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Abstract. In this paper, we investigate the global behavior of the positive solutions of
the system of difference equations

au dv
u,=—-=f— v =—-"1K  neN,

n+l k_ > Tn+l k
b+cllv, e+ f[lu,;
i=0 i=0
where the initial conditions u_;, v, (i :0,...,k), and the parameters a,b,c,d,e, f,r are

positive real numbers, by extending some recent results in the literature. Also, we estimate the
rate of convergence of a solution that converges to the zero equilibrium point of the above
mentioned system.

Keywords: System of difference equations, Stability, Global behavior, Periodic
solution, Rate of convergence.

1. INTRODUCTION

Theory of difference equations have gained a great importance for several decades.
Most of the recent applications of this theory have appeared in many scientific areas such as
biology, physics, engineering, economics. Particularly, rational difference equations and their
systems of higher order have great importance in applications. It is very worthy to examine
the behavior of solutions of a system of higher-order rational difference equations and to
discuss the stability character of their equilibrium points. Recently, many researchers have
investigated global behavior of solutions of difference equations or systems and have
suggested some diverse methods for the qualitative behavior of the their solutions. For
example, Shojaei et al.[18] investigated the general solution, the local and the global
asymptotic stability of equilibrium points and period three cycles of the third order rational
difference equation
X, ,

BH+yX.X, X, ,

n“*n—-1"n—

nelN,

n-+1
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814 Behaviour of solutions for ... Yasin Yazlik et al.

where the parameters «, £, y and the initial conditions X ,, X ,, X, are real numbers.

Dehghan et al. [4] investigated the stability, the periodic character and the boundedness nature
of solutions of the following difference equation

aYn s
yn+l = k

BHrYyeye,’

nelN,

where the parameters «, £, y and the initial conditions Y ,, Y ,, Y, are positive real numbers

and k >2 is a fixed integer. Clark et al. [2,3] investigated the system of rational difference
equations
X Y
X = : M + = . b
" a+oy, I =y dx,

neN,

where a,b,c,de(0,0) and the initial conditions X, and Y, are arbitrary nonnegative

numbers. Yang et al. [29] investigated global behavior of the system of difference equations

AX B
X = np > Yo = ynp , NeN,
IEA 1+X;

where the parameters A, B, p and the initial conditions X,, Y, are nonnegative real numbers.

Zhang et al. [36] investigated the solutions, stability character, and asymptotic behavior of the
system of difference equations

X y
k —k
X = ’ yn+1 = T( 4 I‘IEI\]O’

n+l1 rll_
q+11y,; p+I1x,

i=0 i=0

where the parameters p, g and the initial conditions X ,, ¥ ;, (i=0,1,...,K), are nonnegative

real numbers. For more works related to difference equations and their systems, see references
[1, 5-7, 9-14, 16, 19-24, 26-28, 30-35]. In the present paper, we investigate the global
behavior of the positive solutions of the system of difference equations

au,, dv, ,
un+1:—r:<’ n+1:—nk’ nGNO’ (11)
b+cllv, e+ f[lu, .
i=0 i=0

where the initial conditions u ;, Vv (i = O,l,...,k) and the parameters a, b, c,d,e, f,r are

i
positive real numbers. Also, we estimate the rate of convergence of a solution that converges
to the zero equilibrium point of the above mentioned system.

Note that system (1.1) can be written as

Xn+1 = a)k(n_k H yn+1 = ﬁXH—k 2 ne I\101' (12)
l+_1j([)yn'_i 1+gx;_i
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)” rlbl) o Vo= (2)“ rlke) y. is applied to the system such that

n n c

if the change of variables u, = (%

o= a and g = 9 So, we will consider system (1.2) instead of system (1.1) from now.
e

