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Abstract. In this study, a hybrid matrix-collocation method based on Dickson 

polynomials of the second kind along with Taylor polynomials is proposed to solve 

pantograph type functional differential equations with mixed delays under the initial 

conditions. The parameter-  in Dickson polynomials is interpreted for obtaining the 

optimum solutions. An error estimation related with the residual function and the mean-value 

theorem is implemented and also some illustrative examples are presented. It is observed that 

the proposed method is easy to be applied. 

Keywords: Pantograph–type functional equations; Delay differential equations; 

Dickson polynomials; Matrix-collocation method. 

 

 

1. INTRODUCTION  

 

 

In this study, we consider the high-order linear pantograph type functional differential 

equation with mixed delays (advanced, proportional or neutral delays) and variable 

coefficients [1-16]: 
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0 0 0

m mm
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    , 1m m , a x b            (1) 

 

subject to the initial conditions 

 

                                                  
   k

ky a  , 0,1,2 , 1k m                                              (2) 

 

where  kP x ,  rjQ x ,  g x  are known analytic functions defined on the interval a x b  , 

also 
j , 

j  and k  are appropriate contants;  y x  is an unknown function. On the other 

hand, if we take m=1, m1=0, P1(x)=1 and 0j  , Eq. (1) is reduced to the multi-pantograph 

equation ( 0P  is a constant) [11, 12]: 
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    ,           

 

where 
20 10 1m       .  

The functional differential equation (1) is a form of differential, differential-difference, 

delay differential and pantograph equations. These equations play an important role in many 

applied areas such as mathematics, engineering, electrodynamics, oscillation theory and etc. 

[1-22, 35-37]. Also, the behaviors of the analytic and numerical solutions of the pantograph 

type functional equation (1) have been investigated by many authors [1-16].  

In recent years, many studies have been performed to obtain the numerical solution of 

functional differential equations. So, in order to find the approximate solutions of some types 

of Eq. (1), since the beginning of 1994; Taylor, Laguerre, Bessel, hybrid Euler-Taylor, 

Bernoulli, Chelyshkov and Dickson (first kind) matrix-collocation methods have been 

employed by Sezer et al. [3, 12-14, 17-22]. The other numerical methods are variational 

iteration [1, 2], homotopy perturbation [4, 15], Runge-Kutta [5, 11, 16], Adomian 

decomposition [6], collocation [9], interpolation [36] and one-leg   methods [37].  

Our aim in this study is to employ a novel matrix-collocation method, which is based 

on the Dickson polynomials of the second kind [23-33] along with the collocation points, to 

find the approximate solution of the problem (1)-(2) in the truncated Dickson series form 

 

                                                         
0

,
N

N n n

n

y x y x y E x 


                                              (3) 

 

where  ,nE x   is the Dickson polynomial of the second kind with a parameter R  

defined by  
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                                          (4) 

 

where     is the floor function [23, 24]. Some properties of the Dickson polynomials of the 

second kind are as follows:   

 The second kind Dickson polynomials for  n=0,1,2,... satisfy the recurrance relation [25]:   

 

                                            2 1, , , ,  0n n nE x xE x E x n                                           (5) 

  
where the inital polynomials  0 , 1E x    and  1 ,E x x  . 

  ,nE x   has the generating function [25]: 

  2
0

1
,

1

n

n

n

E x z
xz z









 

 .   

 The polynomials  ,nE x  ; n=0,1,2,… satisfy the second order differential equation [25]:   

         2 4 , 3 , 2 , 0n n nx E x xE x n n E x         . 

 

 By using the relation (4) or (5), the first five Dickson polynomials  ,nE x   are given by 

[23-25, 33] 
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Dickson polynomials were introduced by Dickson over finite fields [23]; Brewer 

restudied them [24]. These polynomials are widely used in mathematics, integer rings, finite 

fields, cryptography, algebraic and number theory, combinatorial designs, communication and 

storage [20-33]. Also,  ,nE x   is closely related to the Chebyshev polynomials of the second 

kind  nU x , so their connection is    2 ,1n nE x U x  [25,33].  

