ORIGINAL PAPER

GAUSSIAN BALANCING NUMBERS AND GAUSSIAN LUCASBALANCING NUMBERS

DURSUN TASCI ${ }^{1}$

Manuscript received: 05.01.2018; Accepted paper: 23.05.2018;
Published online: 30.09.2018.

Abstract

In this study we define Gaussian balancing numbers and Gaussian Lucasbalancing numbers. Then we obtain Binet-like formulas, generating functions and some identities related with Gaussian balancing numbers and Gaussian Lucas-balancing numbers. Moreover, we give the new properties of Gaussian balancing numbers and Gaussian Lucasbalancing numbers in relation with balancing matrix formula.

Keywords: Balancing and Lucas-balancing numbers, Gaussian balancing numbers, Gaussian Lucas-balancing numbers.

1. INTRODUCTION

Horadam [3] introduced the concept the complex Fibonacci numbers as the Gaussian Fibonacci numbers. Behera and Panda [2] introduced the concept of balancing numbers. They defined a balancing number n as a solution of Diophantine equation. A positive integer n is called a balancing number if $1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)$ for some natural number r. Here r is called the balancer corresponding to the balancing number n. For example 6 and 35 are balancing number with balancers 2 and 14. Again some authors proved that the balancing numbers fulfil the following recurrence relation $B_{n+1}=6 B_{n}-$ $B_{n-1}, n \geq 1$ where $B_{0}=1$ and $B_{1}=6$. Panda [6] studied several fascinating properties of balancing numbers calling the positive square root of $8 x^{2}+1$, a Lucas- balancing number for each balancing number x. All balancing number x and corresponding Lucas-balancing numbers y are positive integer solutions of Diophantine equation $8 x^{2}+1=y^{2}$. Balancing and Lucas-balancing numbers share the same linear recurrence $x_{n+1}=6 x_{n}-x_{n-1}$, while initial values of balancing numbers are $x_{0}=0, x_{1}=1$ and for Lucas-balancing numbers $x_{0}=1, x_{1}=3$. Alvarado et. Al. [1], Liptai [4,5] and Szalay [10] studied certain Diophantine equations relating to balancing numbers. Ray $[7,8,9]$ studied some Diophantine equations involving balancing and Lucas-balancing numbers. Tasci [11,12] studied Gaussian Padovan and Gaussian Pell-Padovan sequaences, and Complex Fibonacci p-numbers.

We denote the $n^{\text {th }}$ balancing and Lucas-balancing numbers by B_{n} and C_{n}, respectively. The sequences $\left\{B_{n}\right\}$ and $\left\{C_{n}\right\}$ satisfy the recurrence relations

$$
B_{n+1}=6 B_{n}-B_{n-1}(n \geq 1), B_{0}=0, B_{1}=1
$$

and

$$
C_{n+1}=6 C_{n}-C_{n-1}(n \geq 1), C_{0}=1, C_{1}=3 .
$$

[^0]We note that Binet-like formulas for balancing and Lucas-balancing numbers are

$$
B_{n}=\frac{\alpha^{n}-\beta^{n}}{4 \sqrt{2}} \text { and } C_{n}=\frac{\alpha^{n}+\beta^{n}}{2}
$$

respectively. We remark that $\alpha=3+2 \sqrt{2}$ and $\beta=3-2 \sqrt{2}$.

2. GAUSSIAN BALANCING NUMBERS

Definition 2.1 The Gaussian balancing sequence is the sequence of complex numbers $G B_{n}$ defined by the initial values $G B_{0}=i, G B_{1}=1$ and the recurrence relation

$$
G B_{n+1}=6 G B_{n}-G B_{n-1} \text { for all } n \geq 1
$$

The first few values of $G B_{n}$ are $i, 1,6-i, 35-6 i, 204-35 i, \ldots$.
The following theorem is related with the generating function of the Gaussian balancing sequence.

