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Abstract. In this paper, we study on modules that have a weak (ample) §-supplement
in every extension which are adapted Zdschinger’s modules with the properties (E) and
(EE). It is shown that: (1) Direct summands of modules with the property §-(CWE) have the
property §-(CWE); (2) For a module M, if every submodule of M has the property 6-(CWE)
then so does M; (3) For a ring R, R is 6-semilocal iff every R-module has the property 6-
(CWE); (4) Every factor module of a finitely generated module that has the property &-
(CWE) also has the property §-(CWE") under a special condition; (5) Let M be a module and
L be a submodule of M such that L «<s M. If the factor module M /L has the property §-
(CWE), then so does M; (6) On a semisimple module the concepts of modules that have the
property §-(CE) and §-(CWE) coincide with each other.
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1. INTRODUCTION

Throughout this paper, we assume that all rings are associative with identity and all
modules are unital left modules. By X < M, we mean X is a submodule of M or M is an
extension of X. A submodule K < M is called small in M (denoted by K K M) if M # K+ T
for every proper submodule T of M. Dually, a submodule L < M is called essential in M
(denoted by L 2 M) if L n X # 0 for every nonzero submodule X of M. Let U and V be
submodules of M. V is called a supplement of U in M if it is minimal with respect to M =
U+V,equivalently M =U+V and UNV KV [13]. A submodule S of a module M has
ample supplements in M if every submodule T such that M = S + T containing submodule
has a supplement in M and it is called amply supplemented if every submodule has ample
supplementsin M. If M =U +Vand U NV K M, then V is called a weak supplement of U in
M, and M is a weakly supplemented module if every submodule of M has a weak supplement
in M.

Recall that a submodule N of a module M is said to be 3-small in M, written N <s M,
provided M # N + X for any proper submodule X of M with M /X singular [14]. Let L be a
submodule of a module M. A submodule K of M is called a 6-supplement of L in M provided
M=L+K and M+ L+ X for any proper submodule X of K with K/X singular,
equivalently, M = L + K and L N K <5 K. The module M is called §-supplemented if every
submodule of M has a §-supplement in M [4]. On the other hand the submodule N is said to
have ample §-supplement in M if every submodule L of M with M = N + L contains a
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&-supplement of N in M. The module M is called amply §-supplemented if every submodule
of M has ample §-supplements in M [11]. Let P be the class of all singular simple modules
and M be a module. Then §(M) =N{N <M | M/N € P} =Y{N < M| N <z M}.

Zoschinger generalized injective modules to modules with the property (E). He said
that a module M has the property (E) if M has a supplement in every extension. He also said
that a moodule M has the property (EE) if M has ample supplements in every extension [15].
In [4], a submodule M of a module N is called cofinite if the factor module N/M is finitely
generated. Adapting Zoschinger’s module with the properties (E) and (EE), Calisici and
Turkmen say that a module M has the property (CE) ((CEE)) if M has a supplement (ample
supplements) in every cofinite extension. Following this, in [9] the authors introduced
modules with the properties (CWE) and (CWEE).

Generalizing Zdschinger’s module with the properties (E) and (EE) in [7] the authors
introduced the concepts of modules with the properties §-(CE) and §-(CEE) and investigate
basic properties of them. In conclusion, we show that if every submodule of a module M has
the property 6-(CWE), then M has the property §-(CWEE). Moreover, if M has the property
6-(CWE), then every direct summand of M has the property §-(CWE). We prove that over a
left hereditary ring every factor module of a finitely generated module that has the property &-
(CWE) also has the property 6-(CWE). In addition, we give a characterization for &-
semilocal rings by using the property §-(CWE) and over a §-V-ring the concepts of modules
with the properties §-(CWE) and §-(CE) coincide.

2. MAIN RESULTS

Definition: Let M be a module. We say that M has the property 6-(CE) if M has a
&-supplement in every cofinite extension.

Definition: Let M be a module. We say that M has the property 6-(CWE) if M has a weak
&-supplement in every cofinite extension and M has the property §-(CWEE) if M has weak
ample §-supplement in every cofinite extension.

Proposition: Every simple module has the property 6-(CWE).

