
Journal of Science and Arts                                                                   Year 18, No. 4(45), pp. 813-826, 2018 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

ORIGINAL PAPER

BEHAVIOUR OF SOLUTIONS FOR A SYSTEM OF TWO  
HIGHER-ORDER DIFFERENCE EQUATIONS 

YASIN YAZLIK1, DURHASAN T. TOLLU2, NECATI TASKARA3 

_________________________________________________ 
Manuscript received: 18.05.2018; Accepted paper: 22.09.2018;  

Published online: 30.12.2018. 

 
 
Abstract. In this paper, we investigate the global behavior of the positive solutions of 

the system of difference equations  

1 1 0

0 0

, , ,n k n k
n nk k

r r
n i n i

i i

au dv
u v n

b c v e f u

 
 

 
 

  
   

  

where the initial conditions  , , 0, , ,i iu v i k     and the parameters  , , , , , ,a b c d e f r  are 

positive real numbers, by extending some recent results in the literature. Also, we estimate the 
rate of convergence of a solution that converges to the zero equilibrium point of the above 
mentioned system.  

Keywords: System of difference equations, Stability, Global behavior, Periodic 
solution, Rate of convergence.  
 
 
1. INTRODUCTION  
 
 

Theory of difference equations have gained a great importance for several decades. 
Most of the recent applications of this theory have appeared in many scientific areas such as 
biology, physics, engineering, economics. Particularly, rational difference equations and their 
systems of higher order have great importance in applications. It is very worthy to examine 
the behavior of solutions of a system of higher-order rational difference equations and to 
discuss the stability character of their equilibrium points. Recently, many researchers have 
investigated global behavior of solutions of difference equations or systems and have 
suggested some diverse methods for the qualitative behavior of the their solutions. For 
example, Shojaei et al.[18] investigated the general solution, the local and the global 
asymptotic stability of equilibrium points and period three cycles of the third order rational 
difference equation 
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where the parameters , ,    and the initial conditions 2 1 0, ,x x x   are real numbers. 

Dehghan et al. [4] investigated the stability, the periodic character and the boundedness nature 
of solutions of the following difference equation 
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where the parameters , ,    and the initial conditions 2 1 0, ,y y y   are positive real numbers 

and 2k   is a fixed integer. Clark et al. [2,3] investigated the system of rational difference 
equations 
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where  , , , 0,a b c d    and the initial conditions 0x  and 0y  are arbitrary nonnegative 

numbers. Yang et al. [29] investigated global behavior of the system of difference equations  
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where the parameters , ,A B p  and the initial conditions 0 0,x y  are nonnegative real numbers. 

Zhang et al. [36] investigated the solutions, stability character, and asymptotic behavior of the 
system of difference equations  
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where the parameters ,p q  and the initial conditions , , ( 0,1, , )i ix y i k    , are nonnegative 

real numbers. For more works related to difference equations and their systems, see references 
[1, 5-7, 9-14, 16, 19-24, 26-28, 30-35]. In the present paper, we investigate the global 
behavior of the positive solutions of the system of difference equations 
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   (1.1) 

 
where the initial conditions  , 0,1, ,i iu v i k     and the parameters , , , , , ,a b c d e f r  are 

positive real numbers. Also, we estimate the rate of convergence of a solution that converges 
to the zero equilibrium point of the above mentioned system. 

Note that system (1.1) can be written as 
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if the change of variables        1/ 1 1/ 1
,

r k r ke b
n n n nf cu x v y

    is applied to the system such that 

a

b
  and .

d

e
  So, we will consider system (1.2) instead of system (1.1) from now.  

 
 
2. PRELIMINARIES 
 
 

Let ,I J  be some intervals of real numbers and 1 1: ,k kf I J I    
1 1: k kg I J J    be continuously differentiable functions. Then, for every initial 

conditions    , , 0,1, , ,i ix y I J i k       the system of difference equations 
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has the unique solution  , .n n n k
x y




 Also, an equilibrium point of system (2.1) is a point 

 ,x y  that satisfies 
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We rewrite system (2.1) in the vector form 

 
  1 0, ,n nX F X n     (2.2) 

 

where  , , , , , ,
T

n n n k n n kX x x y y F    is a vector map such that 1 1 1 1: k k k kF I J I J       

and  
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It is clear that if an equilibrium point of system (2.1) is  ,x y , then the corresponding 

equilibrium point of system (2.2) is the point  , , , , ,
T

X x x y y   . 