Theorem 2.1 The generating function of the Gaussian balancing sequence is

$$
f(x)=\frac{i+(1-6 i) x}{1-6 x+x^{2}}
$$

Proof: Let

$$
f(x)=\sum_{n=0}^{\infty} G B_{n} x^{n}=G B_{0}+G B_{1} x+G B_{2} x^{2}+\cdots+G B_{n} x^{n}+\cdots
$$

Since

$$
6 x f(x)=6 \sum_{n=0}^{\infty} G B_{n} x^{n+1}=6 G B_{0} x+6 G B_{1} x^{2}+6 G B_{2} x^{3}+\cdots+6 G B_{n-1} x^{n}+\cdots
$$

and

$$
x^{2} f(x)=\sum_{n=0}^{\infty} G B_{n} x^{n+2}=G B_{0} x^{2}+G B_{1} x^{3}+G B_{2} x^{4}+\cdots+G B_{n-2} x^{n}+\cdots
$$

So we write

$$
\begin{aligned}
\left(1-6 x+x^{2}\right) f(x)= & G B_{0}+\left(G B_{1}-6 G B_{0}\right) x+\left(G B_{2}-6 G B_{1}+G B_{0}\right) x^{2}+\cdots+ \\
& \left.G B_{n}-6 G B_{n-1}+G B_{n-2}\right) x^{n}+\cdots .
\end{aligned}
$$

Considering $G B_{0}=i, G B_{1}=1$ and $G B_{n}=6 G B_{n-1}-G B_{n-2}$, we have

$$
\left(1-6 x+x^{2}\right) f(x)=i+(1-6 i) x
$$

or

$$
f(x)=\frac{i+(1-6 i) x}{1-6 x+x^{2}}
$$

So the theorem is proved.

Theorem 2.2.The Binet-like formula for the Gaussian balancing numbers is

$$
G B_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}-i \frac{\beta \alpha^{n}-\alpha \beta^{n}}{\alpha-\beta}
$$

where $\propto=3+2 \sqrt{2}, \beta=3-2 \sqrt{2}$ are the roots of the equation $x^{2}-6 x+1=0$.
Proof: The general term of Gaussian balancing numbers can be expressed in the following form

$$
G B_{n}=c_{1} \alpha^{n}+c_{2} \beta^{n}
$$

where c_{1} and c_{2} are coefficients. Using the values $\mathrm{n}=0,1$ we found

$$
c_{1}=\frac{1-i \beta}{\alpha-\beta} \text { and } c_{2}=\frac{i \alpha-1}{\alpha-\beta} .
$$

Considering the values c_{1}, c_{2} and making some calculations, we obtain

$$
G B_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}-i \frac{\beta \alpha^{n}-\alpha \beta^{n}}{\alpha-\beta}
$$

So the theorem is proved.

Theorem 2.3.

$$
\sum_{i=0}^{n} G B_{i}=\frac{1}{4}\left(5 G B_{n}-G B_{n-1}+5 i-1\right)
$$

Proof: By the definition of Gaussian balancing sequence recurrence relation
we have

$$
G B_{n}=6 G B_{n-1}-G B_{n-2}
$$

$$
\begin{gathered}
G B_{0}=6 G B_{-1}-G B_{-2} \\
G B_{1}=6 G B_{0}-G B_{-1} \\
G B_{2}=6 G B_{1}-G B_{0} \\
\vdots \\
G B_{n-2}=6 G B_{n-3}-G B_{n-4} \\
G B_{n-1}=6 G B_{n-2}-G B_{n-3} \\
G B_{n}=6 G B_{n-1}-G B_{n-2} .
\end{gathered}
$$

Thus we obtain

$$
\sum_{i=0}^{n} G B_{i}=\frac{1}{4}\left(5 G B_{n}-G B_{n-1}-5 G B_{-1}+G B_{-2}\right)
$$

Now considering $G B_{-1}=6 i-1, G B_{-2}=35 i-6$ we write

$$
\sum_{i=0}^{n} G B_{i}=\frac{1}{4}\left(5 G B_{n}-G B_{n-1}+5 i-1\right)
$$

So the theorem is proved.
Now we investigate the new properties of Gaussian balancing numbers in relation with balancing matrix formula. We consider the following matrices:

$$
Q=\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right], K=\left[\begin{array}{cc}
6-i & 1 \\
1 & i
\end{array}\right] \text { and } P_{n}=\left[\begin{array}{cc}
G B_{n+2} & G B_{n+1} \\
G B_{n+1} & G B_{n}
\end{array}\right] .
$$