   
 

2. MATERIALS AND METHODS  

 

 

2.1 MATRIX PROPERTIES OF DICKSON POLYNOMIALS OF THE SECOND KIND 

 

 

In this section, we present the matrix forms of the solution function  y x  defined by 

(3), the functional expression  j jy x   and their derivatives in Eq. (1). These important 

properties will enable us to solve the functional differential equation (1). 

Our purpose, we can first write the truncated Dickson series (3) in the matrix form, for 

n=0, 1, 2, ..., N, 

 

                                                              ,Ny x y x x   E Y ,                                             (6) 

 

where 

 

       0 1, , , ,Nx E x E x E x      E  and  0 1

T

Ny y yY .      

  

 Also, by using the Dickson polynomials  ,nE x   defined by (4) or (5), the matrix 

 ,x E can be written as follows: 

 

                                                             ,x x E X C ,                                                    (7) 

where 

 

  21 Nx x x x   X ,      ,T T Tx x E C X  and 
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By the matix relations (6) and (7), we get 

 

                                                       Ny x x = X C Y .                                                         (8)   

 

On the other hand, it is well-known from [3,12-14,17-22] that the relation between the 

matrix  xX  and its derivative 
   k

xX  can be formed as 

 

                                                          
     k kx xX X B ,                                                       (9) 

where 

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 0

0 0 0 0 0 0

N

 
 
 
 

  
 
 
 
 

B . 

 

 By using the matrix relations (8) and (9), we obtain 

 

                         
             k k k

Ny x x x  X C Y X B C Y , 0,1, ,k m .                     (10) 

 

 By substituting j jx x    into (10) for 10,1, ,r m , we have 

 

                                ,
r r r

N j j j j j jy x x x          X B C Y X S B C Y ,            (11) 
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where B
0
 is a unit matrix and 
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S . 

 Note that the matrix  j jx X  can be written as 17-20:   

     ,j j j jx x    X X S . 

 

 

2.2 MATRIX-COLLOCATION METHOD 

 

 

In this section, we construct a hybrid matrix-collocation method to solve the 

pantograph type functional differential equation (1) in terms of the Dickson polynomials of 

the second kind. 

 We first obtain the following matrix equation, by substituting the matrix relations (10) 

and (11) into Eq. (1): 
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0 0 0
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m mm
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x x x x g x  
  

 
  

 
 P X B Q X S B C Y             (12) 

 

 Then, by placing the collocation points defined by 

i

b a
x a i

N

 
   

 
, 0,1,2, ,i N , 0 1 Na x x x b      

into Eq. (12), we obtain 
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m mm
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x x x x g x  
  

 
  

 
 P X B Q X S B C Y  

or briefly the compact form 
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X
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,      0 1

T

Ng x g x g x   G . 

            

 Here, the compact form (13) is the fundamental matrix equation for Eq. (1) and it can 

also be written as 

                                                           WY G  or   ;  W G ,                                                  (14) 

where  

   
1 2

0 0 0

,
m mm

k r

pq k rj j j

k r j

w   
  

 
     

 
 W P XB Q XS B C , p,q=0,1,…,N. 

 Also, the matrix equation (13) is equivalent to a system of (N+1) algebraic equations 

for the unknown coefficients  0 1, , , Ny y y . By means of the relation (10), we can now 

obtain the corresponding matrix form for the initial conditions (2) as  

 

                         k

ka  X B C Y  or   ; k i k k  U Y U , 0,1, , 1k m                  (15)   

where 

     0 1

k

k k k kNa u u u U X B C . 