2. PRELIMINARIES

Let 1,J be some intervals of real numbers and f : I'xJ*' 51,
g: 1""xJ*" 5 J be continuously differentiable functions. Then, for every initial
conditions (x_,y_;)e I xJ,(i=0,L...,k), the system of difference equations
Xoo = F(Xoee s X s Voseeos Yoo
n+1 ( n k y y k)’ nENO, (21)
yn+l = g (Xn""’Xn—k’ yn" t yn—k)
has the unique solution {Xn,yn}:}k. Also, an equilibrium point of system (2.1) is a point

(X,Y) that satisfies

X=f(X,...X,V,....Y),
729(7a---37>73- 97)
We rewrite system (2.1) in the vector form
X, =F(X,), neN,, (2.2)

T .
where X, =(X,seves Xy 10 Yoseees Yoi ) » F is @ vector map such that F : [ x 3" — ¥ g

and
Z, f(Zg. 0 Ziobgoe oty )
F Zk — Zk—l )
t, 9(Zg- s Zo toen by
tk tk—l

It is clear that if an equilibrium point of system (2.1) is (X,y), then the corresponding
equilibrium point of system (2.2) is the point X =(X,...,X,V,..., V)T .
In this study, we denote by |.| any convenient vector norm and the corresponding

matrix norm. Also, we denote by X, € I“'xJ*"" a initial condition of system (2.2).
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816 Behaviour of solutions for ... Yasin Yazlik et al.

Definition 2.1. Let X be an equilibrium point of system (2.2).
i) The equilibrium point X is called stable if for every &> 0 there exists § >0 such
that on - )?H <& implies HXn - )?H < ¢, forall n>0. Otherwise the equilibrium point

X is called unstable.

ii) The equilibrium point X is called local asymptotically stable if it is stable and there
exists >0 such that X, - X|<y and X, —» X as n—o.

iii) The equilibrium point X iscalled a global attractor if X, — X as h— .

iv) The equilibrium point X is called globally asymptotically stable if it is both local
asymptotically stable and global attractor.

The linearized system of system (2.2) evaluated at the equilibrium point X is

Z.,=J3.Z.,neN,, (2.3)

where J. is the Jacobian matrix of the map F at the equilibrium point X . The characteristic

polynomial of system (2.3) about the equilibrium point X is

P(2) =3 ™" + a1+t a, A +a, (2.4)

k+1)>

with real coefficients and a, > 0.

Theorem 2.2. [15] Assume that X is a equilibrium point of system (2.2), i.e., X = F(X). If
all eigenvalues of the Jacobian matrix J. evaluated at X lie in the open unit disk | A|<1,

then X is locally asymptotically stable. If one of them has a modulus greater than one, then
X is unstable.

Theorem 2.3. (Schur-Cohn Criterion) [8] The zeros of the characteristic polynomial (2.4)
lie in the unit disk if and only if the followings hold:
i) P()>0,

iy (-1 P1>0,
iii) the 2k x 2k matrices

1 0 - - 0 0 0O - 0 Py
p1 1 N () 0 0 p2k+1 pzk
Bi =| g AET A :
Pak2 0 0 Py Ps
Po Py 0 P 1 Paka P - Ps P,

are positive innerwise.

The following results [8,17] give the rate of convergence for solutions of a system of
difference equations.

Let us consider the system of difference equations

X,.=(A+B,)X,, neN (2.5)

0°
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where X, is an m-dimensional vector Ae C™" is a constant matrix, and B : Z* >C™" isa
matrix function satisfying

IB.|—0 (2.6)
as N — o0,

Theorem 2.4. (Perron’s First Theorem) Suppose that condition (2.6) holds. If X, is a
solution of (2.5), then either X, =0 for all large nor

p= limw 2.7)

e Xl
n

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Thereom 2.5 (Perron’s Second Theorem) Suppose that condition (2.6) holds. If X is a
solution of (2.5), then either X, =0 for all large n or

p=tim(|X, )" (28)

exists and is equal to the modulus of one of the eigenvalues of matrix A.
3. STABILITY OF THE SYSTEM

In this section, we investigate the local and the global stability of the equilibrium
points of system (1.2). It is easy to see that (YI,VI) = (0,0) is always an equilibrium point of

system (1.2). When « >1 and S >1, the unique positive equilibrium point of system is

(XZ,VZ):((a—l)w(kﬂ),(,B—l)l/r(k+l)). In addition, if @ =1 and B#1, then (X,,Y,)=(c,,0)

andif ¢ #1 and f =1, then(X,,y,)=(0,c,), where ¢, and c, are arbitrary real numbers.

