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Abstract. In this paper, we define Padovan and Pell-Padovan quaternions. We give 

Binet-like formulas, generating functions and sums formulas. Moreover we give the matrix 
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1. INTRODUCTION  
 
 

A quaternion is defined by  
 

, 
 

where a,b,c and d are real numbers and , , 	are the standart orthonormal basis in . Let 
 and  be any two quaternions. Then 

addition, equality and multiplication by scalar of two quaternions are defined by  
 

, 
 

  			 	 		 , , ,  
and for α ϵ R  
                                
   

We note that the quaternion multiplication is defined using the rules 
 

1. 
 

The conjugate and norm of a quaternion are defined by 
 

∗  
and  

. 
 

The Padovan sequence is the sequence of integers  defined by the initial values 
1 and the recurrence relation  
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for all 3. The first few values of  are 1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,… 

Pell-Padovan sequence is defined by the initial values 1 and the 
recurrence relation  

 
2 	 	 	 3. 

 
The first few values of Pell-Padovan numbers are  
 

1,1,1,3,3,7,9,17,25,43,67,111,177,289,… 
 
In 1963[4], Horadam defined  th Fibonacci and Lucas quaternions. Moreover some 

properties of Fibonacci and Lucas quaternions can be found [2, 3, 5]. Nurkan and Gven in [6] 
introduced dual Fibonacci quaternions and dual Lucas quaternions. Further interesting results 
of Pell quaternions, Pell-Lucas and Jacobsthal Quaternions can be found [1, 7, 8]. Tasci D and 
Yalcin N.F. studied [9] Fibonacci p-quaternions. 

In this paper we define and study the Padovan quaternions and Pell-Padovan 
quaternions. Moreover we give their properties also using matrix representation. 

 
 

2. PADOVAN QUATERNIONS 
 
 

Firstly we give the definition of Padovan quaternions. 
 

Definition 2.1. The Padovan quaternions are defined by  
 

	 	 	 , 
 
where  is the  th Padovan number. 
 
Theorem 2.2. For 0, the  Binet-like Formula for the Padovan quaternions is  
 

, 
 
where , 	  are the root of the equation 1 0, and  
 

                  , , , 

                  1 , 1 , 1 . 
 
Proof. Consider the Binet like Formula of Padovan sequence is 
 

                  

 
and 
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Then the prof is easily seen. 
 The following theorem is related with the generating function of the Padovan 
quaternions. 
 
Theorem 2.3. The generating function of the Padovan quaternions is 
 

                      . 
 
Proof. Let 
 

⋯ ⋯ 

 
be generating function of the Padovan quaternions. On the other hand, since 
 

⋯ ⋯ 
 
and 
 

⋯ ⋯ 
 
we write 
 

1  
 

⋯ ⋯ 
 

Now using 1 2 , 1 2 2 , 1 2 2 3  
and 0, we obtain  

 

                               .	 
 
So the proof is complete. 
 
Theorem 2.4. 
 
                         ∑ 	 2 3 4 5 . 
 
Proof. (By induction on n) If 0 and 1 then the result is obviously true. We assume 
that it is true for ∈ . Then we shall show that 
 
                        ∑ 	 2 3 4 5  
 

Indeed we have  
 
                    ∑ ∑ . 
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Using induction’s hypothesis we obtain 
 
                    ∑ 	 2 3 4 5  
 

Other hand, by the Definition 2.1, since 
 

                          
we have 
                         ∑ 	 2 3 4 5 . 
 
Theorem 2.5.  

																				 	 1 2  

																				 	 1 2  

																				 	 1 2 . 

 
Proof.The theorem is proved by induction n. 
  
Now we give the matrix representation of Padovan quaternions. 
 
Theorem 2.6 Let 	for 	 1	be	integer. Then			  
 

                   
0 1 1
1 0 0
0 1 0

. 

 
Proof. The proof is seen by induction on n. 
 
Theorem 2.7. Let 	for 	 1	be	integer. Then			  
 

                                
0 1 1
1 0 0
0 1 0

. 