In this study, we denote by .  any convenient vector norm and the corresponding 

matrix norm. Also, we denote by 1 1
0

k kX I J      a initial condition of system (2.2). 
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Definition 2.1. Let X   be an equilibrium point of system (2.2).  
i) The equilibrium point X  is called stable if for every 0  there exists 0  such 

that 0X X    implies ,nX X    for all 0n  . Otherwise the equilibrium point 

X  is called unstable. 
ii) The equilibrium point X  is called local asymptotically stable if it is stable and there  

exists 0  such that  0X X    and nX X  as .n  

iii) The equilibrium point X  is called a global attractor if nX X  as .n  

iv) The equilibrium point X  is called globally asymptotically stable if it is both local 
asymptotically stable and global attractor. 

 
The linearized system of system (2.2) evaluated at the equilibrium point X  is  
 
 1 0, ,n F nZ J Z n     (2.3) 

 
where FJ  is the Jacobian matrix of the map F  at the equilibrium point X . The characteristic 

polynomial of system (2.3) about the equilibrium point X   is 
 

  
 

2 1 2 1
0 1 2 1 2 1( ) ··· ,k k

k kP a a a a 
           (2.4) 

 
with real coefficients and 0 0.a    

 
Theorem 2.2. [15] Assume that X  is a equilibrium point of system (2.2), i.e., ( )X F X . If 

all eigenvalues of the Jacobian matrix FJ  evaluated at X  lie in the open unit disk | | 1 , 

then X  is locally asymptotically stable. If one of them has a modulus greater than one, then 
X  is unstable.  
 
Theorem 2.3. (Schur-Cohn Criterion) [8] The zeros of the characteristic polynomial (2.4) 
lie in the unit disk if and only if the followings hold: 
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are positive innerwise. 
The following results [8,17] give the rate of convergence for solutions of a system of 

difference equations. 
Let us consider the system of difference equations 
 

  1 0, N ,n n nX A B X n      (2.5) 
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where nX  is an m-dimensional vector m mA C   is a constant matrix, and : m mB Z C   is a 

matrix function satisfying 
 
 0nB    (2.6) 

as n . 
 
Theorem 2.4. (Perron’s First Theorem) Suppose that condition (2.6) holds. If nX  is a 

solution of (2.5), then either 0nX    for all large n or 

 

 1lim n

n
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X

X



   (2.7) 

 
exists and is equal to the modulus of one of the eigenvalues of matrix A. 
 
Thereom 2.5 (Perron’s Second Theorem) Suppose that condition (2.6) holds. If nX  is a 

solution of (2.5), then either 0nX    for all large n or 

 

  1/
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n

nn
X


   (2.8) 

 
exists and is equal to the modulus of one of the eigenvalues of matrix A. 
 
 
3. STABILITY OF THE SYSTEM 
 
 

In this section, we investigate the local and the global stability of the equilibrium 
points of system (1.2). It is easy to see that     1 1, 0,0x y   is always an equilibrium point of 

system (1.2). When 1  and 1 , the unique positive equilibrium point of system is 

        1/ 1 1/ 1

2 2( , ) 1 , 1 .
r k r k

x y
      In addition, if 1  and 1,  then    3 3 1, ,0x y c  

and if 1  and 1 , then    4 4 2, 0,x y c , where 1c  and 2c  are arbitrary real numbers. 

 
Theorem 3.1. The following statements hold: 

i) If 1  and 1 , then the equilibrium point    1 1, 0,0x y   of system (1.2) is locally 

asymptotically stable. 
ii) If 1  or 1 , then the equilibrium point    1 1, 0,0x y   of system (1.2) is 

unstable.  

iii) If 1  and 1 , then the equilibrium point         1/ 1 1/ 1

2 2( , ) 1 , 1
r k r k

x y
      of 

system (1.2) is unstable 
Proof: First, we write system (1.2) in the form of system (2.2) such that 

 , , , , , ,
T

n n n k n n kX x x y y     the map F  is 
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i) The linearized system of (1.2) about the equilibrium point 0 (0, ,0)TX    is given by  

 

1 0( ) ,n F nX J X X   
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The characteristic polynomial of 0( )FJ X  is given by 

 

   1 1 0.k k         (3.1) 

 
It is easy to see that if 1  and 1 , then all the roots of the characteristic equation 