 Eventually, by substituting the row matrices (15) into the last (or any) m rows of the 

matrix system (14) and then we have the augmented matrix   

 

                              

 

 

 

00 01 0 0

10 11 1 1

,0 ,1 ,

00 01 0 0

10 11 1 1

1,0 1,1 1, 1

;

;

;

;
 ; 

;

;

;
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N
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N m N m N m N N m

N

N

m m m N m

w w w g x

w w w g x

w w w g x

u u u

u u u

u u u







   

   

 
 
 
 
 
      
 
 
 
 
  

W G .                      (16) 

 

 If rank =rank  ;  1N    W W G , then we can write 

                                                                  
1

Y W G .                                                         (17) 

 

 Thus, the coefficients matrix Y of the augmented matrix (16) is uniquely determined 

by Eq. (17); then the problem (1)-(2) has a unique solution. However, if 

rank rank  ;     W W G , then the augmented matrix (16) has no solution. 
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3. ERROR ESTIMATION BASED ON RESIDUAL FUNCTION: CONTROL OF 

SOLUTIONS 

 

 

 We can control the precision of the obtained solutions, since the finite Dickson serie 

(3) is an approximate solution of Eq. (1). When yN(x) is substituted into Eq. (1), we obtain the 

residual function for  ,x a b : 

 

                                      
1 2

0 0 0

0
m mm

k r

N k N rj N j j

k r j

R x P x y x Q x y x g x 
  

      .              (18) 

 

 Residual correction and its theory can be found in [34,35]. Residual error estimation 

has been employed by some authors [3,17-21]. Now, we describe residual error estimation 

based on the residual function for the Dickson polynomials of the second kind. The error 

function ( )Ne x  is defined by 

 

                                                                        ( ) ( ) ( )N Ne x y x y x  ,                                                          (19) 

 

where  y x  is the exact solution of Eq. (1). By Eqs. (18) and (19), the error equation is 

 

                                                             ( ) ( ) ( ) ( )N N NL e x L y x L y x R x    ,                                    (20) 

 

subject to the initial conditions 

                                                     ( ) 0k

Ne a  , 0,1, , 1k m  .                                             (21) 

 

 Eqs. (20) and (21) constitute the error problem solved with the same procedure in 

Section 2. Thus,  

                                                                     *

,

0

( ) ,
M

N M n n

n

e x y E x 


 ,  M N .                                               

 Here, , ( )N Me x  is the estimated error function. Thus, the corrected solution is 

, ,( ) ( ) ( )N M N N My x y x e x   and the corrected error function is also defined by 

, , ,( ) ( ) ( ) ( ) ( )N M N N M N ME x e x e x y x y x    . 

On the other hand, by using the residual function  NR x  and the mean value of 

 NR x  on the interval a,b, the precision of the solution can be analyzed and also the error 

bound can be calculated 17,18. When N is sufficiently large enough, as   0NR x  , the 

error decreases. By means of the mean-value theorem, we can find the upper bound error 
NR  

as follows [17, 18]: 

i)    
b b

N N

a a

R x dx R x dx  , 

ii)      0

b

N N

a

R x dx b a R x  ,  0 ,x a b  
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iii)      0

b

N N

a

R x dx b a R x  .                  

 By (i) and (iii), we get 

       
 

0 0

b

Nb

a
N N N N

a

R x dx

b a R x R x dx R x R
b a

    



 . 

 

 

4. NUMERICAL RESULTS AND DISCUSSION 

 

 

 In this section, we solve some illustrative examples, by applying the present method to 

Eq. (1). The behavior of the approximate solutions is investigated by means of the parameter-

 . The comparisons are made in tables and figures to show the efficiency and validity of the 

present method. Additionally, in order to compare the numerical results, we employ a 

distinctive error computation N , which is defined by 

 

                                                         2

0

1 N

N N i

i

e x
N




  ,                                                       (22) 

 

where 0 1, , , Nx x x  are the collocation points [36]. By means of (22) and the residual error 

estimation, we can also employ the corrected error 
,N M , which is as follows: 

 2

, ,

0

1 M

N M N M i

i

E x
M




  , 

where  ,N ME x  is the corrected error function. 

 

Example 4.1 Consider the second order linear differential equation with variable coefficients  

      23y x xy x y x x     , 0 2x   

subject to the initial conditions  0 1y   and  0 0y  . The exact solution of this problems is 

  2 1y x x  . Here, 

   0 2 1P x P x  ,  1P x x  ,   23g x x  . 

