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Abstract.In this work, Lie symmetry analysis is applied on Lax's fifth-order KdV and 

Hunter-Saxton equations. By using point symmetry, all of the geometric vector fields of these 

equations are presented. Then, on the basis of the optimal system, similarity reductions and 

exact solutions are obtained. 
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1. INTRODUCTION  

 

Lie defined theory of Lie symmetry groups of differential equations [1]. Thus, Lie 

groups are reversible point transformations of the some differential equations. On the other 

hand, Lie symmetry method have been extensively performed to some nonlinear partial 

differential equations arising in mathematics, applied physics and in many other scientific 

fields. Therefore, Lie symmetry groups may deal with symmetry reductions, similarity 

solutions of nonlinear differential partial equations. Since the method of Lie symmetry 

analysis is the most important approach for characterizing analytical solutions of some 

nonlinear partial differential equations. Many practices of Lie groups and algebras in the 

theory of differential equations were constructed [2-4]. 

Recently, there has been considerable interest in Lie symmetry analysis. Lie symmetry 

analysis method have been applied for the Kudryashov Sinelshchikov equation in [5]. They 

obtained ones and two dimensional optimal systems of Lie subalgebras by group-invariant 

solutions. By symbolic computation, Lie symmetry analysis, Painlevé test method, some 

conservation laws and similarity solutions for the Nizhnik Novikov Veselov equation have 

been performed in [6].  They derived the group classifications and their symmetry reductions 

by Lie group method. 

Jin-qian et al. obtained the symmetry properties by using modified CK's direct 

method, and some new exact solutions of (2+1) dimensional Boiti Leon Pempinelli equation 

[7]. Bruzon et al. applied the classical Lie method of infinitesimals for BBM equation [8]. 

Badali et al. have studied Lie symmety analiysis for Kawahara-KdV equations [9]. Wang et 

al. have studied the generalized fifth order KdV equation using group methods and 

conservation laws [10]. The readers can look in [11-14] for Lie symmetry and group invariant 

solutions. 

Intention of this work is to use Lie group analysis method to obtain some exact 

solutions of the Lax's fifth order KdV and the Hunter Saxton equations. 

The generalized fifth-order KdV equation [10] is given by 
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 0.=xxxxxxxxxxxx

n

t uuuuuuuu    (1.1) 

In Eq. (1.1), we can acquire, for 2=n , 

 0,=2

xxxxxxxxxxxxt uuuuuuuu    (1.2) 

where ,   and   are nonzero constants. If we choose 30,= 20=  and 10,=  then we 

obtain the Lax's fifth-order KdV equation 

 0.=102030 2

xxxxxxxxxxxxt uuuuuuuu   (1.3) 

Hunter Saxton equation [15] is given by 

 .
2

1
=)( 2

xxxt uuuu   (1.4) 

Eq. (1.4) defines the spread of weakly nonlinear waves in a massive nematic liquid 

crystal director field. This equation was solved in [15] using the method of characteristics. A 

generalization of Eq. (1.4) was studied by Pavlov [16] and it was also solved. Eq. (1.4) was 

investigated by Hunter and Zheng [17], and it was proven that equation is a entirely 

integrable, bi variational, bi Hamiltonian system. In [18], Penskoi studied Lagrangian time-

discretizations of the Hunter-Saxton equation using the Moser-Veselov approach. 

In the second section of this work, method of Lie symmetries are described. The 

vector fields of the Lax's fifth-order KdV and Hunter-Saxton equations are symbolized by 

using Lie symmetry analysis method and exact solutions to these equations are given. In 

Section 3, exact solutions to the Hunter-Saxton equation is investigated and the exact 

solutions to the Lax's fifth-order KdV equation is obtained by using Kudryashov method and 

some exact solutions to Hunter-Saxton equation are obtained by using power series method. 

Finally, the main conclusions are introduced in Section 4. 

