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Abstract. In this paper, the summation integral type operators based on Lupas and 

Szász basis functions are introduced. The degree of approximation of these operators is 
examined in terms of Ditzian-Totik modulus of smoothness and corresponding K-functional. 
The rate of convergence by means of the Lipschitz class and the Lipschitz type maximal 
function is investigated. Furtermore, the properties of weigthed approximation and 
Voronoskaja type theorem in weighted spaces are obtained. The advantages of these 
operators are shown by some graphics and numerical calculations. 

Keywords: Durrmeyer-type operators, rate of convergence, moduli of countunity, 
Petree-K funtional. 
 
 
1. INTRODUCTION  
 
 

In [1] Agratini investigated the approximation properties the linear positive operators 
introduced by Lupas [12], and studied on some quantitative estimates for the degree of 
approximation. For ∈ 0,∞ ,these operators are defined by  

 

 ; ∑ 	 , , 0, (1) 

 

where , !
2 is Lupas basis function and 1 . . . 1  is the 

Pochammer symbol. In [1] the author obtained an asymptotic formula for these operators and 
gave the order of approximation in terms of modulus of continuity and also introduced 
integral modifications of the operators (1). 

In [2], Kantorovich variant of the operators (1) was considered and the smoothness 
properties in terms of modulus of continuity were studied. Also, by using probabilistic 
methods, rate of convergence of the Kantorovich variant of the operators (1) for functions of 
bounded variation was obtained. 

In [5], a generalization of the operators  given by (1) was introduced as follows 
 

∗ ; 2 	
2 !

, 0 

 
where ,  are increasing and unbounded sequences of positive numbers such that  
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 1 , lim
→

0 

 
and studied the weighted approximation properties. In [6] the authors obtained some estimates 
on the degree of approximation for Kantorovich type of the operators ∗ . 

Recently, the approximation properties of Lupas type operators on based Pòlya 
distribution were studied in [3, 4, 8, 9, 13]. Lupas type operator on based Pòlya distribution 
defined by 

 ; ∑ 	 , , 

 

where ∈ , with 0,1 , 		 ,
/ !

!
, is a generalization 

of Bernstein polynomials.  The  operators given by (1)  is similar form with the Szász 

operators and, in a sense, it is an extension of the /  to positive real axis. 
Motivated by the above works, in this paper we define a generalization of the 

operators  given by (1) and introduction its summation-integral type operators in (4). Let 
0,∞  denotes the space of all real valued continuous functions on 0,∞ . For ∈ 0,∞  

and ∈ 0,∞ , we define a generalization of the operators (1) as follows  
 

 , ; 2 ∑ 	
!

 (2) 

 
where ,  are unbounded and increasing sequences of positive real numbers such that 
 

 lim
→

0	and	 1. (3) 

 
Now we introduce a mixed summation-integral type operator of the operators (2), 

having generalized Lupas and Szász basis functions in summation and integration 
respectively:  

 
 D , f; x ∑ 	l , x 	P , u f u du (4) 

 

where , !
, , !

2  and ,  are the same with the 

definition of (2). 
The aim of these paper is to study some local and global results and the degree of 

approximation, using the second order Ditzian-Totik modulus of smoothness and the 
corresponding -functional and give an estimate for functions in a Lipschitz type space by 
means of the operators , ; . We also investigate the properties of the weighted 
approximation and give a Voronoskaja type asymptotic result by the operators , ;  
defined by (4) in weighted spaces of continuous functions with growth polynomial. 

 
 

2. BASIC RESULTS 
 
 

Lemma 1: Let , 0,1,2,3,4 and ,  are unbounded and increasing 
sequences of positive real numbers satisfying the condition (3). For each ∈ 0,∞  we have  
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 , ; 1 
  

 , ;  
  

 , ; 2  

  

 , ; 6 6  

  

 , ; 12 36 26 . 

  
 
Proof: Taking into account the equality  

 2 ∑ 	
!
, ∈ 0,∞ , 

 and by simple calculations the desired results are obtained.  
 
 Remark 1: It is clear that the operators defined with (2) satisfy Korovkin-type 

approximation theorem on any compact set of 0,∞ .  
 
Lemma 2: Let , 0,1,2,3,4 and ,  are unbounded and increasing 

sequences of positive real numbers satisfying the condition (3). For each ∈ 0,∞ , the 
operators ,  satisfy the following equalities:  

 
 , ; 1 (5) 
  

 , ;  (6) 

  

 , ; 5 2  (7) 

  

 , ; 12 29 6  (8) 

  

 , ; 22 131 206 24 . (9) 

 
Proof: Considering the definition of the operator (4) and the properties of Pochammer 

symbol, we get  
 

 

, ; ∑ 	 , 	 ,

∑ 	 , 	
!