(3.1) lie in the open unit disk | | 1 . So, the unique equilibrium point     1 1, 0,0x y   of (1.2) 

is locally asymptotically stable. 
ii) It is clearly seen that if 1  or 1 , then at least one root of (3.1) has a 

modulus greater than one. In this case, the equilibrium point    1 1, 0,0x y   of 

(1.2) is unstable. 
iii) The linearized system of (1.2) about the positive equilibrium point  

 

                1/ 1 1/ 1 1/ 1 1/ 1

, 1 , , 1 , 1 , , 1
Tr k r k r k r k

X
               

is given by 

1 ,( ) ,n F nX J X X    

where  
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The characteristic polynomial of ,( )FJ X    is given by 

 
  2 2 2 2 1 1 12 ... ( 2) ( 1) ... 2 1k k k k k kP AB AB kAB k AB kAB AB AB                      
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We get       22 1 1 11 0r kP      
  from characteristic polynomial (3.2) if 1  and 

1.  So, from Theorem 2.2 and Theorem 2.3, we can say that if 1  and 1 , then the 

positive equilibrium point         1/ 1 1/ 1
1 , 1

r k r k     of system (1.2) is unstable.■ 

 
Theorem 3.2. If 1  and 1 , then the equilibrium point    1 1, 0,0x y  of system (1.2) is 

globally asymptotically stable. 
 
Proof: From Theorem 3.1, we know that if 1  and 1 , then the equilibrium point 

   1 1, 0,0x y   of system (1.2) is locally asymptotically stable. Hence we only show that 

 
 lim lim 0.n n
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From system (1.2), we have that  
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for 0n . From (3.4), we have the inequalities 
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10 , 0n n k n n kx x y y        

 
from which it follows that 

 
 0 , 0 ,n n

nk i i nk i ix x y y          (3.5) 

 
where , , 0,1, , ,i ix y i k     are the initial conditions. Consequently, by taking limits of 

inequalities in (3.5) when 1  and 1 , then we have the limits in (3.3) which completes 
the proof.■ 
 

Theorem 3.3. Let 1  and 1 . If  1/
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By applying the change of variables 
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to (3.6), we get the system 
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On the other hand, the changes of variables (3.7) yields the equations 
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Obviously, the nonzero equilibrium solutions of (3.8) satisfies (3.9). If 1  and 

1 , then (3.8)  has the positive equilibrium point       1/ 1/

2 2, 1 , 1
r r
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equilibrium solution       1/ 1/
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n nt z      satisfies Eq. (3.9). In this case, from the 

assumptions  1/
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k kx x x      ,  1/
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k ky y y       and system (1.2), we get that 

1 1 0, , ,n n k n n kx x y y n       
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 which implies that system (1.2) has the periodic solutions with period 1k  . So, the proof is 
completed. ■ 
 
 
4. OSCILLATION BEHAVIOR AND EXISTENCE OF UNBOUNDED SOLUTIONS 
 
 

In the following result, we are concerned with the oscillation of positive solutions of 

system (1.2) about the equilibrium point          1/ 1 1/ 1
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 non-oscillates about the equilibrium point  2 2,x y .  

 
Proof: Assume that (i) holds, the case (ii) is similar and will be omitted. From (1.2), we have  
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Then the result follows by induction. ■ 
In the following theorem, we show the existence of unbounded solutions for system 

(1.2).   
 

Theorem 4.2. Assume that 1, 1    and  ,n n n k
x y




 be a positive solution of system (1.2). 

Then the following statements are true: 
i) If     1 0 2 1 0 2, , , 0, , , , , , .k k k kx x x x y y y y           Then  lim 0n
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  and  

 ny  is unbounded. 

ii) If    1 0 2 1 0 2, , , , , , , , 0, .k k k kx x x x y y y y          Then lim 0n
n

y


  and  nx  

is unbounded. 
 
Proof: In the proof we will handle only the condition (i) since another can be shown similarly. 

i) From above theorem, we can assume without loss of generality that the positive 

solution  ,n n n k
x y




 of system (1.2) is such that  

2 2, , 0,1, .n nx x y y n     
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from which it follows that 
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which completes the proof.■ 
 
 
5. RATE OF CONVERGENCE 

 
 
In this section, we estimate the rate of convergence of a solution which converges to 

the equilibrium point    1 1, 0,0x y   of system (1.2) when 1  and 1 . The result of this 

section is the following theorem. 
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Now, we have the limiting system of the error terms at     1 1, 0,0x y   as follows: 
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 which equals to the matrix 0( )FJ X . From 