 
 
3. PELL-PADOVAN QUATERNIONS 
 
 
Definition 3.1. The  th Pell-Padovan quaternion is defined by  
 
                       	 	 	 , 
 
where  is the  th Pell-Padovan number. 
 
  



Padovan and Pell- Padovan Quaternions                                                                                          Dursun Tasci 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

129

Theorem 3.2. The generating function for Pell-Padovan quaternions is 
 

                       . 
 
Proof. Let 
 

⋯ ⋯ 

 
be generating function of the Pell-Padovan quaternions. On the other hand, since 
 

2 2 2 2 ⋯ 2 ⋯ 
 
and 

⋯ ⋯ 
 
we write 
 

1 2 	 2 2  
                                 ⋯ 2 ⋯ 

 
Now using 	 2 , 3	we get  
 

                   .	 
 
or 
 

                   .	 
 
So the proof  is complete. 
 
Theorem 3.3. The Binet- like formula for Pell-Padovan quaternions is 
 

											
2

√5
1 1 			

2

√5
1 1 1  

where 

                        √ , √ 	 	 1 

 
are the roots of equation 2 1 0. 
 
Proof. Using 

2 2  

and 
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                                 	 	 	 , 
 
it is easily seen the proof. 
 
Theorem 3.4. 
 

                        ∑ 1 3 5 7 . 
 
Proof. (By induction on n) ) For 0 and 1 are true. Now we assume that it is true for 
∈ . Then we shall show that it is true for 1, 

 
                        ∑ ∑ 	  

                                        2 1 3 5 7 , 
 
On the other hand since 
 
                       2  
 
we have 
 

                       ∑ 	 1 3 5 7 . 
 
So the theorem is proved. 
 
Lemma 3.5.  

	 	 	 								 

	 	 1	  

	 	 1	 								 

	 	2 2	  

	 	3 2 2	  

	 	5 3 5	 . 

 
 
Proof. The proof of i) ,ii), iii), iv), v) and  vi)  are seen by induction on n. 
Now using above the lemma 3.5, we give the following theorems. 
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Theorem 3.6.  
 

																	 	 1	 		 

 
	 2 2	 3 2 2	 					 

 
Theorem 3.7.  
 

																 	 1	 	 2 2	  

 
																																									 3 2 2	 5 3 5	 . 
  
 
Now we give the matrix representation of Pell-Padovan quaternions. 
 
Theorem 3.8 Let 	for 	 1	be	integer. Then			  
 

                        
0 2 1
1 0 0
0 1 0

 

 
Proof. The proof is seen by induction on n. 
 
Theorem 3.9. Let 	 	 1	be	integer. In this case 
 

                    
0 2 1
1 0 0
0 1 0

. 

 
Proof. The proof of theorem is seen by induction on n. 
 
 
Conflict of Interests: The authors declare that there is no conflict of interests regarding the 
publication of this paper. 
 
 
REFERENCES 
 
 

[1] Çimen, C.B., İpek, A., Advances in Applied Clifford Algebras, 26(1), 39, 2016. 
[2] Halici, S., Advances in Applied Clifford Algebras, 22, 321, 2012. 
[3] Halici, S., Advances in Applied Clifford Algebras, 23, 105, 2013. 
[4] Horadam, A.F., American Math. Monthly, 70, 289, 1963. 

  



Padovan and Pell- Padovan Quaternions                                                                                          Dursun Tasci 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

132

 
[5] Iyer, M.R., Fibonacci Quaterly, 3, 225, 1969. 
[6] Nurkan, S.K, Gven, I.A., Advances in Applied Clifford Algebras, 25(2), 403, 2015. 
[7] Szynal-Liana, A., Woch, I., Advances in Applied Clifford Algebras, 26(1), 435, 2016. 
[8] Szynal-Liana, A., Woch, I., Advances in Applied Clifford Algebras, 26, 441, 2016. 
[9] Tasci, D., Yalci, N.F., Advances in Applied Clifford Algebras, 25(1), 245, 2015. 

 


