PADOVAN AND PELL-PADOVAN QUATERNIONS

DURSUN TASCI ${ }^{1}$

Manuscript received: 22.05.2017; Accepted paper: 12.08.2017; Published online: 30.03.2018.

Abstract

In this paper, we define Padovan and Pell-Padovan quaternions. We give Binet-like formulas, generating functions and sums formulas. Moreover we give the matrix representation of Padovan and Pell-Padovan quaternions.

Keywords: Padovan numbers, Pell-Padovan numbers, Padovan quaternions, PellPadovan quaternions.

2010 Mathematics Subject Classification: 11B39; 15B36

1. INTRODUCTION

A quaternion is defined by

$$
q=a+i b+j c+k d
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are real numbers and i, j, k are the standart orthonormal basis in R^{3}. Let $q_{1}=a_{1}+i b_{1}+j c_{1}+k d_{1}$ and $q_{2}=a_{2}+i b_{2}+j c_{2}+k d_{2}$ be any two quaternions. Then addition, equality and multiplication by scalar of two quaternions are defined by

$$
\begin{aligned}
q_{1}+q_{2} & =\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)+j\left(c_{1}+c\right)+k\left(d_{1}+d_{2}\right), \\
q_{1} & =q_{2} \text { only if } a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}, d_{1}=d_{2}
\end{aligned}
$$

and for $\alpha \in \mathrm{R}$

$$
\alpha q_{1}=\alpha a_{1}+i \alpha b_{1}+j \alpha c_{1}+k \alpha d_{1}
$$

We note that the quaternion multiplication is defined using the rules

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

The conjugate and norm of a quaternion are defined by

$$
q^{*}=a-i b-j c-k d
$$

and

$$
N(q)=a^{2}+b^{2}+c^{2}+d^{2}
$$

The Padovan sequence is the sequence of integers P_{n} defined by the initial values $P_{0}=P_{1}=P_{2}=1$ and the recurrence relation

[^0]$$
P_{n}=P_{n-2}+P_{n-3}
$$
for all $n \geq 3$. The first few values of P_{n} are $1,1,1,2,2,3,4,5,7,9,12,16,21,28,37, \ldots$
Pell-Padovan sequence is defined by the initial values $R_{0}=R_{1}=R_{2}=1$ and the recurrence relation
$$
R_{n}=2 R_{n-2}+R_{n-3} \text { for all } n \geq 3
$$

The first few values of Pell-Padovan numbers are

$$
1,1,1,3,3,7,9,17,25,43,67,111,177,289, \ldots
$$

In 1963[4], Horadam defined nth Fibonacci and Lucas quaternions. Moreover some properties of Fibonacci and Lucas quaternions can be found [2, 3, 5]. Nurkan and Gven in [6] introduced dual Fibonacci quaternions and dual Lucas quaternions. Further interesting results of Pell quaternions, Pell-Lucas and Jacobsthal Quaternions can be found [1, 7, 8]. Tasci D and Yalcin N.F. studied [9] Fibonacci p-quaternions.

In this paper we define and study the Padovan quaternions and Pell-Padovan quaternions. Moreover we give their properties also using matrix representation.

2. PADOVAN QUATERNIONS

Firstly we give the definition of Padovan quaternions.
Definition 2.1. The Padovan quaternions are defined by

$$
Q P_{n}=P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}
$$

where P_{n} is the nth Padovan number.
Theorem 2.2. For $n \geq 0$, the Binet-like Formula for the Padovan quaternions is

$$
Q P_{n}=a \alpha r_{1}^{n}+b \beta r_{2}^{n}+c \gamma r_{3}^{n},
$$

where r_{1}, r_{2} and r_{3} are the root of the equation $x^{3}-x-1=0$, and

$$
\begin{aligned}
& a=\frac{\left(r_{2}-1\right)\left(r_{3}-1\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, b=\frac{\left(r_{1}-1\right)\left(r_{3}-1\right)}{\left(r_{2}-r_{1}\right)\left(r_{2}-r_{3}\right)}, c=\frac{\left(r_{1}-1\right)\left(r_{2}-1\right)}{\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)} \\
& \alpha=1+i r_{1}+j r_{1}^{2}+k r_{1}^{3}, \beta=1+i r_{2}+j r_{2}^{2}+k r_{2}^{3}, \gamma=1+i r_{3}+j r_{3}^{2}+k r_{3}^{3} .
\end{aligned}
$$

Proof. Consider the Binet like Formula of Padovan sequence is

$$
P_{n}=\frac{\left(r_{2}-1\right)\left(r_{3}-1\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)} r_{1}^{n}+\frac{\left(r_{1}-1\right)\left(r_{3}-1\right)}{\left(r_{2}-r_{1}\right)\left(r_{2}-r_{3}\right)} r_{2}^{n}+\frac{\left(r_{1}-1\right)\left(r_{2}-1\right)}{\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)} r_{3}^{n}
$$

and

$$
Q P_{n}=P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}
$$

Then the prof is easily seen.
The following theorem is related with the generating function of the Padovan quaternions.