Proof: Let S be a simple module and N be any cofinite extension of S. Then S is either a
direct summand of N or §-small in M. In the first case S @ S’ = N for a submodule S’ < N
and so S’ is a weak §-supplement of S in N. In the second case, N is a weak §-supplement of
Sin N. So in each case S has a weak §-supplement in N. Finally S has the property 6-(CWE).

It is easy to see that every module with the property (CWE) and §-(CE) has the property
6-(CWE). Let consider the Z-module Z and Z-module Q. Each of them is an example of a
module that has the property Z-module. It is natural to pose the question whether there exists
similar result fort he properties of §-(CE) and §-(CE). To answer this, at the end of this
section we shall give an example of a module which has the property §-(CWE) but not §-
(CE).

Zoschinger proved in [15] that a module has the property (EE) if and only if every
submodule has the property (E). Now we adopt only one side of this fact for our modules.
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Theorem: Let M be a module. If every submodule of M has the property §-(CWE), then M
has the property §-(CWEE).
Proof: Suppose that every submodule of M has the property §-(CWE). For a cofinite
extension N of M, let N = M + K for some submodule Kof N. Then N/M = K/(M n K) is
finitely generated and so M N K is a cofinite submodule of K. By the hypothesis, there exists
asubmodule Vof K suchthat K = (M NnK)+Vand (MNK)NV =M NV K5 K. Note that
N =M + V. It follows that VV is a weak &-supplement of M in N. So M has the property §-
(CWEE).

In the following proposition we show that the property §-(CWE) is preserved by
direct summands.

Proposition: Every direct summand of a module with the property §-(CWE) has the property
5-(CWE).

Proof: Let N be a direct summand of M. Then there exists a submodule K of M such that
M =N @ K. Let L be a cofinite extension of N, T be the external direct sum L @ K and
y:M — T be the canonical embedding. Then M = y(M) has the property §-(CWE). We
have L/N = (L @ K)/y(M) is finitely generated. Since y(M) has the property 5-(CWE),
then there exists a submodule U of T such that T = y(M) + U and y(M) N U K5 T. Consider
the projection m: T — L. By this way, we have N + w(U) = L. Also () < y(M), t(y(M) n
U) < n(y(M)) Nn(U) =NnNn(U) <Kg n(T) = L. Therefore m(U) is a weak §-supplement
of Nin L.

Now by using the property §-(CWE) we give a characterization for §-semilocal rings
which is related to cofinitely weak §-supplemented modules investigated in [3, 8].

Theorem: Let R be a ring. Then the following statements are equivalent:
a) R is a 6-semilocal ring.
b) Every R-module has the property J-(CWE).

Proof: Let R be a §-semilocal ring, M be an R-module and N be a cofinite extension of M.
Since R is §-semilocal, N is a cofinitely weak &-supplemented module from [3]. Therefore M
has a weak §-supplement in N as a submodule of M. Conversely, let M be an R-module and U
be any cofinite submodule of M. By hypothesis, U has the property 6-(CWE). Then U has a
weak &-supplement in M, so that M is cofinitely weak &-supplemented. Hence R is
&-semilocal by [3].

Corollary: Let R be a ring. Then every R-module is cofinitely weak &-supplemented if and
only if every R-module has the property §-(CWE).

Let M be a module and U be a submodule of M. If the factor module M /U has the
property 6-(CWE) M does not need to have the property §-(CWE). For example, fort he ring
R = Z, the R-module M = 2Z/47Z has a weak §-supplement in every cofinite extension since
it is simple. But 2Z does not have a weak §-supplement in its cofinite extension Z.

Now we show that the statement mentioned above is true under a special condition.

Proposition: Let M be a module and U be a submodule of M. If U «s M and the factor
module M /U has the property §-(CWE), then M has the property 6-(CWE).

Proof: Let N be any extension of M. Since M /U has the property 6-(CWE), there exists a
submodule V /U of N/U such that M/U +V /U = N/U and (M NnV)/U <s N/U. Note that

ISSN: 1844 — 9581 Mathematics Section



136 Modules that have a weak ... Esra Ozturk Sozen and Senol Eren

M +V = N. Suppose that (M N V) + S = N for a submodule S of N with N /S singular. Then
we obtain (M nV)/U)+ ((S+U)/U)=N/U. Since (MnNnV)/U<«KsN/U and
N/(S+U)=(N/S)/(S+U)/S issingular, we have that (S + U)/U = N/U. It follows that
N=S+U=Sandso M NV Kg N is obtained.

