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Abstract. In this paper an efficient transformation, in combination with Exp-function 

method has been applied to construct generalized solitary and periodic wave solutions of the 

nonlinear Lax equation of fractional-order. First the nonlinear partial differential equation is 

converted into ordinary differential equation by a suitable transformation. Then desired 

solitary wave solutions has been obtained. Computational work and subsequent results re-

confirm the efficiency of proposed algorithm. It is observed that suggested scheme is highly 

reliable and may be extended to other nonlinear differential equations of fractional order.  

Keywords: Lax equation; fractional calculus; Exp-function method; solitary wave 

solutions  

  

 

1. INTRODUCTION         

 

 

       The subject of factional calculus [1, 2] is a rapidly growing field of research, at the 

interface between chaos, probability, differential equations, and mathematical physics. In 

recent years, nonlinear fractional differential equations (NFDEs) have gained much interest 

due to exact description of nonlinear phenomena of many real-time problems. The fractional 

calculus is also considered as a novel topic [3, 4]; has gained considerable popularity and 

importance during the recent past. It has been the subject of specialized conferences and 

workshops, mainly due to its demonstrated applications in numerous seemingly diverse and 

widespread fields of science and engineering. Some of the areas of present-day applications of 

fractional models [5-8] include fluid flow, solute transport or dynamical processes in self-

similar and porous structures, diffusive transport akin to diffusion, material viscoelastic 

theory, electromagnetic theory, dynamics of earthquakes, control theory of dynamical 

systems, optics, signal processing, bio-sciences, economics, geology, astrophysics, probability 

and statistics, chemical physics and so on. As a consequence, there has been an intensive 

development of the theory of fractional differential equations, see [1–8] and the references 

therein. Recently, He and Wu [9] developed a very efficient technique which is called Exp-

function method for solving various nonlinear physical problems. The through study of 

literature reveals that Exp-function method has been applied on a wide range of differential 

equations and is highly reliable. The Exp-function method has been extremely useful for 

diversified nonlinear problems of physical nature and has the potential to cope with the 

versatility of the complex nonlinearities of the problems. The subsequent works have shown 

the complete reliability and efficiency of this algorithm. He et. al. [10-11] used this scheme to 

                                                 

 
1
 Riphah International University, Department of Mathematics, Islamabad, Pakistan. 

2
 University of Wah, Faculty of Basic Sciences, Wah Cantt., Pakistan. E-mail: qazimahmood.iqra@gmail.com. 

mailto:qazimahmood.iqra@gmail.com


On an efficient technique to solve …                                                                                     Kamran Ayub et al. 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

566 

find periodic solutions of evolution equations; Mohyud-Din [12-15] extended the same for 

nonlinear physical problems including higher-order BVPs; Oziz [16] tried this novel approach 

for Fisher’s equation; Wu et. al. [17, 18] for the extension of solitary, periodic and 

compacton-like solutions; Yusufoglu [19] for MBBN equations, Zhang [20] for high-

dimensional nonlinear evolution equations; Zhu [21, 22] for the Hybrid-Lattice system and 

discrete modified KdV lattice; Kudryashov [23] for exact soliton solutions of the generalized 

evolution equation of wave dynamics; Momani [24] for an explicit and numerical solutions of 

the fractional KdV equation; Ebaid [25] for the improvement on the Exp-function method 

when balancing the highest order linear and nonlinear terms. The basic motivation of this 

paper is the development of an efficient combination comprising an efficient transformation, 

Exp-function method using Jumarie’s derivative approach [26-31] and its subsequent 

application to construct generalized solitary wave solutions of the nonlinear Lax equation of 

fractional-order. It is to be highlighted that Ebaid [25] proved that  dc   and qp   are the 

only relations that can be obtained by applying Exp-function method to any nonlinear 

ordinary differential equation. The Lax equation appear in quantum field theory, relativistic 

physics, dispersive wave-phenomena, plasma physics, nonlinear optics, applied and physical 

sciences.  

 

 

2. PRELIMINARY DEFINITIONS AND THEOREMS 

 

     

In this section, basic definitions of fractional calculus and some theorems are given to 

find positive integers , ,p q c and d  involved in trial solution of Exp-function method. 

 

Theorem 1. Suppose that )(ru  and u  are respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, where r   and   are both positive integers. 

Then the balancing procedure using the Exp-function ansatz;  
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leads to  dc   and qp  ,  .2,1  r  

 

Theorem 2. Suppose that )(ru  and ks uu )(  are respectively the highest order linear term and 

the highest order nonlinear term of a nonlinear ODE, where sr,  and k  are all positive 

integers. Then the balancing procedure using the Exp-function ansatz leads to dc   and

qp  , .1,,  ksr  

 

Theorem 3. Suppose that  )(ru  and )( )(su  are respectively the highest order linear term and 

the highest order nonlinear term of a nonlinear ODE, where sr, and   are all positive 

integers. Then the balancing procedure using the Exp-function ansatz leads to dc   and

qp  , 2,1,  sr . 