∑ 	
!
		2 Γ 1

, ; 1
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 and for , , , , similarly we have the results.  
 

   Remark 2: As a simple result of Lemma 2, we have  
  

 ,1 ,( ) : (( ); )
n n

n
n a b

n

b
x D t x x

a
      (10) 

 and  
                           , : , ;  

                                         3 2 ,                                                (11) 

 
for each 0 ∞, taking into account the condition (3), we get  
 

 , ; 1 	as	 → ∞. 

  
Further, using the condition (3)  
 

 

μ , x : D , t x ; x

27 x 182 x 24

O x x 1 	as	n → ∞.

 (12) 

 
Taking into account the equality (11), we have the following lemma.   
 
Lemma 3: For all ∈  and ∈ 0,∞ , we have  
 

 , : , ; ,  (13) 

 
 where , / , √ .  
 

Theorem 1: Let ,  be the sequence of linear positive operators given by (4). 
Then, for all ∈ 0,∞ ,  

 lim
→ , ;  

 
uniformly with respect to ∈ 0, ⊂ 0,∞ , 0.  

 
Proof: From Lemma 2, we have  
 

 lim
→ , ; , 0,1,2, (14) 

 
 uniformly with respect to ∈ 0, , 0. Then, by the well-known Korovkin theorem, the 
operators , ;  uniformly converges to  on any compact subset of 0,∞  as → ∞.  
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3. DIRECT RESULTS 
 
 

In this section, we would like to give an estimate the degree of approximation for the 
operators , ;  in terms of the modulus of continuity, moduli of smoothness and the 
Petree’s -functional. 

We begin by recalling some definitions and notations. By 0,∞ , we denote the 
class on real valued continuous and bounded functions  defined on the interval 0,∞  with 
the norm ‖ ‖ sup ∈ , | |. For ∈ 0,∞ , 0, the  th order modulus of 
continuity is defined as 

 
 , sup sup

∈ ,
|Δ | 

 
with  is the forward difference. 

The Petree’s -functional is defined by  
 
 , inf

∈ ,
|| || ‖ ‖ 		, 0 , 

 
where 0,∞ ∈ 0,∞ : 	 , ∈ 0,∞  and ||. || is the uniform norm on 

0,∞ . By ([7], p.10),  we have the following inequality 
 

 , , √  (15) 
 
where  a positive constant and  is the second order modulus of smoothness for ∈

0,∞  is defined as 
 

 , √ sup sup
, ∈ ,

| 2 2 |. 

 
Now, we can give the following result: 
 

 Theorem 2: Let ,  be a sequence of linear positive operators defined by (4). 
Then, for all ∈ 0,∞  and for each ∈ 0,∞ , the following inequality  

 

 , ; 2 , ,
∗  (16) 

 
 holds. Moreover, if  has a continuous derivative on 0,∞ , then we get  
 

 , ; ,
∗ 2 	 , ,

∗ ‖ ‖  

 

 where ,
∗  also is the same in both inequality and ,

∗ : 3 2 , 

∈  and  is usual first modulus of continuity.  
 
Proof: For every , ∈ 0,∞  and 0, considering the definition of modulus of 

continuity we can write  
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 | | 1 | | ; . 
  
 Using the definition of (4) we have  
 

, ; 	 , 	 ,  

             
                ∑ 	 , 	 , 1 | | ;  

  
             ; , ; ; , | |; . 

 
Applying Cauchy-Schwarz inequality and by (11), we have  

 

 , ; ; ; 3 2 . 

 

Choosing ,
∗ 3 2  ,  we obtain (16), for each 

∈ 0,∞ . 
Since  has a continuous derivative on 0,∞  we can write  
 

  (17) 
 for every , ∈ 0,∞  and for any ∈ , . 

Applying the operators ,  to (17) and taking into account the definition of 
modulus of continuity for , we have  

 

 , ; ,
/ 2 	 ; ,

∗ ‖ ‖  

  
which implies the desired result.  

Now, we give the rate of convergence by Petree’s -functional. 
 
 Theorem 3: For each ∈ 0,∞  ∈ 0,∞ , the following inequality 
  

 , ; 4 , , ;  (18) 

                      ; , ;  

 

holds where , , √  and  is a constant independently of 

, .  
 
Proof: We define the auxiliary operators as follows:  
 

 , ; , ; . (19) 
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Then by Lemma 2, we get  
 

 , ; , ; 1 
 and  

 , ; , ;  

 
and , ; 0. Let ∈ 0,∞  and ∈ 0,∞ . Using the Taylor formula, we 
get  

 	 . 
 