 

 

2. MATERIALS AND METHODS 

 

2.1  LIE SYMMETRY ANALYSIS FOR THE LAX'S FIFTH-ORDER KDV EQUATION 

 

We now recall some basic concepts of Lie group method (symmetry analysis). Thus, a 

symmetry group of a system of differential equations is a group which transforms solutions of 

the system to other new solutions. By using this method, one may directly use the defining 

property of such a group and construct new solutions to the system from known ones. 

We imagine a one-parameter Lie group of infinitesimal transformation: 

 ),,,( utxxx   

 ),,,( utxtt   (2.1) 

 ),,,( utxuu   

where 1= . Therefore, vector field associated with the above transformations can be shown 

as 

 .),,(),,(),,(=
u

utx
t

utx
x

utxV













  (2.2) 

From Lie symmetry analysis method, we construct that the coefficient functions   , 

  and   must satisfy the symmetry condition. Its fifth prolongation is given [2] 

 ,...=
5

5

4

4(5)
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tVVPr    (2.3) 

where 

 ,)(= xtxxtxx

x uuuuD    

 ,)(= ttxttxt

t uuuuD    
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   (2.4) 

 ,)(= 555

5

ttxtxt

t uuuuD    

where xD  and tD  are the total differentation with respect to x  and ,t  respectively [2]. 

V  vector field constructs a one-parameter symmetry group of (1.3) if 

 

 0=]102030[ 2(5)

xxxxxxxxxxxxt uuuuuuuuVPr   (2.5) 

whenever  

 0.=102030 2

xxxxxxxxxxxxt uuuuuuuu   

Substituting (2.5) into (2.3), we have following forms of the coefficient functions:  

 0,=,=,= 21  cc  

where 1c , 2c  are arbitrary constants. 

Lie algebra of infinitesimal symmetry of (1.3) is spanned by the following vectors: 

 .=,= 21
t

V
x

V







 (2.6) 

By bracket, relations between these vector fields are 

 0.=],[ 21 VV  

Therefore, Lie algebra is solvable. By the adjoint representing of this vector fields, we have 

optimal systems of three Lax's fifth-order KdV equation as follows: 

For Eq. (1.3), we have 

 },,{ 1221 VVVV   (2.7) 

where   is an arbitrary constant. 

On the basis of the Classical symmetry analysis for the Lax's fifth-order KdV 

equation, we can get 

 ,2=,5=,= 33231 uctccxcc    (2.8) 

where 1c , 2c  and 3c are arbitrary constants. Hence, Lie algebra of infinitesimal symmetry of 

(1.3) is generated by the three vector fields: 

 .25=,=,= 321
x

x
u

u
t

tV
t

V
x

V





















 (2.9) 

If we take the vector field of Eq. (1.3), we have Table 1. 

 
Table 1. Commutator for the Lie algebra of the Lax's fifth-order KdV equation. 

[Vi, Vj] V1 V2 V3 

V1 0 0 V1 

V2 0 0 5V2 

V3 -V1 -5V2 0 

 
Table 2. Adjoint representation for Lie algebra of Lax's fifth-order KdV equation. 

Ad(ex(εVi))Vj V1 V2 V3 

V1 0 V2 V3-εV1 

V2 V1 0 V3-5εV2 

V3 V1+εV1 V2(1+5ε+25/2ε
2
+...) 0 

 

By the adjoint representing of this vector fields, we find optimal systems of Lax's 

fifth-order KdV equation as follows: 

  231312321 ,,,,, VVVVVVVVV    (2.10) 

where   is an arbitrary constant. 
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2.2  LIE SYMMETRY METHOD FOR THE HUNTER-SAXTON EQUATION 

 

We find the vector field of the Hunter Saxton equation (1.4) as follows: 

 .=,2=,=,= 4

2

321
ux

tV
x

t
t

tV
t

V
x

V

























 (2.11) 

For the vector field of Eq. (1.4) under the Lie bracket., we have Table 3. 

 
Table 3. Commutator for the Lie algebra of the Hunter Saxton equation. 

[Vi, Vj] V1 V2 V3 V4 

V1 0 0 0 0 

V2 0 0 2V4 V1 

V3 0 -2V4 0 0 

V4 0 -V1 0 0 

  

For the Hunter Saxton equation (1.4), for any R , we have Table 4. 

