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Abstract. In this paper, the summation integral type operators based on Lupas and
Szasz basis functions are introduced. The degree of approximation of these operators is
examined in terms of Ditzian-Totik modulus of smoothness and corresponding K-functional.
The rate of convergence by means of the Lipschitz class and the Lipschitz type maximal
function is investigated. Furtermore, the properties of weigthed approximation and
Voronoskaja type theorem in weighted spaces are obtained. The advantages of these
operators are shown by some graphics and numerical calculations.
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1. INTRODUCTION

In [1] Agratini investigated the approximation properties the linear positive operators
introduced by Lupas [12], and studied on some quantitative estimates for the degree of
approximation. For f € C[0, «),these operators are defined by

Ln(f3 %) = Bio Vaf (5), % 2 0, (2)

(nx)g

where v, (x) = o 27™js Lupas basis function and (a); = a(a + 1)...(a + k — 1) is the
Pochammer symbol. In [1] the author obtained an asymptotic formula for these operators and
gave the order of approximation in terms of modulus of continuity and also introduced
integral modifications of the operators (1).

In [2], Kantorovich variant of the operators (1) was considered and the smoothness
properties in terms of modulus of continuity were studied. Also, by using probabilistic
methods, rate of convergence of the Kantorovich variant of the operators (1) for functions of
bounded variation was obtained.

In [5], a generalization of the operators L,, given by (1) was introduced as follows

. _ - (), [k
La(fix) = 2707 ) it f(a),xzo

k=0

where (an), (bn) are increasing and unbounded sequences of positive numbers such that
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ﬂ=1+0(b1n) lim — =0

bn n—oo by
and studied the weighted approximation properties. In [6] the authors obtained some estimates
on the degree of approximation for Kantorovich type of the operators L,.
Recently, the approximation properties of Lupas type operators on based Polya

distribution were studied in [3, 4, 8, 9, 13]. Lupas type operator on based Pdlya distribution
defined by

P (i) = g, £ (%) P,

where f € C(I), with I = [0,1], /n)( x) = ?2(2))'

of Bernstein polynomials. The Ln operators given by (1) is similar form with the Széasz

operators and, in a sense, it is an extension of the P,fl/ ™ to positive real axis.

Motivated by the above works, in this paper we define a generalization of the
operators L,, given by (1) and introduction its summation-integral type operators in (4). Let
C[0, ) denotes the space of all real valued continuous functions on [0, ). For f € C[0, ©)
and x € [0, o), we define a generalization of the operators (1) as follows

Lawna(f32) = 2700 552, (Zik),kf( by) @

( ) (nx), (n — nx),,_k, is a generalization

where (a,,), (b,,) are unbounded and increasing sequences of positive real numbers such that

lim2=0and 2 < 1. (3)

n—oo dp an
Now we introduce a mixed summation-integral type operator of the operators (2),

having generalized Lupas and Szadsz basis functions in summation and integration
respectively:

Dan by () = 22550 Ink(0) J; Pri(Wf(w)du 4)

k a

an ) ( n )

a —t X
Tx (bnx bn

where P, (x) =e bn e Ly () =
definition of (2).

The aim of these paper is to study some local and global results and the degree of
approximation, using the second order Ditzian-Totik modulus of smoothness and the
corresponding K-functional and give an estimate for functions in a Lipschitz type space by
means of the operators D, , (f;x). We also investigate the properties of the weighted
approximation and give a Voronoskaja type asymptotic result by the operators D,_, (fx)
defined by (4) in weighted spaces of continuous functions with growth polynomial.

"2 b * and (a,), (b,) are the same with the

2. BASIC RESULTS

Lemma 1: Let e;(x) = x!,i = 0,1,2,3,4 and (a,,), (b,,) are unbounded and increasing
sequences of positive real numbers satisfying the condition (3). For each x € [0, ) we have
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Lan,bn(eo; x) =1
Lo, p,(e1;x) = x

cr) — 42 bn
Lg,p,(€2x) = x +2a—nx

Lq, p, (€3 x) = x° +6 X +6(n)2x

Lo, p,(e4;x) = x* +12 X +36(n) x2+26(z—:)3x.