Theorem 3.1. The following statements hold:
i) If a<land <1, then the equilibrium point (X,y,)=(0,0) of system (1.2) is locally
asymptotically stable.
i) If «>1 or £>1, then the equilibrium point (X,y,)=(0,0) of system (1.2) is
unstable.
iii) If @>1 and B> 1, then the equilibrium point (72,72)=((a—1)“““),(ﬁ—l)”‘k“)) of
system (1.2) is unstable
Proof: First, we write system (1.2) in the form of system (2.2) such that
X =(Xn,...,Xn_k,yn,...,yn_k)T, the map F is

n
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Kk
, az, /(1+11t)
0 i=0
Zl ZO
z z
F tk — k-1 ) )
0 at, /(1+11z)
tl i=0
: b
t, -
tk—l

1) The linearized system of (1.2) about the equilibrium point X, = (0,...,0)" is given by

Xn+] = ‘]F()zo)xn’

where
X, 0 0 0
: 0 0 0
X =| | and 3.(X,)= :
y, 0 1 0 B
Yok 0 0 0 10 (2k+2)<(2k+2)

The characteristic polynomial of J.(X,) is given by

(A" —a) (2= ) =0. (3.1)

It is easy to see that if @ <1 and S <1, then all the roots of the characteristic equation
(3.1) lie in the open unit disk | 2|<1. So, the unique equilibrium point (X,¥,)=(0,0) of (1.2)

is locally asymptotically stable.
i) It is clearly seen that if ¢ >1 or f>1, then at least one root of (3.1) has a

modulus greater than one. In this case, the equilibrium point (X;,Yy,)=(0,0) of

(1.2) is unstable.
1i1) The linearized system of (1.2) about the positive equilibrium point

)za,ﬂ _ ((Ol _1)1/r(k+l) . .’(a _1)1/r(k+1) ’(ﬂ_l)l/r(kﬂ) 5 -,(ﬂ—l)l/r(kﬂ))T

is given by
XI’HI = JF()Za,ﬁ)Xnﬁ

where
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0 0 0 1 A A
1 0 0 0 0 0
X, 0 1 0 0 0 0 0
Xo - 0 0 O 0 0 0 0 0
Xn = 5 J F (Xa ﬂ) = >
Y, B B B B 0 0 0 1
: 0 0 O 0 1 0 0 0
Yok 0 0 O 0 0 1 0 0
0 0 0 0 00 1 0 (2k+2)x(2k+2)
_ (a l)(ﬂ l)I/r (k+1) (ﬂ l)(a l)l/r(k+l)
A - a(a 1)1/r(k+1) and B ﬁ(ﬂ 1)l/r (k+1)
The characteristic polynomial of J (X «p) 18 given by
P(2)= AH? — ABA™ —2ABA™ ! — . —(KAB+2)A*" —(k +1)ABA* —kABA*"' —...—2ABA - AB +1

or

P(A):(/I"”—l)z—r (e 02( {zklzko: (i+1) A< +Zo: i) lj (3.2)

We get P(1)=%;“W‘”<o from characteristic polynomial (3.2) if a >1 and
L >1. So, from Theorem 2.2 and Theorem 2.3, we can say that if « >1 and £ >1, then the

positive equilibrium point ((a )1/r (k) (8- 1)1/r (k1) ) of system (1.2) is unstable.m
Theorem 3.2. If o <1 and S <1, then the equilibrium point (X, ¥,)=(0,0)of system (1.2) is
globally asymptotically stable.