 
Table 4. Adjoint representation for Lie algebra of Hunter Saxton equation. 

Ad(ex(εVi))Vj V1 V2 V3 V4 

V1 V1 V2 V3 V4 

V2 V1 V2 V3-2εV4+ ε
2
V1 V4- εV1 

V3 V1 V2+2εV4 V3 V4 

V4 V1 V2+εV1 V3 V4 

 

By the adjoint representing of this vector fields, we find optimal systems of Hunter 

Saxton equation as follows: 

  423221 ,,, VVVVVV    (2.12) 

where   is an arbitrary constant. 

On the basis of the Classical symmetry analysis for the Hunter Saxton equation, we 

can get 

 ,2=,=,2)(= 424

2

31432 xcuccttccxtcxcc    (2.13) 

where 1c , 2c  , 3c  and 4c  are arbitrary constants. 

Hence, Lie algebra of infinitesimal symmetry of (1.4) is generated by the four vector 

fields: 

 ,=,= 21
u

u
x

xV
t

V












 (2.14) 

 .22=,= 2

43
x

tx
u

x
t

tV
t

t
x

xV























 
 

 

3. REDUCED ODES AND EXACT SOLUTIONS 

 

3.1  REDUCED ODES AND EXACT SOLUTIONS FOR THE LAX'S FIFTH-ORDER KDV 

EQUATION 

 

)(i  For 1V , we obtain trivial solution of Eq.(1.3) is  

 ,=),( ktxu  (3.1) 

where k  is an arbitrary constant. 
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)(ii  For 2V , we have 

 )(=),( ftxu  (3.2) 

where .= x  

Substituting (3.2) into Eq. (1.3) and once integral, we reduce equation to the following 

ODE 

   0.=10510 (4)23 Cfffff '''   (3.3) 

where .=
d

df
f '  

)(iii  For 12 VV  , we have 

 )(= fu  

where tx  = . We obtain to following ODE 

   0.=10510 (4)23 Cffffff '''   (3.4) 

)(iv  For 3V , we have 

 )(= 5

2

ftu


 

where 5

1

=


xt .  We obtain to following ODE 

 0.=102030
55

2 (5)(3)2 fffffffff ''''' 


 (3.5) 

)(v  For 13 VV  , this linear combination and generator 2V  have the same ODE for 

Eq.(1.3). 

)(vi  For 23 VV  , we have  

 0.=1020302 (5)(3)2 fffffffff '''''    (3.6) 

 

Now, we seek a new solution of Eq. (3.4) with the Kudryashov method [19] 

 )()(=)( 2

210  QcQccf   (3.7) 

where ,0c 1c  and 3c  are unknown constants, )(Q  is the following function  

 .
1

1
=)(




e
Q


 (3.8) 

Substituting (3.7) in Eq. (3.4) and taking (3.8) into account we obtain the polynomial 

of function )(Q . Collecting all terms with the same power of function )(Q  and equate this 

expressions to zero we obtain the system of algebraic equations. Solving this system we find 

that solution of Eq. (3.4). They are, 

,
)(1

1
2)

1

1
2(=)(

21 


ee
f





 

,
)(1

1
2)

1

1
2()55(

20

1
=)(

22 


ee
f





  

.
)(1

1
2)

1

1
2()55(

20

1
=)(

23 


ee
f





  

 

 
Figure 1. The surface graph of bell-shaped solitary 

wave solution )(3 f  for equation (1.3). 



On characterization of invariant and …                                                             Zeliha Korpinar and Mustafa Inc 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

608 

3.2  REDUCED ODES AND EXACT SOLUTIONS FOR THE HUNTER SAXTON 

EQUATION 

 

In previous section, we have been obtained vector fields and optimal systems of 

Hunter Saxton equation. 

)(i  For 1V , we obtain trivial solution of Eq. (1.4) is 

 ,=),( ktxu  

where k  is an arbitrary constant. 

