ORIGINAL PAPER

GAUSSIAN BALANCING NUMBERS AND GAUSSIAN LUCAS-BALANCING NUMBERS

DURSUN TASCI¹

Manuscript received: 05.01.2018; Accepted paper: 23.05.2018; Published online: 30.09.2018.

Abstract. In this study we define Gaussian balancing numbers and Gaussian Lucasbalancing numbers. Then we obtain Binet-like formulas, generating functions and some identities related with Gaussian balancing numbers and Gaussian Lucas-balancing numbers. Moreover, we give the new properties of Gaussian balancing numbers and Gaussian Lucasbalancing numbers in relation with balancing matrix formula.

Keywords: Balancing and Lucas-balancing numbers, Gaussian balancing numbers, Gaussian Lucas-balancing numbers.

1. INTRODUCTION

Horadam [3] introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers. Behera and Panda [2] introduced the concept of balancing numbers. They defined a balancing number n as a solution of Diophantine equation. A positive integer n is called a balancing number if $1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r)$ for some natural number r. Here r is called the balancer corresponding to the balancing number n. For example 6 and 35 are balancing number with balancers 2 and 14. Again some authors proved that the balancing numbers fulfil the following recurrence relation $B_{n+1} = 6B_n - 6B_n B_{n-1}$, $n \ge 1$ where $B_0 = 1$ and $B_1 = 6$. Panda [6] studied several fascinating properties of balancing numbers calling the positive square root of $8x^2 + 1$, a Lucas- balancing number for each balancing number x. All balancing number x and corresponding Lucas-balancing numbers y are positive integer solutions of Diophantine equation $8x^2 + 1 = y^2$. Balancing and Lucas-balancing numbers share the same linear recurrence $x_{n+1} = 6x_n - x_{n-1}$, while initial values of balancing numbers are $x_0 = 0, x_1 = 1$ and for Lucas-balancing numbers $x_0 = 1, x_1 = 3$. Alvarado et. Al. [1], Liptai [4,5] and Szalay [10] studied certain Diophantine equations relating to balancing numbers. Ray [7,8,9] studied some Diophantine equations involving balancing and Lucas-balancing numbers. Tasci [11,12] studied Gaussian Padovan and Gaussian Pell-Padovan sequaences, and Complex Fibonacci p-numbers.

We denote the n^{th} balancing and Lucas-balancing numbers by B_n and C_n , respectively. The sequences $\{B_n\}$ and $\{C_n\}$ satisfy the recurrence relations

$$B_{n+1} = 6B_n - B_{n-1}$$
 $(n \ge 1), B_0 = 0, B_1 = 1$
 $C_{n+1} = 6C_n - C_{n-1}$ $(n \ge 1), C_0 = 1, C_1 = 3.$

¹ Gazi University, Faculty of Science, Department of Mathematics, Ankara, Turkey. E-mail: <u>dtasci@gazi.edu.tr</u>.

We note that Binet-like formulas for balancing and Lucas-balancing numbers are

$$B_n = \frac{\alpha^n - \beta^n}{4\sqrt{2}}$$
 and $C_n = \frac{\alpha^n + \beta^n}{2}$,

respectively. We remark that $\alpha = 3 + 2\sqrt{2}$ and $\beta = 3 - 2\sqrt{2}$.

2. GAUSSIAN BALANCING NUMBERS

Definition 2.1 The Gaussian balancing sequence is the sequence of complex numbers GB_n defined by the initial values $GB_0 = i$, $GB_1 = 1$ and the recurrence relation

$$GB_{n+1} = 6GB_n - GB_{n-1}$$
 for all $n \ge 1$.

The first few values of GB_n are i, 1, 6 - i, 35 - 6i, 204 - 35i, The following theorem is related with the generating function of the Gaussian balancing sequence.

Theorem 2.1 The generating function of the Gaussian balancing sequence is

$$f(x) = \frac{i + (1 - 6i)x}{1 - 6x + x^2}.$$

Proof: Let

$$f(x) = \sum_{n=0}^{\infty} GB_n x^n = GB_0 + GB_1 x + GB_2 x^2 + \dots + GB_n x^n + \dots$$

Since

$$6xf(x) = 6\sum_{n=0}^{\infty} GB_n x^{n+1} = 6GB_0 x + 6GB_1 x^2 + 6GB_2 x^3 + \dots + 6GB_{n-1} x^n + \dots$$

and

$$x^{2}f(x) = \sum_{n=0}^{\infty} GB_{n}x^{n+2} = GB_{0}x^{2} + GB_{1}x^{3} + GB_{2}x^{4} + \dots + GB_{n-2}x^{n} + \dots$$

So we write

$$(1 - 6x + x^2)f(x) = GB_0 + (GB_1 - 6GB_0)x + (GB_2 - 6GB_1 + GB_0)x^2 + \dots + GB_n - 6GB_{n-1} + GB_{n-2})x^n + \dots$$

Considering $GB_0 = i$, $GB_1 = 1$ and $GB_n = 6GB_{n-1} - GB_{n-2}$, we have

$$(1 - 6x + x^2)f(x) = i + (1 - 6i)x$$

or

$$f(x) = \frac{i + (1 - 6i)x}{1 - 6x + x^2}$$

So the theorem is proved.

www.josa.ro

Theorem 2.2. The Binet-like formula for the Gaussian balancing numbers is

$$GB_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} - i \frac{\beta \alpha^n - \alpha \beta^n}{\alpha - \beta},$$

where $\propto = 3 + 2\sqrt{2}$, $\beta = 3 - 2\sqrt{2}$ are the roots of the equation $x^2 - 6x + 1 = 0$.