Theorem 2.4 and Theorem 2.5, we have the results in (5.1).■ 
 
 
6. NUMERICAL EXAMPLES 
 
 
Example 6.1. Let 3, 4, 0.7, 0.8k r     . In this case, the system is as follows: 
 

 3 3
1 1 04 4 4 4 4 4 4 4

1 2 3 1 2 3

0.7 0.8
, , ,

1 1
n n

n n
n n n n n n n n

x y
x y n

y y y y x x x x
 

 
     

  
 

   (6.1) 

 
with the unique equilibrium point    1 1, 0,0x y  . We illusrate the solution which 

corresponds the initial conditions 3 22.2, 31,x x    1 00.13, 1,x x    3 20.12, 21,y y     

1 03, 2y y    of (6.1) in Fig. 1. 

 
Figure 1. Plot for solution of Eq. (6.1). 

 
Figure 2. Plot for solution of Eq. (6.2).
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Example 6.2: Let 3, 4, 1.1, 1.01k r     . In this case, the system is as follows: 
 

 3 3
1 1 04 4 4 4 4 4 4 4

1 2 3 1 2 3

1.1 1.01
, , .

1 1
n n
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n n n n n n n n

x y
x y n
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   (6.2) 

We illusrate the solution which corresponds the initial conditions 3 22.2, 31,x x    

1 00.13, 1,x x   3 20.12, 21,y y    1 03, 2y y    of (6.2) in Figure 2. 

 
Example 6.3. Let 3, 4, 2, 17k r     . In this case, the system is as follow: 
 

 3 3
1 1 04 4 4 4 4 4 4 4

1 2 3 1 2 3

2 17
, , .
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x y
x y n

y y y y x x x x
 

 
     

  
 

   (6.3) 

 
We illusrate the solution which corresponds the initial conditions 3 20.2, 4,x x    

1 010, 0.25,x x    3 23, 0.33,y y   1 02, 0.5y y    of (6.3) in Figure 3. 
 

Figure 3: Plot for solution of Eq. (6.3). Figure 4. Plot for solution of Eq. (6.4). 
 

Example 6.4. Let 4, 3, 0.7, 0.8k r     . In this case, the system is as follows: 
 

 4 4
1 1 03 3 3 3 3 3 3 3 3 3

1 2 3 4 1 2 3 4

0.7 0.8
, , ,

1 1
n n

n n
n n n n n n n n n n

x y
x y n

y y y y y x x x x x
 

 
       

  
 

   (6.4) 

We illusrate the solution which corresponds the initial conditions 3 22.2, 31,x x    

1 00.13, 1,x x    3 20.12, 21,y y   1 03, 2y y    of (6.4) in Figure 4. 

 
Example 6.5. Let 4, 3, 1.1, 1.01k r     . In this case, the system is as follows: 
 

 4 4
1 1 03 3 3 3 3 3 3 3 3 3

1 2 3 4 1 2 3 4

1.1 1.01
, , ,

1 1
n n

n n
n n n n n n n n n n

x y
x y n

y y y y y x x x x x
 

 
       

  
 

   (6.5) 
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We illusrate the solution which corresponds the initial conditions 3 22.2, 31,x x    

1 00.13, 1,x x    3 20.12, 21,y y    1 03, 2y y    of (6.5) in Figure 5. 
 

 
Figure 5. Plot for solution of Eq. (6.5). 

 
Figure 6. Plot for solution of Eq. (6.6). 

 
Example 6.6.: Let 4, 3, 2, 17k r     . In this case, the system is as follow: 
 

 4 4
1 1 03 3 3 3 3 3 3 3 3 3

1 2 3 4 1 2 3 4

2 17
, , ,

1 1
n n

n n
n n n n n n n n n n

x y
x y n

y y y y y x x x x x
 

 
       

  
 

   (6.6) 

 
We illusrate the solution which corresponds the initial conditions 3 20.2, 4,x x    

1 010, 0.25,x x    3 23, 0.33,y y   1 02, 0.5y y    of (6.6) in Figure 6. 