Applying the ,  operator to both sides of this equality, we have  
 

, ; , 	 ; 	 . 

 
Hence we obtain  

 

, ;   

 , 	| || | ; 	 | |  

 ‖ ‖ , ; . (20) 

  
From Lemma 3, by (11) and by using the condition (3), we find  

 

 , ; 2  (21) 

                                    3  

                                    , . 

 
Using the inequalities (20) and (21) we get  
 

 , ; , ‖ ‖ (22) 

 
For ∈ 0,∞  we can write  
 
 , ; ∑ 	 , 	 , | |  

               ‖ ‖ ∑ 	 , 	 ,  

               ‖ ‖ , ; ‖ ‖. 
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Hence for all ∈ 0,∞  , we find  
 

 , ; , ; | |  (23) 

               3‖ ‖ 
 

Combining (22) and (23), for ∈ 0,∞  and ∈ 0,∞ , we have  
 

, ;

, ; | | , ;

4‖ ‖ , , .

 

 
Taking the infimum over all ∈ 0,∞ ,we reach the result (18) and by using the 

inequality (15) we find  
 

 , ; ; / ;  

 
which implies the proof.  

Let ∈ 0,∞  and √ , ∈ 0,∞ . The second order Ditzian-Totik 
modulus of smoothness and corresponding - functional are given by, respectively,  

 

, √ sup
√

sup
∈ ,

| 2 |,

, , inf || || || || || ||: ∈ , 0 ,
 

 
where ∈ 0,∞ : ∈ 0,∞ , ∈ 0,∞  and ∈ 0,∞  
means that  is differentiable and  is absolutely continuous on every closed interval 
, ⊂ 0,∞ . It is known that there exists a positive constant 0, such that  

 

 , , , √  (24) 
(see [7], p.68). 
 

 Theorem 4: Let ∈ 0,∞ . For ∈ 0,∞ ,  
   

 || , || 4 , ,
/

, 

  
where √ .  

 
Proof: By the means of the auxiliary operators defined by  
 

 , ; , ;  

 we obtain  
 , ; 1, , ; . 
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 For ∈ , by using Taylor’s formula of , on proceeding as in the proof of 
Theorem 3, we get  
  

D , g; x g x D , 	|t u||g u |du ; x  

                                      	 u |g u |du. (25) 

 
Because the function , /  is concave on ∈ 0,∞ , for 

1 , ∈ 0,1 , we get  
 

 
| |

,

| |

,

| |

, ,

| |

,
. (26) 

 
From the inequalities (25) and (26), we obtain  
 

         

| , ; | ,
	

, 	 | |

,
;

,
	 	

| |

,

,
,

	
,

,
,

	
, .

 

 
As in the proof of the Theorem 2, we can write  
 

 | , ; | ,
	 . (27) 

 
Using (23) and (27) we have for ∈ 0,∞   
 

, ; , ; , ; | |

4‖ ‖ 	 3 	
 

 
Taking the infimum on the right hand side over all ∈  we obtain  
 

 , ; 4 , , . 

  
Now we consider following [14] the Lipschitz-type space for this operators; 
 

 ∗ ∈ 0,∞ : | | | |
; , ∈ 0,∞ , 

 
where  is a positive constant and ∈ 0,1 . 
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Theorem 5: Let ∈ ∗ . Then, for all ∈ 0,∞ , we get  
 

 , ; ,
/

 (28) 

 
 where , 		is the same with Remark 2.  

 
Proof: First, we start with the case 1. We can write  
 
 , ; ∑ 	 , 	 , | |  

 ∑ 	 , 	 ,
| |

√
 

 

Using the fact that 
√ √

 and before the Hölder’s inequality and after the Cauchy-

Schwarz inequality, we may write  
 

 , ;
√

∑ 	 , 	 , | |  

 
√ , | |;  

 ,
/
. 

 
The desired result is obtained for 1. Now, we prove the case 0 1. Applying 

the Hölder’s inequality with  and , we have  

 
         , ; ∑ 	 , 	 , | |  

                     ∑ 	 , 	 , | |  

                     ∑ 	 , 	 , | |  

                    ∑ 	 , 	 ,
| |

√
 

                    ∑ 	 , 	 , | |  

                    , | |; ,
/
, 

so, we obtain (28).  
It is obvious that, ∗ ⊂  where : | |
; , ∈0,∞. Therefore, Teorem 5 shows that the degree of approximation is better in 

∗ . 
 