Proof: Taking into account the equality
an = Yk=o (Zkk)' ,x € 0,00),
and by simple calculations the desired results are obtained.

Remark 1: It is clear that the operators defined with (2) satisfy Korovkin-type

approximation theorem on any compact set of [0, o).

Lemma 2: Let e;(x) = x',i = 0,1,2,3,4 and (a,,), (b,,) are unbounded and increasing
sequences of positive real numbers satisfying the condition (3). For each x € [0, ), the

operators D, , satisfy the following equalities:
Dan,bn(eo;x) =1

b
Dg, p,(e1;x) =x +—=

an
Dan,bn(ez;X) =x2 4+ SZ_Zx P (Z—Z)z
Doy (e32) = x4 12222 120 (%) x4 6 (22’

Doy iy (€4 ) = x* + 2222 oy P4131(2 ) x2+206(b—n)3x+24(2—”)4.

an an

()
(6)

(")

(8)

(9)

Proof: Considering the definition of the operator (4) and the properties of Pochammer

symbol, we get

Dayby (03 0) =32 X0 b () g Prje(w)eo(w)du

“ oy e 7 e

)
= Yk=o0 I;kk|k 2" b "T(k+ 1)

an,bn(eO:x) =1
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and for e,, e,, e, e4, Similarly we have the results.

Remark 2: As a simple result of Lemma 2, we have

(=D, (X0 = (10
and
Un2(x): = Dg, p, ((t — x)?; x)
=3l 42 (%), (1

for each 0 < x < oo, taking into account the condition (3), we get
Dy p, (t—x)%x) =0 (%n) (x +1)asn — oo.
Further, using the condition (3)
Mna(X): = Da b, ((t—x)%%)
=27 (2—)2 x2 + 182 (2—")3 X + 24 (Z—)4 (12)

n n

=O(Zf)(x2+x+1)asn—>oo.

Taking into account the equality (11), we have the following lemma.

Lemma 3: Forall n € N and x € [0, «), we have

Hn2(X): = Dy p (6 — )% %) <2062, (%) (13)

where (Sgn,bn(x) = ¢2(x) + bp/ay, ¢(x) = Vx.

Theorem 1: Let {Dan:bn} be the sequence of linear positive operators given by (4).
Then, for all f € C[0, o),
1im Dq,,,, (3 %) = f(x)

uniformly with respect to x € [0,a] c [0,),a > 0.
Proof: From Lemma 2, we have

lim D, , (ex;x) = e (x) = x*,k =0,1,2, (14)
n—oo

uniformly with respect to x € [0, a],a > 0. Then, by the well-known Korovkin theorem, the
operators D,_,, (f;x) uniformly converges to f on any compact subset of [0, ) as n — co.
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3. DIRECT RESULTS

In this section, we would like to give an estimate the degree of approximation for the
operators D,_,, (f;x) in terms of the modulus of continuity, moduli of smoothness and the
Petree’s K-functional.

We begin by recalling some definitions and notations. By Cz[0, ), we denote the
class on real valued continuous and bounded functions f defined on the interval [0, ) with
the norm [|f1l = supyejo,0)lf (x)|. For f € Cg[0,0),5 > 0, the m th order modulus of
continuity is defined as

wm(f,8) = sup SUD)IAZ‘f(X)I

0<h<d6x€[0,0

with A is the forward difference.
The Petree’s K-functional is defined by

¥,(f,8) = _inf {|If —gll +6llg"ll} , (6 >0),
gEC5[0,0)

where CZ[0,) = {g € C3[0,0):g,g" € C5[0,00)} and ||.|| is the uniform norm on
Cg[0, ). By ([7], p-10), we have the following inequality

K, (f,6) < Mwy(f, V) (15)

where M a positive constant and w, is the second order modulus of smoothness for f €
Cg[0, o) is defined as

a)z(f,\/g)= sup sup |f(x+2h) =2f(x+ h) + f(x)].