Theorem 2.3. The generating function of the Padovan quaternions is

$$
g(x)=\frac{(1+i+j+2 k)+(1+i+2 j+2 k) x+(i+j+k) x^{2}}{1-x^{2}-x^{3}} .
$$

Proof. Let

$$
g(x)=\sum_{n=0}^{\infty} Q P_{n} x^{n}=Q P_{0}+Q P_{1} x+Q P_{2} x^{2}+\cdots+Q P_{n} x^{n}+\cdots
$$

be generating function of the Padovan quaternions. On the other hand, since

$$
x^{2} g(x)=Q P_{0} x^{2}+Q P_{1} x^{3}+Q P_{2} x^{4}+\cdots+Q P_{n-2} x^{n}+\cdots
$$

and

$$
x^{3} g(x)=Q P_{0} x^{3}+Q P_{1} x^{4}+Q P_{2} x^{5}+\cdots+Q P_{n-3} x^{n}+\cdots
$$

we write

$$
\begin{aligned}
\left(1-x^{2}-x^{3}\right) g(x) & =Q P_{0}+Q P_{1} x+\left(Q P_{2}-Q P_{0}\right) x^{2}+\left(Q P_{3}-Q P_{1}-Q P_{0}\right) x^{3} \\
& +\cdots+\left(Q P_{n}-Q P_{n-2}-Q P_{n-3}\right) x^{n}+\cdots
\end{aligned}
$$

Now using $Q P_{0}=1+i+j+2 k, Q P_{1}=1+i+2 j+2 k, Q P_{2}=1+2 i+2 j+3 k$ and $Q P_{n}-Q P_{n-2}-Q P_{n-3}=0$, we obtain

$$
g(x)=\frac{(1+i+j+2 k)+(1+i+2 j+2 k) x+(i+j+k) x^{2}}{1-x^{2}-x^{3}} .
$$

So the proof is complete.

Theorem 2.4.

$$
\sum_{m=0}^{n} Q P_{m}=Q P_{n+2}+Q P_{n+3}-(2+3 i+4 j+5 k)
$$

Proof. (By induction on n) If $n=0$ and $n=1$ then the result is obviously true. We assume that it is true for $n \in Z^{+}$. Then we shall show that

$$
\sum_{m=0}^{n+1} Q P_{m}=Q P_{n+3}+Q P_{n+4}-(2+3 i+4 j+5 k)
$$

Indeed we have

$$
\sum_{m=0}^{n+1} Q P_{m}=\sum_{m=0}^{n} Q P_{m}+Q P_{n+1}
$$

Using induction's hypothesis we obtain

$$
\sum_{m=0}^{n+1} Q P_{m}=Q P_{n+2}+Q P_{n+3}-(2+3 i+4 j+5 k)+Q P_{n+1}
$$

Other hand, by the Definition 2.1, since
we have

$$
Q P_{n+2}+Q P_{n+1}=Q P_{n+4}
$$

$$
\sum_{m=0}^{n+1} Q P_{m}=Q P_{n+3}+Q P_{n+4}-(2+3 i+4 j+5 k)
$$

Theorem 2.5.
i)

$$
\sum_{\substack{m=0 \\ n}}^{n} Q P_{2 m-1}=Q P_{2 n+2}-(1+i+j+2 k)
$$

ii)

$$
\begin{aligned}
& \sum_{\substack{m=0 \\
n}}^{\substack{n \\
n}} \begin{array}{l}
\sum_{2 m}=Q P_{2 n+3}-(1+i+j+2 k) \\
\sum_{2 m+1}=Q P_{2 n+4}-(1+i+j+2 k)
\end{array} .
\end{aligned}
$$

iii)

Proof. The theorem is proved by induction n.
Now we give the matrix representation of Padovan quaternions.
Theorem 2.6 Let for $n \geq 1$ be integer. Then

$$
\left[\begin{array}{ccc}
Q P_{n+2} & Q P_{n+1} & Q P_{n} \\
Q P_{n+1} & Q P_{n} & Q P_{n-1} \\
Q P_{n} & Q P_{n-1} & Q P_{n-2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{ccc}
Q P_{2} & Q P_{1} & Q P_{0} \\
Q P_{1} & Q P_{0} & Q P_{-1} \\
Q P_{0} & Q P_{-1} & Q P_{-2}
\end{array}\right] .
$$