Proof: The general term of Gaussian balancing numbers can be expressed in the following form

$$GB_n = c_1 \alpha^n + c_2 \beta^n,$$

where c_1 and c_2 are coefficients. Using the values n = 0,1 we found

$$c_1 = \frac{1 - i\beta}{\alpha - \beta}$$
 and $c_2 = \frac{i\alpha - 1}{\alpha - \beta}$.

Considering the values c_1, c_2 and making some calculations, we obtain

$$GB_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} - i \frac{\beta \alpha^n - \alpha \beta^n}{\alpha - \beta}$$

So the theorem is proved.

Theorem 2.3.

$$\sum_{i=0}^{n} GB_i = \frac{1}{4} (5GB_n - GB_{n-1} + 5i - 1).$$

 $GB_n = 6GB_{n-1} - GB_{n-2}$

Proof: By the definition of Gaussian balancing sequence recurrence relation

we have

$$\begin{array}{l} GB_0 = 6GB_{-1} - GB_{-2} \\ GB_1 = 6GB_0 - GB_{-1} \\ GB_2 = 6GB_1 - GB_0 \\ \vdots \\ GB_{n-2} = 6GB_{n-3} - GB_{n-4} \\ GB_{n-1} = 6GB_{n-2} - GB_{n-3} \\ GB_n = 6GB_{n-1} - GB_{n-2}. \end{array}$$

Thus we obtain

$$\sum_{i=0}^{n} GB_i = \frac{1}{4} (5GB_n - GB_{n-1} - 5GB_{-1} + GB_{-2}).$$

Now considering $GB_{-1} = 6i - 1$, $GB_{-2} = 35i - 6$ we write

$$\sum_{i=0}^{n} GB_i = \frac{1}{4} (5GB_n - GB_{n-1} + 5i - 1).$$

Dursun Tasci

So the theorem is proved.

Now we investigate the new properties of Gaussian balancing numbers in relation with balancing matrix formula. We consider the following matrices:

$$Q = \begin{bmatrix} 6 & -1 \\ 1 & 0 \end{bmatrix}, K = \begin{bmatrix} 6-i & 1 \\ 1 & i \end{bmatrix} \text{ and } P_n = \begin{bmatrix} GB_{n+2} & GB_{n+1} \\ GB_{n+1} & GB_n \end{bmatrix}.$$

Theorem 2.4. For all $n \in Z^+$

$$Q^n K = P_n \tag{2.1}$$

Proof: The proof is easily seen that using the induction on n. We remark that if

then for all $n \in Z^+$

$$Q^n = \begin{bmatrix} B_{n+1} & -B_n \\ B_n & -B_{n-1} \end{bmatrix}.$$

 $Q = \begin{bmatrix} 6 & -1 \\ 1 & 0 \end{bmatrix}$

Theorem 2.5. (Cassini formula for Gaussian balancing numbers)

$$GB_{n+2}GB_n - GB_{n+1}^2 = 6i.$$

Proof: From (2.1) we have

$$\det(Q^n K) = \det(P_n)$$

or

$$\det(Q)^n \det(K) = \det(P_n).$$

On the other hand, since det(Q)=1, det(K)=6*i* and det(P_n) = $GB_{n+2}GB_n - GB_{n+1}^2$, we obtain

$$GB_{n+2}GB_n - GB_{n+1}^2 = 6i.$$

So the theorem is proved.

Theorem 2.6. For all $n \in Z^+$

$$\begin{bmatrix} 6 & -1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} GB_{n+1} \\ GB_n \end{bmatrix}.$$

Proof: The proof can be seen by mathematical induction on n.

3. GAUSSIAN LUCAS-BALANCING NUMBERS

Definition 3.1. The Gaussian Lucas -balancing sequence is defined by recurrence relation

$$GC_{n+1} = 6GC_n - GC_{n-1}$$
 for all $n \ge 1$,
and initial values are $GC_0 = 1 - 3i$, $GC_1 = 3 - i$.
The first few values of GC_n are $1 - 3i$, $3 - i$, $17 - 3i$, $99 - 17i$, $577 - 99i$,
 $3363 - 577i$,....