0<h<éx,x+2h€[0,0)

Now, we can give the following result:

Theorem 2: Let {Dan,bn} be a sequence of linear positive operators defined by (4).
Then, for all f € C5[0, ) and for each x € [0, ), the following inequality

Dy, (5 %) = FCO)] < 200 (£, 85,1, () (16)

holds. Moreover, if f has a continuous derivative on [0, o), then we get

Dy (F3 ) = F GO < 85, (0 201 (85,0, G0 ) + I1£71]

1
bn 2
a

2
where &, , (x) also is the same in both inequality and &, , (x):= (3xZ—”+ 2(—) ) ,
n € N and w; is usual first modulus of continuity.

Proof: For every u,t € [0,00) and 6 > 0, considering the definition of modulus of
continuity we can write
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If() —F@] < A+ 67 Hu - xDwy(f; 6).

Using the definition of (4) we have

Dayn ) = £ = 22 1) | P @ et = £
n k=0 0

< 2 %0 Lk () )7 Par@)(1 + 87 u — ¥ (f; 6)du

= w;(f; 8)Dq, b, (€0; x) + 6 w1 (f; 8)Dy, p, (Iu — x[; x).

Applying Cauchy-Schwarz inequality and by (11), we have

NP

D (F50) = F] £ 013 8) + 57 (136 (3622 + 2 (22)

1

Choosing 6 = 6,5, (x) = ( =+ 2( ) )2 = \/Un2(x) we obtain (16), for each

€ [0, ).
Since f has a continuous derivative on (0, c0) we can write

f@ = f0) =€) = f(IE—x) + )~ x) 17)

for every x, t € [0, 00) and for any & € (x, t).
Applying the operators D, , 1o (17) and taking into account the definition of

modulus of continuity for f’, we have
|Da i, (320 = FQO| < 3 0 |20 (5 620 ) + 1£1]

which implies the desired result.
Now, we give the rate of convergence by Petree’s K-functional.

Theorem 3: For each x € [0, ) f € Cg[0, o), the following inequality

D (3 ) = F()] < 436, (£,62,,(0)) + 1 (£ 22) (18)

< Mw,| f; (Z—’;)_E 8,0, (X) | + g (f ; Z—:)

holds where (8, p, (¥))* = ¢*(x) + Z—”,qh(x) =+/x and M is a constant independently of
n,x.

Proof: We define the auxiliary operators as follows:

Dy (%) = Dy (f ) + F () = f (H22). (19)
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Then by Lemma 2, we get

5an,bn(eo; x) = Dan,bn(eo; x)=1
and
Dy (13 %) = Doy, (035 0) o+ x = 222028 =
and D, ((t —x);x) = 0. Let g € C3[0,0) and t € [0, ). Using the Taylor formula, we
get

gt) = g() + (t—0)g'C) + [ (t — wg" Wdu.

Applying the Ean,bn operator to both sides of this equality, we have

aAnX+by
t an
_ a,x+b
Da, p,(g;x) —g(x) =Dg_p. f (t—wyg"(Wdu;x |- f (u—u) 9" (Wdu.
an
X X
Hence we obtain
|Da,, b, (g: %) — g ()|
144 anx n bn 144
< Do, (J 16— ullg”@Oldu; x) + [, an [2552 — | 1" ()| du
14 n bn 2
< 19"l (Dan (6 = 0% ) + (22222 x) ) (20

From Lemma 3, by (11) and by using the condition (3), we find

Dy (£ =050 + (257 —x)" = e 2 () + (2 (21)

n

= ay gz ()

= 22 (8, ()2

Using the inequalities (20) and (21) we get

3bn

[Day b, ;%) — g(0)| < =2 = (8ay b, 19"l (22)

For f € Cgz[0, ) we can write

D, (5 )] < 52T Lnge () Jy” Prge I ()l
< NFISE RS bk () Jy Prge(@)du
= 1f1Day, 5, (e0: %) = IIfIl.
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Hence for all f € C5[0, ) , we find

Dy (s )] < [Py, (3 0] + £ GO + [ (BEE22) (23)
< 3£l
Combining (22) and (23), for f € C3[0, ) and g € [0, ), we have
|Da i, (f3 ) = £ ()
< Dapin ((f = 9:)| + 10 = 9 + Dy, (95 0) = 9GO + | (2522) - £ ()|

< 4IIf = gl + 22 (B, G0 + 1 (£,22).