Proof. The proof is seen by induction on n .
Theorem 2.7. Let for $n \geq 1$ be integer. Then

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
Q P_{0} \\
Q P_{1} \\
Q P_{2}
\end{array}\right]=\left[\begin{array}{c}
Q P_{n} \\
Q P_{n+1} \\
Q P_{n+2}
\end{array}\right] .
$$

3. PELL-PADOVAN QUATERNIONS

Definition 3.1. The nth Pell-Padovan quaternion is defined by

$$
Q R_{n}=R_{n}+i R_{n+1}+j R_{n+2}+k R_{n+3},
$$

where R_{n} is the nth Pell-Padovan number.

Theorem 3.2. The generating function for Pell-Padovan quaternions is

$$
f(x)=\frac{(1+i+j+3 k)+(1+i+3 j+3 k) x+(-1+i+j+k) x^{2}}{1-2 x^{2}-x^{3}} .
$$

Proof. Let

$$
f(x)=\sum_{n=0}^{\infty} Q R_{n} x^{n}=Q R_{0}+Q R_{1} x+Q R_{2} x^{2}+\cdots+Q R_{n} x^{n}+\cdots
$$

be generating function of the Pell-Padovan quaternions. On the other hand, since

$$
2 x^{2} f(x)=2 Q R_{0} x^{2}+2 Q R_{1} x^{3}+2 Q R_{2} x^{4}+\cdots+2 Q R_{n-2} x^{n}+\cdots
$$

and

$$
x^{3} f(x)=Q R_{0} x^{3}+Q R_{1} x^{4}+Q R_{2} x^{5}+\cdots+Q R_{n-3} x^{n}+\cdots
$$

we write

$$
\begin{gathered}
\left(1-2 x^{2}-x^{3}\right) f(x)=Q R_{0}+Q R_{1} x+\left(Q R_{2}-2 Q R_{0}\right) x^{2}+\left(Q R_{3}-2 Q R_{1}-Q R_{0}\right) x^{3} \\
+\cdots+\left(Q R_{n}-2 Q R_{n-2}-Q R_{n-3}\right) x^{n}+\cdots
\end{gathered}
$$

Now using $Q R_{n}=2 Q R_{n-2}+Q R_{n-3}, n \geq 3$ we get

$$
f(x)=\frac{Q R_{0}+Q R_{1} x+\left(Q R_{2}-2 Q R_{0}\right) x^{2}}{1-2 x^{2}-x^{3}} .
$$

or

$$
f(x)=\frac{(1+i+j+3 k)+(1+i+3 j+3 k) x+(-1+i+j+k) x^{2}}{1-2 x^{2}-x^{3}} .
$$

So the proof is complete.
Theorem 3.3. The Binet- like formula for Pell-Padovan quaternions is

$$
\begin{aligned}
Q R_{n}= & \frac{2}{\sqrt{5}}\left[(\alpha-1)\left(1+i \alpha+j \alpha^{2}+k \alpha^{3}\right)\right] \alpha^{n} \\
& -\frac{2}{\sqrt{5}}\left[(\beta-1)\left(1+i \beta+j \beta^{2}+k \beta^{3}\right)\right] \beta^{n}+(-1+i+j+k) \gamma^{n}
\end{aligned}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1+\sqrt{5}}{2} \text { and } \gamma=-1
$$

are the roots of equation $x^{3}-2 x-1=0$.
Proof. Using

$$
R_{n}=2\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right)-2\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)+\gamma^{n+1}
$$

and

$$
Q R_{n}=R_{n}+i R_{n+1}+j R_{n+2}+k R_{n+3},
$$

it is easily seen the proof.

Theorem 3.4.

$$
\sum_{m=0}^{n} Q R_{m}=\frac{1}{2}\left[Q R_{n}+Q R_{n+1}+Q R_{n+2}-(1+3 i+5 j+7 k)\right]
$$

Proof. (By induction on n)) For $n=0$ and $n=1$ are true. Now we assume that it is true for $n \in Z^{+}$. Then we shall show that it is true for $n+1$,

$$
\begin{aligned}
& \sum_{m=0}^{n+1} Q R_{m}=\sum_{m=0}^{n} Q R_{m}+Q R_{n+1} \\
& \quad=\frac{1}{2}\left[Q R_{n}+Q R_{n+1}+Q R_{n+2}+2 Q R_{n+1}-(1+3 i+5 j+7 k)\right]
\end{aligned}
$$

On the other hand since

$$
Q R_{n+3}=2 Q R_{n+1}+Q R_{n}
$$

we have

$$
\sum_{m=0}^{n+1} Q R_{m}=\frac{1}{2}\left[Q R_{n+1}+Q R_{n+2}+Q R_{n+3}-(1+3 i+5 j+7 k)\right] .
$$

So the theorem is proved.

