ORIGINAL PAPER BOUNDS FOR THE LAPLACIAN EIGENVALUE OF GRAPHS USING 2-ADJACENCY

SERIFE BUYUKKOSE¹, SEMIHA BASDAS NURKAHLI¹

Manuscript received: 14.11.2018; Accepted paper: 07.01.2018; Published online: 30.03.2018.

Abstract. Let G be a simple connected graph. We redefine adjacency for any two vertices as defined if there is connected two edges between any two vertices, i and j. This vertices are called two adjacency and denoted by i \sim_2 j. In this study, we defined 2-adjacency Laplacian matrix and denoted by $L^{\sim_2}(G)$ from by above definition and we find a lower bound for 2-spectral radius which is denoted by $\mu^{\sim_2}(G)$ and present an open problem $L^{\sim_2}(G)$.

Keywords: 2-adjacency, energy, bound.

1. INTRODUCTION

Let G = (V, E) be a simple graph with the vertex set $V = \{v_1, v_2, ..., v_n\}$ and the edge set E = E(G). We assume that the vertices degree are ordered such that $d_1 \ge d_2 \ge ... \ge d_n$ where d_i is the degree of v_i for i = 1, 2, ..., n and the average of the degrees of the vertices adjacent to v_i is denoted by m_i . Let N_i be the neighbor set of the vertex $v_i \in V$. Let D(G) be the diagonal matrix of vertex degrees of a graph G. Also, let A(G) be the adjacency matrix of G and denoted by $A(G) = (a_{ij})$ be defined as the $n \times n$ matrix (a_{ij}) , where

$$a_{ij} = \begin{cases} 1 & ; \quad v_i v_j \in E \\ 0 & ; \quad otherwise \end{cases}$$

The Laplacian matrix of a graph G is defined as $L(G) = (l_{ij})$, where

$$l_{ij} = \begin{cases} d_i & ; \quad i = j \\ -1 & ; \quad i \sim j \\ 0 & ; \quad otherwise \end{cases}$$

¹ Gazi University, Faculty of Sciences, Department of Mathematics, 06500 Ankara, Turkey. E-mail: <u>sbuyukkose@gazi.edu.tr</u>; <u>semiha.basdas@gazi.edu.tr</u>.

The Laplacian matrix of G is L(G) = D(G) - A(G). Clearly, L(G) is a real symmetric matrix. From this fact and Gersgorin's theorem, it follows that its eigenvalues are nonnegative real numbers. Moreover, since its rows sum to 0, 0 is the smallest eigenvalue of L(G). We assume that the Laplacian eigenvalues are $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$. Especially, the largest eigenvalue of L(G) is called Laplacian spectral radius of G, denoted by $\mu(G)$.

Since the 1980's many researchers have investigated upper bounds for $\mu(G)$, among the known upper bounds for $\mu(G)$ are the following:

1. Anderson and Morley's bound [1]:

$$\mu(G) \le \max\{d_i + d_j : v_i v_j \in E\}.$$
(1)

2. Li and Zhang's bound which is better than bound [8]:

$$\mu(G) \le 2 + \sqrt{(r-2)(s-2)} \tag{2}$$

where $r = \max\{d_i + d_j : v_i v_j \in E\}$ and $s = \max\{d_i + d_j : v_i v_j \in E - \{v_k v_h\}\}$ with $v_k v_h \in E(G)$ such that $d_k + d_h = r$.

3. Merris's bound [10]:

$$\mu(G) \le \max\{d_i + m_i \colon v_i \in V(G)\}\tag{3}$$

where m_i is the average of the degrees of the vertices of G adjacent to v_i , which is called average 2-degree of vertex v_i .

2. MAIN RESULTS

Let *G* be a simple connected graph. We redefine adjacency for any two vertices *i* and *j*. And then we called 2-adjacency this vertices. If this vertices are 2-adjacency then denoted by $i \sim_2 j$.