Taking the infimum over all g € C3[0, %),we reach the result (18) and by using the
inequality (15) we find

D (520 = FCO| < Mooy (f b/ an)2) + s (f22)
which implies the proof.

Let f € Cz[0,0) and ¢(x) =+x,x € [0,0). The second order Ditzian-Totik
modulus of smoothness and corresponding K- functional are given by, respectively,

wl(fVE) = sup sup  |f(x+hp(x)) = 2f(x) + f(x — he(x))],
_ 0<h<VEXThe(x)€[0,0)
Ky 900 (f,6) = inf{||f — gl| + S11p>g" || + 8%|1g"||: g € C*(¢)}, (6 > 0),
where C?(¢) ={g € C[0,):g" € ACloc[O ©),¢?g" € C[0,)} and g’ € AC;,c[0, )

means that g is differentiable and g’ is absolutely continuous on every closed interval
[a, b] c [0, o). It is known that there exists a positive constant M > 0, such that

Koo (f8) < Mw? (f,V5) (24)
(see [7], p.68).

Theorem 4: Let f € C5[0, ). For x € [0, =),

1D, ) = F11 < 400 (£,(2) "),
where ¢(x) = Vx.

Proof: By the means of the auxiliary operators defined by

D, (f32) = Doy () + ) — f (25722)

we obtain

Ean,bn(eo; x) = 115an,bn(el; x) = x.
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For g € C2(¢), by using Taylor’s formula of g, on proceeding as in the proof of
Theorem 3, we get
)

nX+bn "
20—y g (w)ldu. (25)

t
f It - ullg” (w)ldu

|Ban,bn (g; X) — g(X)l < Dan,bn (

anX+bp

+/

Because the function &7 , (x) = ¢?(x) + b,/a, is concave on x € [0,), for
u=1tx+ (1—-1)t,t € (0,1), we get

[t—u| T|t—x| < T|t—x| < [t—x| (26)

L () 5,21 by (TXH(A-D)O) T 8 (0)TH+EL L ((A-T) T 85 (X)]

From the inequalities (25) and (26), we obtain

D@9 = 9001 < 15200, " Py, (1} 7 x)

b anx+bn
+162 , g "||< [ '_—“'du>

nbn(x)

2
—(x)” anbn9 ” [/an(x)'*'(@—x) ]
—(x)” eutnd | [un,z(x)+(ﬁ) ]

As in the proof of the Theorem 2, we can write

—_ bn 14
Dann (95%) = 90O < 72| B, )%0 "I (27)
Using (23) and (27) we have for f € Cg[0, )

1Dy, (3 X) = F(X)| < [Dayo, ((F = 90 0)| + [Dayp (95 %) — 90| + 1g(x) = F ()]
<allf - gll+22|p2g |+ 3 (2) g

Taking the infimum on the right hand side over all g € C?(¢) we obtain

Do (5) = FGO] < 4R g0 (£, E—Z)

Now we consider following [14] the Lipschitz-type space for this operators;

(t+x)2

Lipy(n) = {f € C5[0,00): I£ (1) — F(0)| < M= 0t € (0, 00)}

where M is a positive constant and n € (0,1].
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Theorem 5: Let f € Lipy,(n). Then, for all x € (0, ), we get

n2(x)\"/2
| Dy, (f3 ) = )] < M (2222) (28)
where u, ,(x) is the same with Remark 2.

Proof: First, we start with the case n = 1. We can write

|Da b, (F3 %) = fO)] S 32 ER0 L () fy P @If (W) = () ldu
< M‘;—:zzzo L) ;7 P () =2 du

Using the fact that — =<
Schwarz inequality, we may write

— and before the Holder’s inequality and after the Cauchy-

T

1 an wvoo [e%)
|Dan,bn(f; xX) — f(x)l < M\/_;Z_nZk=0 ln,k(x) fo Pn,k(u)lu — x|du
1
= MLD, (It - 1)
1/2
<M (#n,z(x)) .