 
 
REFERENCES 
 
 
[1] Belhannache, F., Touafek, N., Abo-Zeid, R., Bull. Math. Soc. Sci. Math. Roumanie, 

59(107), 13, 2016. 
[2] Clark, D., Kulenovic,  M.R.S., Compt. Math. Appl., 43, 849, 2002. 
[3] Clark, D., Kulenovic, M.R.S., Selgrade, J.F., Nonlinear Analy., 52,1765, 2003. 
[4] Dehghan, M., Rastegar, N., Mathematical and Computer Modelling, 54(11), 2560, 

2011. 
[5] Din, Q., Qureshi, M.N., Khan, A.Q., Adv Differ Equ NY, 2012(215), 1, 2012. 
[6] Din, Q., Elsayed, E.M., Computational Ecology and Software, 4(2), 89, 2014. 
[7] Elabbasy, E.M., El-Metwally, H., Elsayed, E.M., Utilitas Mathematica, 87, 93,2012. 
[8] Elaydi, S., An Introduction to Difference Equations, third edition, Undergraduate Texts 

in Mathematics, Springer, New York, 1999. 
[9] El-Metwally, H., Elsayed, E.M., Utilitas Mathematica, 88, 27, 2012. 
[10] El-Metwally, H., Elsayed, E.M., Abstract and Applied Analysis, 2012, Article ID: 

248291, 2012. 
[11] Elsayed, E.M., El-Dessoky, M.M., Alotaibi, A., Discrete Dynamics in Nature and 

Society, 2012(1), Article ID 892571, 2012. 



Behaviour of solutions for …                                                                                                    Yasin Yazlik et al. 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

826

[12] Elsayed, E.M., J. Computational Analysis and Applications, 15(1), 73, 2013. 
[13] Halim, Y., Touafek, N., Yazlik, Y., Turkish Journal of Mathematics, 39(6), 1004, 2015. 
[14] Ibrahim, T.F., Int. J. Contemp. Math. Sciences, 4(27), 1321, 2009. 
[15] Kocic, V.L., Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher 

Order with Applications, Kluwer Academic, Dordrecht, 1993. 
[16] Kulenovic, M.R.S., Nurkanovic, M., Adv Differ Equ NY, 2006(1), Art. ID 19756, 2006. 
[17] Pituk, M., J. Difference Equ. Appl., 8, 201, 2002. 
[18] Shojaei, M., Saadati, R., Adbi, H., Chaos, Solitons and Fractals, 39, 1203, 2009. 
[19] Taskara, N., Uslu, K., Tollu, D.T., Computers & Mathematics with Applications 62, 

1807, 2011. 
[20] Taskara, N., Tollu, D.T., Yazlik, Y., Journal of Advanced Research in Applied 

Mathematics, 7(3), 18, 2015. 
[21] Tollu, D.T., Yazlik, Y., Taskara, N., Adv Differ Equ NY, 2013(174), 1, 2013. 
[22] Tollu, D.T., Yazlik, Y., Taskara, N., Appl Math Comput., 233, 310, 2014. 
[23] Touafek, N., Elsayed, E.M., Bull. Math. Soc. Sci. Math. Roumanie, 55(103), 217, 2012. 
[24] Touafek, N., Hacettepe Journal of Mathematics and Statistics, 41(6), 867, 2012. 
[25] Van Khuong, V., Nam Phong, M., International Journal of Difference Equations, 8(2), 

215, 2013. 
[26] Yalcinkaya, I,  Cinar, C., Atalay, M., Advances in Difference Equations, 2008, Article 

ID 143943, 2008. 
[27] Yalcinkaya, I., Discrete Dynamics in Nature and Society, 2008, Article ID 860152, 1, 

2008. 
[28] Yalcinkaya, I., Tollu, D.T., Advanced Studies in Contemporary Mathematics, 26(4),  

653, 2016. 
[29] Yang, L., Yang, J., International Journal of Contemporary Mathematical Sciences, 6, 

209, 2011. 
[30] Yazlik, Y., J Comput Anal Appl, 17(3), 584, 2014. 
[31] Yazlik, Y., Elsayed, E.M., Taskara, N., J Comput Anal Appl, 16(5), 932, 2014. 
[32] Yazlik, Y., Tollu, D.T., Taskara, N., J Comput Anal Appl, 18(1), 166, 2015. 
[33] Yazlik Y., Tollu D. T. and Taskara N., Mathematical Methods in the Applied Sciences, 

38(17), 4388, 2015. 
[34] Yazlik, Y., Tollu, D.T., Taskara, N., Kuwait Journal of Science, 43(1), 95, 2016. 
[35] Zhang, Q., Yang, L., Liu, J., Adv Differ Equ NY, 2012(136), 1, 2012. 
[36] Zhang, Q., Zhang, W., Advances in Mathematical Physics, 2014, Article ID 729273, 

2014. 