 We seek the approximate solution with truncated Dickson polynomials for N=2: 

   
2

0

,n n

n

y x y E x 


 . 

 The fundamental matrix equation of this problem is  

   0 1 2

0 1 2   P XB P XB P XB C Y G  

 When this is solved, the matrix system is obtained as 

 

1 0 2 ; 3

;  1 0 1 ; 2

1 0 2 ; 1







 
 

 
 
    

W G . 
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 The matrix forms of the initial conditions are 

   0 0;  1 0 ; 1U     and    1 1;  0 1 0 ; 0U   . 

 If we write these conditions into the matrix system, then we find the augmented matrix 

 

1 0 2 ; 3

;  1 0 ; 1

0 1 0 ; 0





 
       
  

W G  

 

 By solving this matrix, we get the coefficient matrix   

 

1

0

1

 
 


 
  

Y  

and thus 

  2

1

1 0

1

y x x x





 
      
  

.  

 

 This yields the exact solution of the problem.   

 

Example 4.2 [2] Consider the first-order neutral differential equation with proportional delay 

 

   
1 1

0
2 2 2 2

x x
y x y y y x

   
       

   
, 0 1x   

 

subject to the initial condition  0 1y  . The exact solution of this problem is   xy x e . We 

solve this problem for N={2, 5}; M=6. Thus, we find the approximate solutions  2
1

|y x


, 

 5
1

|y x


 and the corrected approximate solution  5,6
1

|y x


: 

 

 2
1

21| 0.387097xy xx


  , 

 5
1

2 3 4 51 0.499859 0.165780 0.039387| 0.005601x x x xx xy


      and 

  2 3 4 5 6

5,6
1

1 0.5 0.166590 0.041394 0.007834 0.0009| 20x x x x xy x x


      . 

 

 These approximate solutions are compared with the exact solution in Table 1 and Fig. 

1. As seen from Table 1 and Fig. 1, our solutions are in harmony with the exact solution and 

also the errors N  are decreased by the values of N and residual error estimation. Notice that 

when 
35 10   , our solution deviates from its normal way; this situation can be observed in 

Table 1 and Fig. 1. 
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Figure 1. Comparison of the exact and the approximate solutions of Example 4.2 for different .  

 
Figure 2. Comparison of the actual and estimated absolute errors of Example 4.2 for N=4 and 5; M=6. 

 

 In Table 2, the present results are compared with those of One-leg  with 0.8   and 

h=0.01 [2, 37], two stage order Runge-Kutta [2, 16] and variational iteration methods (VIM) 

(n=8) [2]. It is seen from Table 2 that our results are better than those of the mentioned 

methods. Fig. 2 shows that the estimated absolute errors are more consistent than the actual 

absolute errors. The upper error bounds 
NR  are calculated as follows: 

 

   2 3 4 5 5,6,  ,  ,  ,  4.23 02,  3.80 03,  2.71 04,  1.62 05,  8.40 07R R R R R e e e e e      . 
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Table 1. Comparison of the exact, approximate, corrected approximate solutions and errors 
N  for 

Example 4.2. 

ix    ix

iy x e


   2 iy x  

1   

 5 iy x  

1   

 5 iy x  

35 10    

 5,6 iy x  

1   

0.0

0.2

0.4

0.6

0.8

1.0

 

1

0.81873075

0.67032005

0.54881164

0.44932897

0.36787944

 

1

0.815483871

0.661935484

0.539354839

0.447741936

0.387096774

 

1

0.81872935

0.67031847

0.54880980

0.44932802

0.36786509

 

1

0.88443758

0.80173075

0.74591769

0.71211892

0.69632218

 

1

0.81873069

0.67031997

0.54881156

0.44932887

0.36788006

 

N  - 1.52 02e  6.55 06e  2.18 01e  2.62 07e  

 
Table 2. Comparison of the actual and corrected absolute errors for Example 4.2. 

ix   5 ie x  

1   

 5,6 iE x  

1   

One-leg  

met. [2,37] 

Runge-

Kutta met. 