Theorem 2.4. For all $n \in Z^{+}$

$$
\begin{equation*}
Q^{n} K=P_{n} \tag{2.1}
\end{equation*}
$$

Proof: The proof is easily seen that using the induction on n . We remark that if

$$
Q=\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]
$$

then for all $n \in Z^{+}$

$$
Q^{n}=\left[\begin{array}{cc}
B_{n+1} & -B_{n} \\
B_{n} & -B_{n-1}
\end{array}\right] .
$$

Theorem 2.5. (Cassini formula for Gaussian balancing numbers)

$$
G B_{n+2} G B_{n}-G B_{n+1}^{2}=6 i
$$

Proof: From (2.1) we have

$$
\operatorname{det}\left(Q^{n} K\right)=\operatorname{det}\left(P_{n}\right)
$$

or

$$
\operatorname{det}(Q)^{n} \operatorname{det}(K)=\operatorname{det}\left(P_{n}\right)
$$

On the other hand, since $\operatorname{det}(\mathrm{Q})=1, \operatorname{det}(\mathrm{~K})=6 i$ and $\operatorname{det}\left(P_{n}\right)=G B_{n+2} G B_{n}-G B_{n+1}^{2}$, we obtain

$$
G B_{n+2} G B_{n}-G B_{n+1}^{2}=6 i .
$$

So the theorem is proved.
Theorem 2.6. For all $n \in Z^{+}$

$$
\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
G B_{n+1} \\
G B_{n}
\end{array}\right]
$$

Proof: The proof can be seen by mathematical induction on n .

3. GAUSSIAN LUCAS-BALANCING NUMBERS

Definition 3.1. The Gaussian Lucas -balancing sequence is defined by recurrence relation

$$
G C_{n+1}=6 G C_{n}-G C_{n-1} \text { for all } n \geq 1
$$

and initial values are $G C_{0}=1-3 i, G C_{1}=3-i$.
The first few values of $G C_{n}$ are $1-3 i, 3-i, 17-3 i, 99-17 i, 577-99 i$, $3363-577 i, \ldots$.

Theorem 3.1. The generating function of Gaussian Lucas-balancing sequence is

$$
g(x)=\frac{1-3 i+(-3+17 i) x}{1-6 x+x^{2}}
$$

Proof: Let

$$
g(x)=\sum_{n=0}^{\infty} G C_{n} x^{n}
$$

be the generating function of the Gaussian Lucas-balancing sequence. In this case, we have

$$
6 x g(x)=6 \sum_{n=0}^{\infty} G C_{n} x^{n+1}=6 G C_{0} x+6 G C_{1} x^{2}+6 G C_{2} x^{3}+\cdots+6 G C_{n-1} x^{n}+\cdots
$$

and

$$
x^{2} g(x)=\sum_{n=0}^{\infty} G C_{n} x^{n+2}=G C_{0} x^{2}+G C_{1} x^{3}+G C_{2} x^{4}+\cdots+G C_{n-2} x^{n}+\cdots
$$

So we obtain

$$
\begin{aligned}
\left(1-6 x+x^{2}\right) g(x)= & G C_{0}+\left(G C_{1}-6 G C_{0}\right) x+\left(G C_{2}-6 G C_{1}+G C_{0}\right) x^{2}+\cdots+ \\
& \left.G C_{n}-6 G C_{n-1}+G C_{n-2}\right) x^{n}+\cdots .
\end{aligned}
$$