P

The desired result is obtained for n = 1. Now, we prove the case 0 < n < 1. Applying
the Holder’s inequality with p = %and q= ﬁ we have

D (5 2) = FOO] < T2 820 L) fy P If () = £ ()l du
= {mo LG (G2 1y P @OIf () = f(x)ldu)%}n
< {25, k@) [} Pai@f @) - f(x)ﬁdu}"
{28 bk ) J;” P B )’
(8520 kG [ PoCdlu — xlau]
(

/
Dg, b, (It —xl;x))n < M(M)” 2,

X

A IA
= Relx X 7

IA
NE

P

so, we obtain (28).

It is obvious that, Lipy,(n) < Lipy (n) where Lipy,,(n) = {f:1f (@) — f(x)| <
Mt—xy,x,£€0,00. Therefore, Teorem 5 shows that the degree of approximation is better in

Lipy ().

4. LOCAL APPROXIMATION

In this section, we obtain some pointwise estimates of rate of convergence of the
operators (4). First, we give a connection between the local smoothness on f and local
approximation.
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Let E be any subset of [0,1) and n € (0,1]. Then Lipr(E,n) denotes the space of all
functions f € Cg[0, o) satisfying the condition

If (t) — f(x)| < M|t — x|7, V¢t € E and x € [0, ),
where Mg is a constant depending on f and E denotes the closure of E in [0, o).

Theorem 6: Let f € C5[0,0) N Lipr(E,n), n € (0,1] and E is a any bounded
subset of [0, ). Then, for each x € [0, ), we have

an

n/2
|Day b, (f; ) = F ()| < My {(ﬂfsﬁn,bn(x)) + (d(x,E))"}

where M is a constant depending on f and d(x, E) is a distance between point x and E' that is
d(x,E) = inf{|t — x|: t € E}.
Proof: If E is a closure of subset E in [0, o), there exists at least a point x, € E such
that
d(x,E) = |xy — x|.
Using the triangle inequality, we get

If (@) = FOI < [F(®) = flxod| + [f (x) = £ (x0)] (29)

and operating D, on both sides of (29) and using the definition of Lipy, (E,n), we get

Do (F5 %) = ()| < Day o, (1 (&) = £ (%0)1; ) + Day o, (I () = f (x) 5 %)
< Mf{Dan,bn(It — xo|™; %) + |x — x,7}

Applying the Holder’s inequality with p = % and g = % using Lemma 3, it follows
that

[Day (3 ) = FCO| < My {(Day, (1 = 21730) 7 (D, (1:20) 7 + (dx, )"}

= My {(Dan,bn((t —x)% x))g + (d(x, E))n}

an

n/2
<M, {(% 5§n,bn(x)> +(d(x, E)”)}.

Hence, the proof is completed.
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5. WEIGHTED APPROXIMATION

Let B,z[0,00) denotes the space of functions defined on [0,0) and satisfying the
condition [f(x)| < M, (1 + x?) where M, is a constant depending on f and B,2[0, ) is

endowed with the weighted norm || ]|,z = supys '{i’g

Let C,2[0,00) denotes the space of all continuous functions on real semi-axis
belonging to the class B,2[0, o). Let C2[0, ) be the space of functions in C,2[0, o) such
that the limit lim, . f (x) (1 + x*)~exists and is finite. For each f € C;»[0, ) and p(x) =
1 + x2, the weighted modulus of continuity is defined by

FGetm)—f ()|

Q. (f:8) = sup L&

p(f30) = sup = o
|h|=8

Notice that, the basic properties of Q,(f; &) is similar to properties of usual modulus
of continuity (see [10]).