In this study we defined 2-adjacency Laplacian matrix and denoted by $L^{\sim_2}(G)$ from by above definition and we find a lower bound for 2-spectral radius which is denoted by $\mu^{\sim_2}(G)$ and present an open problem $L^{\sim_2}(G)$. Then we expand to *k*-adjacency of two vertices and redefine of *k*-Laplacian matrix and obtain new bound of *k*-spectral Laplacian eigenvalue of a graph.

Definition 2.1 If there are two connected edges between vertices of the *i* and *j* in graph, then this vertices are called 2-adjacent and denoted by $i \sim_2 j$.

Definition 2.2 The 2-degree of any vertex *i* in graph is the number of 2-adjacency incident to the vertex *i* and the 2-degree of a vertex *i* is denoted by $d_i^{\sim 2}$.

We can define the *k*-adjacency by generalized 2-adjacency concept further.

Definition 2.3 If there are k connected edges between vertices of the i and j in graph, then this vertices are called k-adjacent and denoted by $i \sim_k j$.

Definition 2.4 The *k*-degree of any vertex *i* in graph is the number of *k*-adjacency incident to the vertex *i* and the *k*-degree of a vertex *i* is denoted by $d_i^{\sim k}$.

Definition 2.5 Given a graph G = (V, E) with |V| = n the 2-adjacency degree matrix $D^{\sim_2}(G)$ for *G* is a $n \times n$ diagonal matrix defined as:

$$d_{ij} = \begin{cases} d_i^{\sim_2} & ; \quad i = j \\ 0 & ; \quad otherwise \end{cases}$$

where the 2-degree $d_i^{\sim_2}$ of a vertex *i* is the number of 2-adjacency incident to the vertex *i*.

Definition 2.6 Given a simple, connected graph *G* with *n* vertices, its 2-adjacency Laplacian matrix $L^{\sim_2}(G) = (l_{ij}^{\sim_2})_{n \times n}$ defined as:

$$\begin{pmatrix} l_{ij}^{\sim_2} \end{pmatrix} = \begin{cases} d_i^{\sim_2} & ; & i = j \\ -1 & ; & i \sim_2 j \\ 0 & ; & otherwise \end{cases}$$

where $d_i^{\sim_2}$ is 2-degree of the vertex *i*.

Because the 2-adjacency Laplacian matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$0 = \mu_n^{\sim_2} \leq \cdots \leq \mu_2^{\sim_2} \leq \mu_1^{\sim_2}.$$

 $\mu_1^{\sim_2}$ denote the largest eigenvalue of $L^{\sim_2}(G)$. Also, every row sum and column sum of L^{\sim_2} is zero. There are equality

$$L^{\sim_2}(G) = D^{\sim_2}(G) - A^{\sim_2}(G)$$

for 2-adjacency Laplacian matrix.

Theorem 2.7 If G is a simple, connected graph and $\mu_1^{\sim 2}(G)$ is the Laplacian 2-spectral radius, then

$$\mu_1^{\sim 2}(G) > \max_{i \sim 2^j} \sqrt{(d_i^{\sim 2} - p_i)(d_j^{\sim 2} - p_j)}$$
(4)

where p_i , t_k are $p_i = \frac{\sum_{k \sim 2^i} t_k}{t_i}$, $t_k = \frac{\sum_{k \sim 2^j} d_j}{d_k^{\sim 2}}$ respectively.

Proof: Let $X = (x_1, x_2, ..., x_n)^T$ be an eigenvector corresponding to the largest eigenvalue $\mu_1^{\gamma^2}$ of $T^{-1}(G) L^{\gamma_2}(G)T(G)$ where T(G) is the block diagonal matrix $diag(t_1, t_2, ..., t_n), t_i = \frac{\sum_{i \sim 2^j} d_j}{d_i^{\gamma^2}}$, i = 1, 2, ..., n. We can assume that x_i is the largest eigencomponent 1 and the other eigencomponents are less than or equal to 1, that is, $x_i = 1$ and $x_k \leq 1, \forall k$.