[2,16] 

VIM [2] 

n=8 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

7.26 07

1.41 06

1.55 06

1.57 06

1.75 06

1.84 06

1.45 06

9.42 07

2.95 06

1.44 05

e

e

e

e

e

e

e

e

e

e





















 

4.00 08

6.65 08

7.14 08

7.77 08

8.10 08

7.24 08

6.92 08

9.46 08

4.29 08

6.18 07

e

e

e

e

e

e

e

e

e

e





















 

8.86 03

1.72 02

2.66 02

3.63 02

4.58 02

5.47 02

6.29 02

7.02 02

7.66

2.57 0

02

3

e

e

e

e

e

e

e

e

e

e





















 

4.55 04

8.24 04

1.12 03

1.35 03

1.52 03

1.66 03

1.75 03

1.81 03

1.84 03

1.85 03

e

e

e

e

e

e

e

e

e

e





















 

3.72 04

7.08 04

1.01 03

1.29 03

1.54 03

1.76 03

1.97 03

2.15 03

2.32 03

2.47 03

e

e

e

e

e

e

e

e

e

e





















 

 

 

Example 4.3 Consider the second-order pantograph type functional differential equation with 

mixed delays 

       2 1 1
2

x
y x x y x x y g x

 
      

 
, 0 1x   

 

subject to the initial conditions  0 1y   and  0 0y  . The exact solution of this problem is 

   cosy x x . Here,  

       21 cos cos sin 1
2

x
g x x x x x

 
      

 
. 

 

 We find the approximate solutions for N={2, 3, 7, 10} and M=8. The approximate 

solutions are improved by means of N and residual error estimation as seen in Table 3. For 

different  , the approximate solutions  2y x  and  7y x  are plotted along with the exact 

solution in Fig. 3. In addition, in Fig. 4, the behavior of the approximate solution  10y x  
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obtained on the interval [0, 1] is compared with the exact solution on [0,5]. The upper error 

bounds 
NR  are calculated as follows: 

 

   3 5 7 10,  ,  ,  2.06 01,  3.00 03,  1.62 05,  5.60 07R R R R e e e e     . 

 

 
 

Figure 3. Comparison of the exact and the approximate solutions of Example 4.3 for different .  

 

 
 

Figure 4. The behavior of the exact and the approximate solutions on [0,5] for Example 4.3. 
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Table 3. Comparison of the actual, estimated, corrected absolute errors and 
N  for Example 4.3. 

ix   3 ie x  

0.5   

 7 ie x  

0.5   

 7,8 ie x  

0.5   

 7,8 iE x  

0.5   

0.0

0.2

0.4

0.6

0.8

1.0

 

2.28 04

1.29 03

2.61 03

2.13 03

3.51 0

0

3

e

e

e

e

e











 

8.69 09

4.85 08

1.05 08

8.44 07

3.62 06

2.20 16

e

e

e

e

e

e













 

8.71 09

5.52 08

6.16 08

6.82 07

3.37 06

2.71 20

e

e

e

e

e

e













 

2.22 16

1.53 11

6.63 09

5.11 08

1.63 07

2.46 07

e

e

e

e

e

e













 

N  2.64 03e  1.47 06e  - 1.26 07e  

 

 

5. CONCLUSIONS 

  

In this study, a matrix-collocation method based on the second kind Dickson 

polynomials has been introduced to solve high-order linear pantograph type functional 

differential equation with mixed delays under the initial conditions. An error estimation based 

on residual function has been implemented to improve the accuracy of the approximate 

solutions. As seen from tables and figures, this error estimation is very useful. The parameter-

  can be taken on [0,1] for obtaining optimal approximate solutions. As N is increased, the 

upper error bounds 
NR  are decreased as seen in Examples 4.2 and 4.3. In addition, we have 

compared the present numerical results with those obtained by the existed methods in Table 2 

and the obtained approximate solutions are consistent with the exact solutions as seen in Figs. 

1, 3 and 4. It can be seen from the comparisons and error estimations that this method is very 

consistent and reliable. This method can also be developed for other well-known problems, 

such as integro-differential equations. 
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