close correlation with bending energy of elastica, which is a variational 
problem proposed firstly by Daniel Bernoulli to Leonard Euler in 1744. Elastica of bending 
energy formula for a space curve in the 3-dimensional Frenet curvature along the curve is 
given by  

 ,
2

1
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where s  is an arclength and 
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Theorem 3.2 Relativistic energy of the tangent vector of the observed curve γ  in the moving 

relative system K  is stated by 
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Proof. From (2.2)  and (2.3)  we know that 
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Using the Eq. (2.3)  we have 
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Since  

0e  is a section, we also get 
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We also know by the previous definition 
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Thus, we find from (2.1)  
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So we can easily obtain the desired result by using the above statement. 

We have following graph, which illustrates a relation between on the variation of the 
energy of tangent vector field of the curve  in the rest system K  and the energy of tangent 
vector field of the observed curve   in the moving relative system K  with respect to time. 

 

 
Figure 1. Energy variation graph for tangent vector field of a given curve. 

 
 
Now we will examine some special motion of the moving inertial system. 

 
Corollary 3.3 If the relatively moving inertial system K moves parallel to tangent of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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Proof. By the assumption, we know that relative system moves on the direction of 

  ,(= 0 va )ev   where v  is the velocity. Then energy of the tangent vector of the observed curve 

can be computed by using the similar argument as in Theorem 3.2. Second part of the proof is 
obvious if we consider the formula of the bending energy of elastica. 

 
Corollary 3.4 If the relatively moving inertial system K moves parallel to normal of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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Corollary 3.5 If the relatively moving inertial system K moves parallel to binormal of the 
unit speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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We have following diagram as a demonstration to observe the variation of the energy 

in the tangent vector field of the observed curve with respect to the motion of relative system. 

Here      
  

BNT
nergynergynergy 000 ,, eee  represent energy of the tangent vector of the 

observed curve   in the relative system, which acting parallel to tangent, normal, and 
binormal of the unit speed curve ,Γ  respectively. 

 

  
Figure 2. Energy variation graph for tangent vector field of an observed curve. 

 
Theorem 3.6 Relativistic energy of the normal vector of the observed curve γ  in the moving 

relative system K is stated by 
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where   ,  are defined as in Theorem 3.1. 

 
Proof. It is obvious if we consider the following equality. 
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The rest of the proof can be done similarly as in the proof of Theorem 3.2. 

We have following graph, which illustrates a relation between on the variation of the 
energy of normal vector field of the curve  in the rest system K  and the energy of normal 
vector field of the observed curve   in the moving relative system K  with respect to time. 

 

  
Figure 3. Energy variation graph for normal vector field of a given curve. 

 
Corollary 3.7 If the relatively moving inertial system K moves parallel to tangent of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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Corollary 3.8 If relatively moving inertial system K moves parallel to normal of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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Corollary 3.9 If relatively moving inertial system K moves parallel to binormal of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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or equivalently 
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We have following diagram as a demonstration to observe changes on the energy of 

normal vector field of the observed curve with respect to the motion of relative system and 

time. Here      
  
BNT

nergynergynergy 111 ,, eee  represent energy of the normal vector field of 

the observed curve   in the relative system, which acting parallel to tangent, normal, and 
binormal of the unit speed curve ,  respectively. 

 

 
Figure 4. Energy variation graph for normal vector field of an observed curve. 

 
Theorem 3.10 Relativistic energy of binormal vector of the observed curve γ  in the moving 

relative system K  is stated by 
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where   ,  are defined as in Theorem 3.1. 

 
Proof. By the Frenet Equation defined in  ,2.1  we have  
 

       .= 12


   ee R  

The rest of the proof can be done similarly as proof of Theorem 3.2. 
We have following graph, which illustrates a relation between on the variation of the 

energy of binormal vector field of the curve   in the rest system K  and the energy of 
binormal vector field of the observed curve   in the moving relative system K  with respect 
to time. 

 

  
Figure 5. Energy variation graph for binormal vector field of a given curve. 

 
Corollary 3.11 If relatively moving inertial system K moves parallel to tangent of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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Corollary 3.12 If relatively moving inertial system K moves parallel to normal of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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Corollary 3.13 If relatively moving inertial system K moves parallel to binormal of the unit 
speed curve  sγ  with uniform speed ,v  then we have 
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We have following diagram as a demonstration to observe changes on the energy of 
binormal vector field of the observed curve with respect to motion of relative system and 

time. Here      
  

BNT
nergynergynergy 222 ,, eee  represent energy of the normal vector of the 

observed curve   in the relative system, which acting parallel to tangent, normal, and 
binormal of the unit speed curve ,  respectively. 

 

  
Figure 6. Energy variation graph for binormal vector field of an observed curve. 

 
 

4. GEOMETRIC AND PHYSICAL CONSEQUENCES 
 
 
As is widely known, one of the most significant results of Einstein's understandings of 

gravity on his general relativity theory is that the possibility of time and space may cause 
edges or holes. This is known as spacetime singularities. Thus, it is still a discussion at the 
geometric and physical research to investigate the implications and effects of spacetime 
singularities for our universe. 

As can be seen in Theorem 2.4 energy of the moving particle does not have any 
singularity. 

Also, it can be emphasized that the relativistic energy of tangent vector of the 
observed curve γ  has no singularity at anywhere.  
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The energy of moving particle γ  in the first inertial frame has no singularity at any 

point but this is not valid for the observed moving particle γ  in the relative reference frame. 
Since relativistic energy of normal and binormal vector of the observed curve has a 
singularity when 0=  or 0.=u  We have 
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or equivalently 
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We also see that as the velocity of the relative system K  converges to zero relativistic 
energy of the moving observed particle in the relative system converges to the energy of the 
particle in the inertial system. 

For the future studies, it can also be investigated whether the choice of increasing 
velocity of the relative system K  increase the relativistic energy of the moving observed 
particle or not. 
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