Proof: From Theorem 3.1, we know that if ¢ <1 and f <1, then the equilibrium point
(X,¥,)=(0,0) of system (1.2) is locally asymptotically stable. Hence we only show that

limx, =limy, =0. (3.3)
From system (1.2), we have that
ax
O<Xn+1:k—n_k<axn—k9 O<yn+1:%<ﬂyn7ka (34)
1+11y, 1+11x
i=0 i=0

for ne N, . From (3.4), we have the inequalities

ISSN: 1844 — 9581 Mathematics Section



820 Behaviour of solutions for ... Yasin Yazlik et al.

0<X, <aX, ,, 0<VY.., <BY.«
from which it follows that
0<Xy<a',, 0<y, <B"Y., (3.5)

where X, Y., 1=0,1,...,k, are the initial conditions. Consequently, by taking limits of
inequalities in (3.5) when «a <1 and f <1, then we have the limits in (3.3) which completes
the proof.m

1/r

Theorem 3.3. Let @ >1 and B>1. If x_ X, X, :(,6’—1)”r and Y., Y i Y =(a-1)",
then System (1.2) has the periodic solutions with period k +1.

Proof: First, we note that if X X, =X, :(,8—1)1/r and Y., Y .. Y, :(05—1)1/r , then
X;Y;>0(=0,1....k) and so Xy, >0 for neN,. Thus, we can multiply both sides of the

k-1 k-1
first equation of (1.2) by l_[xmi and both sides of the second equation of (1.2) by H Y, as

i=0 i=0
follows:
k k
k a H Xn—i k ﬂH yn_i
[T%n=—"%— [ Yo =—5— neN,. (3.6)
i=0 1+[ly;, =0 1+11x,
i=0 i=0

By applying the change of variables

k

k
Hxn—i :tn’ Hyn—i = Zn (37)
i=0

i=0
to (3.6), we get the system

ot Pz,
=1+zr’z””=1 -, NeN. (3.8)

n

n-+1

On the other hand, the changes of variables (3.7) yields the equations

L, Z,
X :t_xn—k+19 Yo =7 Youer N EI\IO‘ 3.9)

n
n-1 n-1

Obviously, the nonzero equilibrium solutions of (3.8) satisfies (3.9). If ¢ >1 and

P >1, then (3.8) has the positive equilibrium point (E,fz):((ﬂ—l)l/r,(a—l)m). The

equilibrium solution (t,.2,)=((#~1)"" (¢ ~1)"") satisfies Eq. (3.9). In this case, from the
1/r

assumptions X X =% =(B-1)", YooY Yo = (a—1)" and system (1.2), we get that

Xn+1 = Xn—k’ yn+1 = yn—k’ ne NO’

WWW.josa.ro Mathematics Section
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which implies that system (1.2) has the periodic solutions with period k+1. So, the proof is
completed. m

4. OSCILLATION BEHAVIOR AND EXISTENCE OF UNBOUNDED SOLUTIONS

In the following result, we are concerned with the oscillation of positive solutions of
system (1.2) about the equilibrium point (X,,Y,) = ((a - l)m(kH) (B- l)l/r(m) )
Theorem 4.1. Assume that a>1, #>1 and (Xnayn ):;k be a positive solution of system
(1.2) such that:
) X s Xpipoe-

X0 2% Yoo Yorseeo Yo <V,5 OF
i) X s X papoe-es X < X5,

Yoo YokaroeesYo 2 Var
Then {(x,.y,)} _, non-oscillates about the equilibrium point (X,,¥, ).