Since $G C_{0}=1-3 i, G C_{1}=3-i$ and $G C_{n}=6 G C_{n-1}-G C_{n-2}$, we write

$$
g(x)=\frac{1-3 i+(-3+17 i) x}{1-6 x+x^{2}}
$$

which is desired.
Theorem 3.2. The Binet-like formula of Gaussian Lucas-balancing is

$$
\begin{equation*}
G C_{n}=\frac{(\beta-3) \alpha^{n}+(3-\alpha) \beta^{n}}{\beta-\alpha}+i \frac{(1-3 \beta) \alpha^{n}+(3 \alpha-1) \beta^{n}}{\beta-\alpha} . \tag{3.1}
\end{equation*}
$$

Proof: From the theory of difference equations we know the general term of Gaussian Lucasbalancing numbers can be expressed in the following form

$$
G C_{n}=c \alpha^{n}+d \beta^{n}
$$

Using the values $n=0,1$

$$
c=\frac{(\beta-3)+i(1-3 \beta)}{\beta-\alpha}, d=\frac{(3-\alpha)+i(3 \alpha-1)}{\beta-\alpha}
$$

can be found. So we obtain (3.1) and the proof is complete.

Theorem 3.3

$$
\sum_{i=0}^{n} G C_{i}=\frac{1}{4}\left(5 G C_{n}-G C_{n-1}+2-14 i\right)
$$

Proof: The proof of Theorem 3.3 is similar to the proof of Theorem 2.3.

Theorem 3.4.

i) $G B_{n+1}-G B_{n-1}=2 G C_{n}$
ii) $G C_{n+1}-G C_{n-1}=16 G B_{n}$
iii) $G C_{n}^{2}-8 G B_{n}^{2}=-6 i$.

Proof: The proof is easily seen that considering the Binet-like formulas of Gaussian balancing number and Gaussian Lucas-balancing numbers.

Theorem 3.5. Let

$$
Q=\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right], S=\left[\begin{array}{cc}
17-3 i & 3-i \\
3-i & 1-3 i
\end{array}\right] \text { and } R_{n}=\left[\begin{array}{cc}
G C_{n+2} & G C_{n+1} \\
G C_{n+1} & G C_{n}
\end{array}\right] .
$$

Then for all $n \in Z^{+}$

$$
Q^{n} S=R_{n}
$$

Proof: The proof can be seen by mathematical induction on n .
Theorem 3.6. (Cassini formula for Gaussian Lucas-balancing numbers)

$$
G C_{n+1} G C_{n-1}-G C^{2}{ }_{n}=-48 i .
$$

Proof: (Mathematical induction on n.)
Theorem 3.7. For all $n \in Z^{+}$

$$
\left[\begin{array}{cc}
6 & -1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{c}
3-i \\
1-3 i
\end{array}\right]=\left[\begin{array}{c}
G C_{n+1} \\
G C_{n}
\end{array}\right]
$$

Proof: Use induction on n .

REFERENCES

[1] Alvarado S., Dujella A., Luca F., Integers, 12, 1127, 2012.
[2] Behera, A., Panda, G.K., Fibonacci Quarterly, 37, 98, 1999.
[3] Horadam, A.F., American Math. Monthly, 70, 289, 1963.
[4] Liptai, K., Fibonacci Quarterly, 42, 330, 2004.
[5] Liptai, K., Acta Math. Univ. Ostrav., 14, 43, 2006.
[6] Panda, G.K., Some fascinating properties of balancing numbers, Proceeding of the eleventh international conference on Fibonacci numbers and their appl., Congr. Numer., 194, 185, 2009.
[7] Ray, P.K., Int. J. Pure Appl.Math., 85, 487, 2013.
[8] Ray, P.K., Acta et Commentationes Univ. Tartuensis de Mathematica, 20, 165, 2016.
[9] Ray, P.K., Math. Rep. (bucur), 17, 225, 2016.
[10] Szalay, L., Ann. Math. Inform, 34, 77, 2007.
[11] Tasci, D., Commun. Fac. Sci. Uni. Ank. Ser. A., 1, 67, 2018.
[12] Tasci, D., Communications in Mathematics and Appl., 4, 213, 2013.

[^0]: ${ }^{1}$ Gazi University, Faculty of Science, Department of Mathematics, Ankara, Turkey. E-mail: dtasci@gazi.edu.tr.