Theorem 7: Let f € C_2[0,0). Then

1Day,p, () =l 2 = 0

asn — oo,

Proof: Considering Lemma 2, we get following equalities,

|Dan,bn(eo)(x)_e(](x)| — 0
p(x)

”Dan,bn(eo) - eo||p = ilzlg

IDay,bp () (X)—e1(x)] b
1Paon o) = el”P - ilig pl(x) —= ﬁ

and
|Dan,bn(ez)(x)_ez(x)|

||Dan:bn(62) - eZ”p = ilzlg p(x)
_ Sbpx 2(bn)2) 1
- ilig( an + az J 1+x?%

By using the condition (3) we have lim,,,.||Ds, 5, (ex) — ek||p =0 for each k =
0,1,2.
From Korovkin type theorem in weighted spaces, we obtain the desired result.

Theorem 8: For f € C2[0, ©) , the inequality

|Day by (Fi%)—f ()] ’
sup Penta TN < KQ, (f: 64,0,

x20

holds for a sufficiently large n, where Sa'n,bn = ,/b,/a, and K is a constant independent of n.
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Proof: For every f € C2[0,00) and x,t € 0, o), using the definition of 0, and by the
elementary inequality

F(6) = GOl < 2(1 + x2 (1 + (60 ») )Qp(f; 5 0 ) (1 N |5 x|

)(1+(t—x))

an,bn
we can write
2
1D (F5) = FCO] =201+ 62 (14 (Bayn) ) 00 F B) T (o)
X fooo Py (w) (1 + 6'1

an,bn

lu — xI) 1+ (u—x)?)du

<401+ (14 (80,) ) (580, Do busc ()

{1+ f Pnk(u)lu—xldu+f Py (w)(u — x)?*du

f P ()|u —x|(u— x)zdu}

an bn

Applying Cauchy-Schwarz inequality we have

|Dapin (i) = FOO] <201 +22) (14 (845,) ) R 8 )
(Pann((er =077

x |1+ D, 5. ((e; — x)% %) + - !

an,bn

45— [ (2 = 2% 0D, (e = )% x)] .

an,bn

By equations (11) and (12) and considering the condition (3), we get

D (5) = FCO| <2 +x2) (14 (84,0)" ) R i)
\/ 0 (z—z) (x+1)

+5'1 \/0 (Z_:) x+ D2+ x+ 1)]

an,bn

1+0( )(x+1)+6

an,bn

and there exist a positive constant M such that,

Da, b, (f; ) = F)] < 2(1 +xD)Q,(f; aa’n,bn)
1+ M( )

(Z—) (x+ D2 +x+ 1)]

”n (x+ 1)
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Taking K = 4[1+ M + Zx/ﬁ],&;n,bn = (b,/a,)*? and using the condition (3), for
sufficiently large n, we obtain

|Day,by (Fi2)=f ()] by
sup an(lrg—xz)s/z SKQP f, ; .

x20

We will prove a Voronoskaja type theorem for the operators D, , (f;x) with
f € Cx*z [0, 00)

Theorem 9: Let f € C»[0, o) be a function. If f is two times differentiable at a point
x € [0, 00), with " continuous on x we have

lim 2 [D,, . (f3%) = FOO] = £/G0) +2xf" (x). (30)

n—oo by

If f is two times differentiable on [0, ), with f'" continuous on [0, ), we get the
equality (30) uniformly with respect to x € [0,a] c [0,),a > 0.

Proof: Let f € C;2[0,0) and let x € [0, o) be a point fixed. For t € [0, ), by using
Taylor expansion we have

f@) =f)+(E=xf"(x) +§(t =) f" () + r(t, 2)(t — %)%,

where r(t,x) » 0 ast — x and r(t, x) € C_2[0, o0). Applying the operator D, , , we get

Dy (f3 ) = £ () = Daypp, (¢ = 2); 0)f7(x) + ;Dan,bn((t —x)%0)f" (%)
+Dag,, b, (&, X) (t — x)%; X).