Proof: Assume that (i) holds, the case (ii) is similar and will be omitted. From (1.2), we have

axz -

x = 2% =X
177K =T =) 2
1+ g vy 1+y,
)i BY, _=
Yi=—77 < —r(ful) =Y,

—K
1.|.]_[)(ii 1+ X
i=0

Then the result follows by induction. m

In the following theorem, we show the existence of unbounded solutions for system
(1.2).

o0
n=

Theorem 4.2. Assume that & >1, #>1 and (x,,y,) _, be a positive solution of system (1.2).

Then the following statements are true:
i) If X, XX €(0,%), Yoo Youn-- Yo €(Voo0).  Then  limx =0 and

n—oo

(y,) is unbounded.
ii) If X XogoeeesXo €(%5590), Vois Yogurseos Yo €(0,¥,). Then limy, =0 and (x,)

n—o0

is unbounded.

Proof: In the proof we will handle only the condition (i) since another can be shown similarly.
1) From above theorem, we can assume without loss of generality that the positive

solution (X,,Y,) _ of system (1.2) is such that

0
n=-k

X, <X, ¥,<Y,, n=0,1,....

ISSN: 1844 — 9581 Mathematics Section



822 Behaviour of solutions for ... Yasin Yazlik et al.

Then
X _ ax(k+])n+i ax(k+])n+i _
(k+)(n+1)+i k 1+—r(k+1) T k+1)n+i2
1+ g yrk+1)(n+l)—1—| y2
y _ ay(k+1)n+i ay(k+1)n+i _
k+1)(n+1)+i k —r(k+1) — J(k+1)n+i?
o = et Yot

from which it follows that

limx, =0, limy, =oo,
n—o nN—o0

which completes the proof.m
5. RATE OF CONVERGENCE

In this section, we estimate the rate of convergence of a solution which converges to
the equilibrium point (X,¥,)=(0,0) of system (1.2) when « <1 and £ <1. The result of this

section is the following theorem.

Theorem 5.1. Let o <1 and £ <1 and the sequence (x,,y,)_, be a positive solution of

n=

system (1.2). Then, the error vector E, =|e;.....e} ,.€7.....&), ]T of every solution of system
(1.2) satisfies both of the asymptotic relations
E n
p=timleead 5 —iim(le )" (5.1)

n—o ”E
n

where e, =X, —-% , e, =Y,;—Y, (i=0,1...k) and p is equal to the modulus of one of

n—I1 1 n—

the eigenvalues of matrix JF(Yo) :

Proof: First, we will find a system which satisfies the error terms. The error terms are given
by

1 iql in2 2 inl ia2
en+1 - anen i +2Qnen—i> en+1 - ZRnen i +anen i
i=0 i=0 i=0 i=0
A Kk —arx. r... r77 r:l ri+ r7 —_Br Xr~--Xr,,Xr:er,+ ._'Xr7 R
Where PnJ=O’ Pn: kar , Qr?: X0k Yn ynkslynsglnsl ynk’ Rr?: Bryi¥n nsklns;sl nk’SnJ:O,
1+il:£ Yn-i [HH y;—ij [”H Xrl;fi]
= i=0 i=0

Sk=—£—, 0<j<k-1,0<s<k, neN,.Itis easily seen that

1+ %7
i=0
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i a —argy
limP) =0, limP‘=———=¢, limQ; = L =0,
n—>o0 n—w 1+ (k1) n—oo —r(k+)
Yi (1 +Y, )
. ——r(k+1)—1 _
limR; =YX o, lims! =0, lms! =——5 5
n—w (1 n 7r(k+1) ) n—oo n—w 1+ X
Now, we have the limiting system of the error terms at (X,,Y,)=(0,0) as follows:
EI'H—] = MEn’
0 -0 0
0 -0 0
where M=| - , which equals to the matrix J.(X,). From
0 1 -~ 0 B
0 -0 0 10 (2k+2)x(2k+2)

Theorem 2.4 and Theorem 2.5, we have the results in (5.1).m

6. NUMERICAL EXAMPLES

Example 6.1. Let k=3, r=4, o =0.7, #=0.8. In this case, the system is as follows:

07Xn3 08yn3

Nl =

1+ynyn 1ynzyn3 1+xnxn 1x x

, neNo, (6.1)

n+1

with the unique equilibrium point ¥,)=(0,0). We illusrate the solution which
X,

(X,
corresponds the initial conditions x , =2.2, X, =31, x,=0.13, x,=1, y,=0.12,y , =21

y,=3,Y,=2 of (6.1)in Fig. 1.