We consider the matrix $T^{-1}(G) L^{\sim_2}(G)T(G)$. Now the $(i,j)^{th}$ element of $T^{-1}(G) L^{\sim_2}(G)T(G)$ is

$$\begin{cases} d_i^{\sim 2} & ; & i = j \\ -1 & ; & i \sim_2 j \\ 0 & ; & otherwise. \end{cases}$$

We have

$$\{T^{-1}(G)L^{\sim_2}(G)T(G)\}X = \mu_1^{\sim_2}(G)X$$
(5)

From the i th equation of (5), we have

$$\mu_1^{\sim 2} x_i = d_i^{\sim 2} x_i - \sum_{k \sim 2^i} \{x_k\}$$

$$\mu_1^{\sim 2} > d_i^{\sim 2} - p_i \tag{6}$$

Similarly, from the j th equation of (5), we have

$$\mu_{1}^{\sim 2} x_{j} = d_{j}^{\sim 2} x_{j} - \sum_{k \sim 2^{j}} \{x_{k}\}$$

$$\mu_{1}^{\sim 2} > d_{j}^{\sim 2} - p_{j}.$$
(7)

From (6) and (7), we get

$$\mu_1^{\sim_2}(G) > \max_{i \sim_2 j} \sqrt{(d_i^{\sim_2} - p_i)(d_j^{\sim_2} - p_j)}$$

Definition 2.8 Given a simple, connected graph G with n vertices, its 2-adjacency self-Laplacian matrix $L^{\approx}(G) = (l_{ij}^{\approx})_{n \times n}$ defined as:

$$(l_{ij}^{\approx}) = \begin{cases} d_i^{\sim_2} & ; & i = j \\ -2 & ; & i \sim_2 j \\ 0 & ; & otherwise \end{cases}$$

where $d_i^{\sim_2}$ is 2-degree of the vertex *i*.

Because the 2-adjacency self-Laplacian matrix is real, symmetric matrix, its eigenvalues are real and we denoted by

$$0 = \mu_n^{\approx} \le \dots \le \mu_2^{\approx} \le \mu_1^{\approx}.$$

 μ_1^{\approx} denote the largest eigenvalue of $L^{\approx}(G)$. Also, every row sum and column sum of L^{\approx} is zero. There are equality

$$L^{\approx}(G) = D^{\sim_2}(G) - A^{\approx}(G)$$

for 2-adjacency self-Laplacian matrix.

Theorem 2.9 If G is a simple, connected graph and $\mu_1^{\approx}(G)$ is the 2-self Laplacian spectral radius, then

$$\mu_1^{\approx}(G) > \max_{i \sim_2 j} \sqrt{(d_i^{\sim_2} - 2p_i)(d_j^{\sim_2} - 2p_j)}$$
(8)

where p_i , t_k are $p_i = \frac{\sum_{k \sim 2^i} t_k}{t_i}$, $t_k = \frac{\sum_{k \sim 2^j} d_j}{d_k^{\sim 2}}$ respectively.

Proof: Let $X = (x_1, x_2, ..., x_n)^T$ be an eigenvector corresponding to the largest eigenvalue μ_1^{\approx} of $T^{-1}(G) L^{\approx}(G)T(G)$ where T(G) is the block diagonal matrix $diag(t_1, t_2, ..., t_n), t_i = \frac{\sum_{i\sim 2j} d_j}{d_i^{\sim 2}}$, i = 1, 2, ..., n. We can assume that x_i is the largest eigencomponent 1 and the other eigencomponents are less than or equal to 1, that is, $x_i = 1$ and $x_k \leq 1, \forall k$.