Taking into account Remark 2, we reach the following result

lim 52 [Dq, 5, (f ) = FG] = £/G0) + lim 2 [3x+ 22 "G (31)

n—-oo
+r111_r)£1o Z_:Dan,bn (r(t, x)(t — x)?; x).
From Cauchy-Schwarz inequality, we have

Do b, (r(6,2)(t — )% %) < {Dg_p ((r(t,2))% 0} {Dg (£ — x)% 200},

The properties of the function r(t,x) implies that r%(x,x) =0 and r%(x,x) €
C,2[0, o). Hence from Theorem 8, we obtain

limD, , ((r(t,x))*x) =r*(x,x) =0,
n—-oo
uniformly with respect to x € [0,a] c [0, ). Hence, by using (11) we get

Tlll_{rolo(;—: apby, (&, X)(t = x)% %) = 0.
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Then, from (31) and by using the condition (3), we reach the desired result.

6. EXAMPLES

Now, we give some numerical examples showing the degree of approximation and
illustrate the convergence of the operators to a certain function by means of graphics.

Example 1. In Figs. 1-2, for n = 30,50,150 the convergence of D, ,, (yellow, green
and pink in Figure 1, yellow, green and red in Figure 2) to f(x) = x3(x — 3/4)? (blue) is
illustrated with the different sequences pairs a, =n, b, =Invyn+10 and a, =n, b, =
In(n). It is easily seen that as the values of n increase, the convergence of D, , (f;x) to
f (x) becomes better.

B
1A -

[nLL] B000 -
[FLLIE

Al
400 -

M
20041

1] pi o B 0 ——
] 1 2 3 4 5 6 ] 1 2 3 4 5 6
X X

Figure 1. For a_=n, b, =Inyn+10, the Figure 2. For a =n, b, =Inn, the convergence
convergence p, , (f;x) to f(x). D, ,, (f:x) 10 f(x).

For f(x) = x*(x — 3/4)% x € [0,1], we give the degree of D, ;, (f;x) in term of
modulus of continuity in the following table. The error bound is smaller while the values of n
increase and it also changes for different (a,,) and (b,,) sequences.

Table 1. The degree of approximation of D, , (f;x) in terms of modulus of continuity.

n error bound for a,, = n, b, = error bound for a,, = n, b, =
In(n) Invn + 10
1000 .1109953430 .09326718976
1500 .1024546745 08368864662
2000 .09583131158 .07693160462
5000 .07693160462 .05692206160
7000 .06635831382 .05043469828
100000 02375596746 .01716194743
100000 .008631796320 .006148873274
1500000 .007181537140 .005109281812

ISSN: 1844 — 9581

Mathematics Section




868

Approximation by the summation ... Nesibe Manav and Nurhayat Ispir

REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]
[9]
[10]
[11]
[12]

[13]
[14]

Agratini, O., Facta Univarsitatis, Ser. Math. Inform., 14, 41, 1999.

Agratini, O., Nihonkai Math. J., 11, 47, 2000.

Agrawal, P.N., Ispir, N., Kajla, A., Rend. Circ. Mat. Palermo, 65(2), 185, 2016.
Agrawal, P.N., Ispir, N., Kajla, A., Appl. Math.Comput., 259, 533, 2015.

Erencin, A., Tasdelen, F., J. Inequal. Pure Appl. Math., 8(2), Article ID 39, 2007.
Erencin, A., Tasdelen, F., Fasc. Math., 41, 65, 2009.

Gupta, V., Agarwal, R. P., Convergence estimates in approximation theory, Springer,
New York, 2014.

Gupta, V., Rassias, T. M., Banach J. Math. Anal., 8(2), 146, 2014.

Ispir, N., Agrawal, P.N., Kajla, A., Appl. Math.Comput., 261, 323, 2015.

Ispir, N., Atakut, C., Proc. Indian Acad. Sci. Math. Sci., 112(4), 571, 2002.

Lenze, B., Nederl. Akad. Wetensch.Indag. Math., 50(1), 53, 1988.

Lupas, A., Proceedings of the International Dortmund Meeting on Approximation
Theory, Akademie Verlag, Berlin, 1995.

Miclaus, D., Carpathian J. Math., 28(2), 289, 2012.

Ozarslan, M.A., Duman, O., Miskolc Math. Notes, 11(1), 87, 2010.

WWW.josa.ro Mathematics Section