Corollary: Every §-local module has the property §-(CWE).

Corollary: Let M be a module. If M has the property §-(CWE), then so does every §-small
cover of M.

In [2], Calisict and Tiirkmen defined cofinitely injective modules, that is, a module M
is called cofinitely injective if M is a direct summand of every cofinite extension.

Recall that a ring R is called left 6-V-ring if §(M) = 0 for every left R-module M
[12].

Proposition: Let R be a left §-V-ring. An R-module M has the property §-(CWE) if and only
if M is cofinitely injective.

Proof: Let M has the property 6-(CWE) and N be any extension of M. Then M has a weak &-
supplement Vin N. We have M +V =Nand MNV <5 N. Hence M NV < 6(N) = 0 and
so N =M @ V. Conversely, let M be injective and N be any extension of M. Then there
exists a submodule K of N such that N = M @ K. Hence K is a weak §-supplement of M in
N.

Corollary: Let R be a left §-V-ring. An R-module M has the property §-(CWE) if and only if
M has the property §-(CE).

Since every submodule of a §-hollow module is §-small we can give the following
proposition fort he completeness.

Proposition: If M is a §-hollow module, then M has the property §-(CWE).

Proof: Clear

Recall that over a left hereditary ring every factor module of an injective module is
injective. In the following proposition, we show that every factor module of a module that has
the property 6-(CWE) over a left hereditary ring has the property 6-(CWE).

Proposition: Let R be a left hereditary ring and M be a finitely generated module. If M has
the property 6-(CWE),then so does every factor module of M.

Proof: For any submodule U of M, let N be a cofinite extension of M/U. Then N is finitely
generated. By E (M), we denote the injective hull of M. Since R is left hereditary, E(M)/U is
injective, and so there exists a commutative diagram with exact rows in the following:

Iy T
0 ——»U— M —» M/U—0

[l

0 [ > - N * 0
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i.e., = @i, , op = i,m, where ¢: M — K is a monomorphism. It follows that K/@(M) =
K/Cek(o) = N. Since M has the property 6-(CWE), ¢(M) has a weak §-supplement V in K.
So we obtain that o (V) is a weak §-supplement of M /U in N. Hence M /U has the property
6-(CWE).

It is easy to see that every module that has the property 6-(CE) also has the property
6-(CWE). Now we give the following example to show that the converse statement may not
be true in general.

Example (see in [1]): For primes p and g, consider the ring
R:=17Z,, = {% |a,b €Z,b+0,(p,b) =(q,b) = 1}. R is a §-semilocal ring that is not

&-semiperfect. Then there exists an R-module M that does not have the property §-(CE). But
since R is a §-semilocal ring, M has the property §-(CWE).

In the following theorem we see a kind of a module that coincide the concepts of
properties §-(CE) and §-(CWE) over it.

Theorem: Let M be a semisimple module. Then the following statements are equivalent:
a) M has the property J-(CE).

b) M has a d-supplement in every cofinite extension N that is a direct summand of N.
C) M has the property o-(CWE).

Proof: (a = b): Let N be any cofinite extension of M. By (a), we have N = M + K and

M N K <s K for some submodule K < N. Since M is a semisimple module, then there exists
asubmodule X of M suchthat M = (M NK) @ X.So (M NK)NnX = K nNnX = 0. Therefore
N=M+K=[MnK)®X] =K X. This means K is a §-supplement of M that is a
direct summand in N.

(b = c): Clear

(c = a): Let N be any cofinite extension of M. By (c), there exists a submodule K of N
provided N =M + Kand M N K <5 N.Since M N K < M and M is semisimple there exists
asubmodule T of M suchthat (M NK) @ T = M.

SON=M+K=MnK)DT+K=KET isobtained. Since K is a direct sum of
Nand M N K <s N, itisobtainedthat M N K <5 K.
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