)(ii  For 2V , we have 

 )(=),( ftxu  (3.9) 

where .= x  

Substituting (3.9) into Eq. (1.4), we reduce this equation to the following ODE 

 0,=)(
2

1 2''' fff   (3.10) 

where .=
d

df
f '  

Eq. (3.10) has the solution .)2(3=)( 3

2

12 ccf   Solution of Eq. (1.4) is 

 ,)2(3=),( 3

2

12 cxctxu   (3.11) 

where 1c  and 2c  are two arbitrary constant. 

)(iii  For ,= 32 VVV   we get  

 ),(=),( 2  fttxu   (3.12) 

where  .
3

=
3t

x


   

Substituting (3.12) into Eq. (1.4), we reduce to the following ODE 

 0,=)(
2

1 2''' fff   (3.13) 

where .=
d

df
f '  The linear combination 32= VVV   and the generator 2V  have the same 

solution for Eq.(1.4). 

)(iv  For ,= 43 VVV   we obtain  

 ),(
2

=),(
2





fx

tt

t
txu 




 (3.14) 

where  .= t There isn't solution of Eq. (1.4) for this linear combination .  

For (2.14) vector fields which are obtained with classical symmetry analysis of the 

Hunter-Saxton equation, we can get 

)i ;=2
u

u
x

xV








  we obtain ),(=),( xftxu  where .= t We reduce Eq. (1.4) to 

following ODE 

 0.=
2

2
'f

f
  (3.15) 
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)ii ;=3
x

x
t

tV








 we obtain ),(=),( ftxu  where .=

t

x
 We reduce Eq. (1.4) to 

following ODE 

 

 
 

0.=
2

2

''''
'

' fff
f

f   (3.16) 

 

Now, we apply power series method to Eq. (3.16) 

 .=)(
0=

n

n

n

cf  


 (3.17) 

 

Substituting (3.17) into (3.16), we have 

 n

kkn

n

kn

n

n

n

cckncccnc  







  1

0=1=

101

1=

1 )1(
2

1

2

1
1)(  

 )1)(2(21)(
0=1=

201

1=

knknccnnc
n

kn

n

n

n

 






  (3.18) 

 0.=2 lcc n

kkn   

 

where 

 0,=2
2

1
20101 ccccc   

 

 )(2
4

1
= 011

0

2 ccc
c

c   

For 1;n  

 n

kkn

n

kn

n

n

n

ccknnc  







  1

0=1=

1

1=

)1(
2

1
1)(  

 )1)(2(1)(
0=1=

1

1=

knknnnc
n

kn

n

n

n

 






  

 0.=2 lcc n

kkn   

 

 


  )1(
2

1
()

1

1
(= 1

0=

2

1 kncc
n

c kkn

n

k

n  (3.19) 

 ))1)(2( 2

0=

kkn

n

k

ccknkn   

 

Therefore, the power series solution of Eq. (3.16) can be written as follows: 

 


  )1(
2

1
()

1

1
(=)( 1

0=

2

10 kncc
n

ccf kkn

n

k

  (3.20) 

 1

2

0=

))1)(2( 

  n

kkn

n

k

knkncc   

 

Therefore, 
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  )1(
2

1
(

1)(

1
)(=),( 1

0=
210 kncc

nt

x
cctxu kkn

n

k

 (3.21) 

 ,)))(1)(2( 1

2

0=



  n

kkn

n

k t

x
knkncc  

where 1nc 1,2,...)=(n  are given by (3.19). 

 

 

4. RESULTS AND DISCUSSION 
 

 

In this work, we have obtained similarity reductions and symmetries of Lax's fifth-

order KdV equation and Hunter-Saxton equation by using Lie symmetry analysis method. We 

obtain the exact solutions of these equations corresponding to reduced ODEs, which have 

been verified by placing them back into the essential equation and then the exact solutions are 

studied. By using this symmetries, we have imagined that this equation may be converted into 

a ODE. Finally, this symmetry analysis based on the Lie group method is a very powerful 

method and is importance of studying further. 
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