We consider the matrix $T^{-1}(G) L^{\approx}(G)T(G)$. Now the $(i,j)^{th}$ element of $T^{-1}(G) L^{\approx}(G)T(G)$ is

$$\begin{cases} d_i^{\sim_2} & ; \quad i=j \\ -2\frac{t_j}{t_i} & ; \quad i\sim_2 j \\ 0 & ; & otherwise \end{cases}$$

We have

$$\{T^{-1}(G)L^{\approx}(G)T(G)\}X = \mu_{1}^{\approx}(G)X$$
(9)

From the i th equation of (9), we have

$$\mu_{1}^{\approx} x_{i} = d_{i}^{\sim 2} x_{i} - 2 \sum_{k \sim 2^{i}} \frac{t_{k}}{t_{i}}$$

$$\mu_{1}^{\approx} > d_{i}^{\sim 2} - 2p_{i}$$
(10)

Similarly, from the j th equation of (9), we have

$$\mu_{1}^{\approx} x_{j} = d_{j}^{\sim_{2}} x_{j} - 2 \sum_{k \sim_{2} j} \frac{t_{k}}{t_{j}}$$

$$\mu_{1}^{\approx} > d_{j}^{\sim_{2}} - 2p_{j}.$$
(11)

180

From (10) and (11), we get

$$\mu_1^{\approx}(G) > \max_{i \sim_2 j} \sqrt{(d_i^{\sim_2} - 2p_i)(d_j^{\sim_2} - 2p_j)}$$

Conjecture 2.10 Let G be a simple, connected graph. Then

$$\mu_1^{\sim 2}(G) \le \mu_1^{\approx}(G). \tag{12}$$

When we generalize for k-adjacency to found bound, we obtain following result.

Conjecture 2.11 If G is a simple, connected graph and $\mu_1^{\sim k}(G)$ is the k-Laplacian spectral radius, then

$$\mu_1^{\sim k}(G) > \max_{i \sim k^j} \sqrt{(d_i^{\sim k} - kp_i)(d_j^{\sim k} - kp_j)}$$
(13)

where p_i , t_i are $p_i = \frac{\sum_{i \sim k^j} t_j}{t_i}$, $t_i = \frac{\sum_{i \sim k^j} d_j}{d_i^{\sim k}}$ respectively.

Specially, if we get k = 1, Conjecture 2.11 will turn to Merris's bound (4).

REFERENCES

- [1] Anderson, W.N. and Morley, T.D., *Linear Multilinear Algebra*, **18**(2), 141, 1985.
- [2] Başdaş Nurkahlı S. And Büyükköse, Ş., *Bounds for the Laplacian eigenvalue of graphs using 2-adjacency*, Gazi University Master'Thesis, 2015.
- [3] Brouwer, A. E. and Haemers, W. H., *Spectra Of Graphs*.(Electronic edition). New York/USA: Springer, 1-3, 2011.
- [4] Collatz, L., Sinogowitz, U., Abh. Math. Sem. Univ. Hamburg, 21, 63, 1957.
- [5] Das, K.C., *Linear Algebra Appl.*, **368**, 269, 2003.
- [6] Das, K.C., Kumar, P., Some new bounds on the spectral radius of graphs, **281**, 149, 2004.
- [7] Guo, J.M., *Linear Algebra Appl.*, **400**, 61, 2005.
- [8] Li. J.S. and Zhang, X.D., *Linear Algebra and Application*, **265**, 93, 1997.
- [9] Liu, H., Lu, M., Tian, F., Journal of Mathematical Chemistry, **41**(1), 45, 2007.
- [10] Merris, R., Linear Algebra and its Applications, 285(1-3), 33, 1998.
- [11] Ocak, N.G., Büyükköse, Ş., *Bounds for the eigenvalue of graphs using 2-adjacency*, Gazi University Master'Thesis, 2015.

- [12] Rojo, O., Soto, R., Rojo, H., Linear Algebra Appl., **312**, 155, 2000.
- [13] Zhou, B., MATCH Commun. Math. Comput. Chem., 51, 111, 2004.
- [14] Zhou, B., Australasian J. Combin., 22, 301, 2000.
- [15] Zhou, B., Gutman, I., Linear Algebra and its Applications, 414, 29, 2006.