 

Theorem 4. Suppose that u )(r  and (u us ))(  are respectively the highest order linear term 

and the highest order nonlinear term of a nonlinear ODE, where ,, sr  and   are all positive 
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integers. Then the balancing procedure using the Exp-function ansatz leads to  dc   and

qp  , ∀ 1,,,  sr . 

 

Jumarie’s Fractional Derivative  

Jumarie's fractional derivative is a modified Riemann-Liouville derivative defined as [27-30] 
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Where              denotes a continuous (but not necessarily differentiable) function. 

Some useful formulas and results of Jumarie’s modified Riemann–Liouville derivative 

were summarized in Refs. [27-30]. 

  

,0,0  cDx c =constant   (2) 

 

    ,0  xfcDxcfD xx c =constant                  (3)  
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3. EXP-FUNCTION METHOD  

 

 

We consider the general nonlinear FPDE of the type  

 

.10,0.)..,,,,...,,,,(   uDuDuDuuuuuP xxxtxxxxxxt                                                    (7)

  

Where uDuDuD xxxt

 ,, are the modified Riemann-Liouville derivative of u with respect to 

xxxt ,,  respectively. 

Using a transformation  
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 We can rewrite equation (7) in the following nonlinear ODE:      
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     .0),,,,,( '''''' ivuuuuuQ                                 

(9) 

 

Where the prime denotes derivative with respect to .  

According to Exp-function method, we assume that the wave solution can be 

expressed in the following form    
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Where cqp ,,  and d   are positive integers which are known to be further determined, na  and 

nb   are unknown constants. We can rewrite Eq.(10) in the following equivalent form  
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This equivalent formulation plays an important and fundamental part for finding the 

analytic solution of problems. To determine the value of c  and q  by using [25], we have   

., dqcp                                                                                                                (12) 

 

 

4. SOLUTION PROCEDURE  

 

 

In this section, we apply Exp-function method for fractional order nonlinear Lax 

equation. 

Consider the general form of the Lax equation  

 

    ,02
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3
532

22  xxxxxtt uuuuuuuuuD 


 .10                            (13)

                

Using (8) equation (13) can be converted to an ordinary differential equation 

 
  .0101020310 553322  ukuukuukuuku                                                    (14) 

 

Where the prime denotes the derivative with respect to . The solution of the equation (13) 

can be expressed in the form, equation (11). To determine the value of c  and p , by using 

referance [25] we have  

 

   ., dqcp                        (15) 

 

Case I. We can freely choose the values of c  and d , but we will illustrate that the 

final solution does not strongly depend upon the choice of values of c  and d . For simplicity, 

we set 1 cp and 1 dq  equation (11) reduces to   
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Substituting equation (16) into equation (14), we have 
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Where     6101 expexp   bbbA ,  5,4,......,4,5 ici are constants obtained by 

using Maple 17. Equating the coefficients of  nexp  to be zero, we obtain 

 

 0,0,0,0,0,0,0,0,0,0,0 54321012345   ccccccccccc              (18) 

 

Solution will yield   
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We, therefore, obtained the following generalized solitary solution  txu , of Lax 

equation   
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Figure 1. Solitary Wave Solution. 
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Fig. 1 depicts soliton solutions of Lax equation, when 1101  kbba .  In case 

k  is an imaginary number, the obtained soliton solutions can be converted into periodic 

solutions or compact-like solutions. Therefore, we write iKk   consequently, solution (19) 

becomes  
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search for periodic solutions or compact-like solutions than the imaginary part of equation 

(20) must be zero, consequently 
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Figure 2. Periodic Wave Solution. 

 

Fig. 2 depicts periodic solutions, when 1101  Kbba . 

 

Case II. If ,2 cp  and 2 dq then equation (11) reduces to  
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and contains  some free parameters, we set 011  bb , for simplicity , the trial-function (21) 

is simplified as follows: 
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Proceeding as before, we obtain 
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Hence we get the generalized solitary wave solution of Lax equation as follows 
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Figure 3. Solitary Wave Solution. 

 

Fig. 3 depicts soliton solutions of Lax equation when 1202  bba and 
2

1
k . 

 

5. CONCLUSION  

 

 

In this paper, Exp-function method is applied to construct generalized solitary and 

periodic wave solutions of the nonlinear fractional order Lax equation. We attain desired 
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solutions through exponential functions. It is guaranteed the accuracy of the attain results by 

backward substitution into the original equation with Maple software. The scheming 

procedure of this method is simplest, straight and productive. It is concluded that the under 

study technique is more reliable and have minimum computational task, so widely applicable. 

Solutions clearly depict solitary and periodic wave solutions.   
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