Lemma 3.5.

i) $\sum_{m=0}^{n} R_{2 m}=R_{2 n+1}-n$
ii) $\sum_{m=0}^{n} R_{2 m-1}=R_{2 n}+(n-1)$
iii) $\sum_{m=0}^{n} R_{2 m+1}=R_{2 n+1}+R_{2 n}+(n-1)$
iv) $\sum_{\substack{m=0 \\ n}}^{R_{2 m+2}}=2 R_{2 n+1}+R_{2 n}+(n-2)$
v) $\sum_{m=0}^{n} R_{2 m+3}=3 R_{2 n+1}+2 R_{2 n}+(n-2)$
vi) $\sum_{m=0}^{n} R_{2 m+4}=5 R_{2 n+1}+3 R_{2 n}+(n-5)$.

Proof. The proof of i), ,ii), iii), iv), v) and vi) are seen by induction on n.
Now using above the lemma 3.5, we give the following theorems.

Theorem 3.6.

$$
\begin{array}{r}
\sum_{m=0}^{n} Q R_{2 m}=\left(R_{2 n+1}-n\right)+i\left(R_{2 n+1}+R_{2 n}+(n-1)\right) \\
+j\left(2 R_{2 n+1}+R_{2 n}+(n-2)\right)+k\left(3 R_{2 n+1}+2 R_{2 n}+(n-2)\right)
\end{array}
$$

Theorem 3.7.

$$
\begin{gathered}
\sum_{m=0}^{n} Q R_{2 m+1}=\left(R_{2 n+1}+R_{2 n}+(n-1)\right)+i\left(2 R_{2 n+1}+R_{2 n}+(n-2)\right) \\
+j\left(3 R_{2 n+1}+2 R_{2 n}+(n-2)\right)+k\left(5 R_{2 n+1}+3 R_{2 n}+(n-5)\right)
\end{gathered}
$$

Now we give the matrix representation of Pell-Padovan quaternions.
Theorem 3.8 Let for $n \geq 1$ be integer. Then

$$
\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{ccc}
Q R_{2} & Q R_{1} & Q R_{0} \\
Q R_{1} & Q R_{0} & Q R_{-1} \\
Q R_{0} & Q R_{-1} & Q R_{-2}
\end{array}\right]=\left[\begin{array}{ccc}
Q R_{n+2} & Q R_{n+1} & Q R_{n} \\
Q R_{n+1} & Q R_{n} & Q R_{n-1} \\
Q R_{n} & Q R_{n-1} & Q R_{n-2}
\end{array}\right]
$$

Proof. The proof is seen by induction on n.
Theorem 3.9. Let $n \geq 1$ be integer. In this case

$$
\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{n}\left[\begin{array}{c}
Q R_{2} \\
Q R_{1} \\
Q R_{0}
\end{array}\right]=\left[\begin{array}{c}
Q R_{n+2} \\
Q R_{n+1} \\
Q R_{n}
\end{array}\right] .
$$

Proof. The proof of theorem is seen by induction on n.

Conflict of Interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

REFERENCES

[1] Çimen, C.B., İpek, A., Advances in Applied Clifford Algebras, 26(1), 39, 2016.
[2] Halici, S., Advances in Applied Clifford Algebras, 22, 321, 2012.
[3] Halici, S., Advances in Applied Clifford Algebras, 23, 105, 2013.
[4] Horadam, A.F., American Math. Monthly, 70, 289, 1963.
[5] Iyer, M.R., Fibonacci Quaterly, 3, 225, 1969.
[6] Nurkan, S.K, Gven, I.A., Advances in Applied Clifford Algebras, 25(2), 403, 2015.
[7] Szynal-Liana, A., Woch, I., Advances in Applied Clifford Algebras, 26(1), 435, 2016.
[8] Szynal-Liana, A., Woch, I., Advances in Applied Clifford Algebras, 26, 441, 2016.
[9] Tasci, D., Yalci, N.F., Advances in Applied Clifford Algebras, 25(1), 245, 2015.

[^0]: ${ }^{1}$ Gazi University, Faculty of Sciences, Departments of Mathematics, 06500 Ankara, Turkey.
 E-mail: dtasci@gazi.edu.tr.