30
300+
___20-
=
=
=
1
W]
] 20 40 60 80 100
M
F
[z — va) —so—1a)
Figure 1. Plot for solution of Eq. (6.1). Figure 2. Plot for solution of Eq. (6.2).
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824 Behaviour of solutions for ... Yasin Yazlik et al.

Example 6.2: Let k=3, r=4, o =1.1, #=1.01. In this case, the system is as follows:

1.1x 1.0y
X = n-3 , = L ,neN,. 6.2
T yiyyays T T T, T ©2)

We illusrate the solution which corresponds the initial conditions x,=2.2,x, =31,
X,=013,%x,=1,y,=012,y,=21, y,=3,y,=2 of (6.2) in Figure 2.

Example 6.3. Let k=3, r=4, a =2, #=17. In this case, the system is as follow:

2X 17y
Xn+l = 4.4 n—34 4 2 In+l = 4,4 n—j 4 n e]‘\IO' (63)
]' + yn yn—l yn—2 yn—3 1 + Xn Xn—l XI’]—Z Xn—3

We illusrate the solution which corresponds the initial conditions x,=0.2, x, =4,
X, =10, x,=025 y,=3,y,=033,y,=2y,=0.5 of (6.3) in Figure 3.

AONSHABHONBHS 1.

101 0 20 40 60 80 100
n
I x(n) v@)| [—2) — v@)l
Figure 3: Plot for solution of Eq. (6.3). Figure 4. Plot for solution of Eq. (6.4).

Example 6.4. Let k=4, r =3,  =0.7, £=0.8. In this case, the system is as follows:

0.7, 0.8y,
:1 3,,3 3 43 30 n+1:1 3.3 3 43 3 ,nENO, (64)
T Yo Yo YnaYasYna + X X X X Xn g

We illusrate the solution which corresponds the initial conditions x ,=2.2, X, =31,
X, =013, x,=1, y;=0.12,y,=2Ly ,=3,y,=2 of (6.4) in Figure 4.

n+l1

Example 6.5. Let k=4, r=3, a =1.1, #=1.01. In this case, the system is as follows:

1.1x 1.01
Xow = 3.3 3n_4 3 .3 2 YT 3.3 3yn_43 ;> N eN,, (6.5)
1 + yn yn—l yn—2 yn—3 yn—4 1 + Xn Xn—l Xn—2 Xn—3 Xn—4

WWW.josa.ro Mathematics Section
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We illusrate the solution which corresponds the initial conditions X, =22, x, =31,
X,=0.13,x,=1, y,=0.12,y,=21, y ,=3,y,=2 of (6.5) in Figure 5.

200 16 |
14 i
1501 12 |
- ~10
& =
:_\.5 —
21001 ; 8
E =
6
501
AT
0 20 40 60 $0 100
i "
[— xta) — viw) [— @ — va)]
Figure 5. Plot for solution of Eq. (6.5). Figure 6. Plot for solution of Eq. (6.6).

Example 6.6.: Let k=4, r=3, =2, f=17. In this case, the system is as follow:

2X 17
n+l =1 3.3 274 3 .3 0 Jna =1 33 y3m4 3 o3 0 neN,, (6.6)
+ yn yn—l yn—2 yn*?) yn*4 + Xn Xn—lxn—ZXn—3Xn—4

We illusrate the solution which corresponds the initial conditions x,=0.2, x , =4,
X,=10,%x =025 y,=3,y,=033,y,=2,y,=0.5 of (6.6) in Figure 6.
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