Theorem 3.1. The generating function of Gaussian Lucas-balancing sequence is

$$g(x) = \frac{1 - 3i + (-3 + 17i)x}{1 - 6x + x^2}.$$
$$g(x) = \sum_{n=1}^{\infty} GC_n x^n$$

n=0

be the generating function of the Gaussian Lucas-balancing sequence. In this case, we have

$$6xg(x) = 6\sum_{n=0}^{\infty} GC_n x^{n+1} = 6GC_0 x + 6GC_1 x^2 + 6GC_2 x^3 + \dots + 6GC_{n-1} x^n + \dots$$

and

Proof: Let

$$x^{2}g(x) = \sum_{n=0}^{\infty} GC_{n}x^{n+2} = GC_{0}x^{2} + GC_{1}x^{3} + GC_{2}x^{4} + \dots + GC_{n-2}x^{n} + \dots$$

So we obtain

$$(1 - 6x + x^2)g(x) = GC_0 + (GC_1 - 6GC_0)x + (GC_2 - 6GC_1 + GC_0)x^2 + \dots + GC_n - 6GC_{n-1} + GC_{n-2})x^n + \dots$$

Since $GC_0 = 1 - 3i$, $GC_1 = 3 - i$ and $GC_n = 6GC_{n-1} - GC_{n-2}$, we write

$$g(x) = \frac{1 - 3i + (-3 + 17i)x}{1 - 6x + x^2}$$

which is desired.

Theorem 3.2. The Binet-like formula of Gaussian Lucas-balancing is

$$GC_n = \frac{(\beta - 3)\alpha^n + (3 - \alpha)\beta^n}{\beta - \alpha} + i \frac{(1 - 3\beta)\alpha^n + (3\alpha - 1)\beta^n}{\beta - \alpha}.$$
(3.1)

Proof: From the theory of difference equations we know the general term of Gaussian Lucasbalancing numbers can be expressed in the following form

$$GC_n = c\alpha^n + d\beta^n.$$

Using the values n = 0,1

$$c = \frac{(\beta - 3) + i(1 - 3\beta)}{\beta - \alpha}, d = \frac{(3 - \alpha) + i(3\alpha - 1)}{\beta - \alpha}$$

can be found. So we obtain (3.1) and the proof is complete.

Theorem 3.3

$$\sum_{i=0}^{n} GC_i = \frac{1}{4} (5GC_n - GC_{n-1} + 2 - 14i).$$

Proof: The proof of Theorem 3.3 is similar to the proof of Theorem 2.3.

Theorem 3.4.

i) $GB_{n+1} - GB_{n-1} = 2GC_n$ ii) $GC_{n+1} - GC_{n-1} = 16GB_n$ iii) $GC_n^2 - 8GB_n^2 = -6i.$

Proof: The proof is easily seen that considering the Binet-like formulas of Gaussian balancing number and Gaussian Lucas-balancing numbers.

Theorem 3.5. Let

$$Q = \begin{bmatrix} 6 & -1 \\ 1 & 0 \end{bmatrix}, S = \begin{bmatrix} 17 - 3i & 3 - i \\ 3 - i & 1 - 3i \end{bmatrix} \text{ and } R_n = \begin{bmatrix} GC_{n+2} & GC_{n+1} \\ GC_{n+1} & GC_n \end{bmatrix}.$$
Then for all $n \in Z^+$

$$Q^n S = R_n$$

Proof: The proof can be seen by mathematical induction on n.

Theorem 3.6. (Cassini formula for Gaussian Lucas-balancing numbers)

$$GC_{n+1}GC_{n-1} - GC^2_n = -48i.$$

Proof: (Mathematical induction on n.)

Theorem 3.7. For all $n \in Z^+$

$$\begin{bmatrix} 6 & -1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 3-i \\ 1-3i \end{bmatrix} = \begin{bmatrix} GC_{n+1} \\ GC_n \end{bmatrix}.$$

Proof: Use induction on n.

REFERENCES

- [1] Alvarado S., Dujella A., Luca F., Integers, 12, 1127, 2012.
- [2] Behera, A., Panda, G.K., Fibonacci Quarterly, 37, 98, 1999.
- [3] Horadam, A.F., *American Math. Monthly*, **70**, 289, 1963.
- [4] Liptai, K., Fibonacci Quarterly, 42, 330, 2004.
- [5] Liptai, K., Acta Math. Univ. Ostrav., 14, 43, 2006.
- [6] Panda, G.K., Some fascinating properties of balancing numbers, *Proceeding of the eleventh international conference on Fibonacci numbers and their appl., Congr. Numer.*, **194**, 185, 2009.
- [7] Ray, P.K., Int. J. Pure Appl.Math., 85, 487, 2013.
- [8] Ray, P.K., Acta et Commentationes Univ. Tartuensis de Mathematica, 20, 165, 2016.
- [9] Ray, P.K., Math. Rep. (bucur), 17, 225, 2016.
- [10] Szalay, L., Ann. Math. Inform, 34, 77, 2007.
- [11] Tasci, D., Commun. Fac. Sci. Uni. Ank. Ser. A., 1, 67, 2018.
- [12] Tasci, D., Communications in Mathematics and Appl., 4, 213, 2013.