  
4. LOCAL APPROXIMATION 
 
 

In this section, we obtain some pointwise estimates of rate of convergence of the 
operators (4). First, we give a connection between the local smoothness on  and local 
approximation. 
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Let  be any subset of 0,1  and ∈ 0,1 . Then ,  denotes the space of all 

functions ∈ 0,∞  satisfying the condition 
 
 | | | | , ∀ ∈ 	and	 ∈ 0,∞ , 

 
where  is a constant depending on  and  denotes the closure of  in 0,∞ . 
 

 Theorem 6: Let ∈ 0,∞ ∩ , , ∈ 0,1  and  is a any bounded 

subset of 0,∞ . Then, for each ∈ 0,∞ , we have  
 

 , ; ,

/

,  

 
where  is a constant depending on  and ,  is a distance between point  and  that is  
 

 , inf | |: ∈ . 
 

Proof: If  is a closure of subset  in 0,∞ , there exists at least a point ∈  such 
that  

 , | |. 
  

Using the triangle inequality, we get  
 

 | | | | | | (29) 
 
and operating ,  on both sides of (29) and using the definition of , , we get  

 

, ; , | |; , | |;  

 , | | ; | |  
  

Applying the Hölder’s inequality with  and , using Lemma 3, it follows 

that  
 

, ; , | | ;
/

, 1 ;
/

,  

            , ; ,  

            ,

/

, . 

 
Hence, the proof is completed.  
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5. WEIGHTED APPROXIMATION 
 
 

Let 0,∞  denotes the space of functions defined on 0,∞  and satisfying the 
condition 	| | 	 1  where  is a constant depending on  and 0,∞  is 

endowed with the weighted norm ‖ ‖ sup
| |

. 

Let 0,∞  denotes the space of all continuous functions on real semi-axis 
belonging to the class 0,∞ . Let ∗ 0,∞  be the space of functions in 0,∞  such 
that the limit lim → 1 exists and is finite  For each ∈ ∗ 0,∞  and 
1 , the weighted modulus of continuity is defined by  

 

 Ω ; sup

| |

| |

	 	
. 

 
Notice that, the basic properties of Ω ;  is similar to properties of usual modulus 

of continuity (see [10]). 
 

 Theorem 7: Let ∈ ∗ 0,∞ . Then  
 
 , → 0 

 as → ∞.  
 
Proof: Considering Lemma 2, we get following equalities,  
 

 , sup
| , |

0 

 

 , sup
| , |

 

 
and  

 , sup
| , |

 

                                  sup . 

 
By using the condition (3) we have lim → , 0 for each 

0,1,2. 
From Korovkin type theorem in weighted spaces, we obtain the desired result.  
 
Theorem 8: For ∈ ∗ 0,∞  , the inequality  
 

 sup
			

, ;
/ Ω ; ,

	  

 
holds for a sufficiently large , where ,

	 /  and  is a constant independent of .  
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Proof: For every ∈ ∗ 0,∞  and , ∈ 0,∞ , using the definition of Ω  and by the 
elementary inequality  

 

| | 2 1 1 ,
	 	

Ω ; ,
	 1

| |

,
	

1  

 
 we can write 

 

, ; 2 1 1 ,
	 	

Ω ; ,
	 ∑ 	 ,

	 , 1
,

	
| | 1

4 1 1 ,
	 	

Ω ; ,
	 ∑ 	 ,

1
,

	 	 , | | 	 ,

,
	 	 , | |

 

 
Applying Cauchy-Schwarz inequality we have  
 

 

, ; 2 1 1 ,
	 Ω ; ,

	

1 , ;
,

	 , ;

,
	 , ; , ; .

 

 
By equations (11) and (12) and considering the condition (3), we get  
 

 

, ; 2 1 1 ,
	 Ω ; ,

	

1 1
,

	 1

,
	 1 1

 

 
and there exist a positive constant  such that,  
 

 

, ; 2 1 Ω ; ,
	

1 1
,

	 1

,
	 1 1
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Taking 4 1 2√ , ,

	 / /  and using the condition (3), for 
sufficiently large , we obtain  

 

 sup , ;
/ Ω ; . 

  
We will prove a Voronoskaja type theorem for the operators , ;  with 

∈ ∗ 0,∞ . 
 
Theorem 9: Let ∈ ∗ 0,∞  be a function. If  is two times differentiable at a point 

∈ 0,∞ , with  continuous on  we have  
 

 lim
→ , ; . (30) 

 
If  is two times differentiable on 0,∞ , with  continuous on 0,∞ , we get the 

equality (30) uniformly with respect to ∈ 0, ⊂ 0,∞ , 0.  
 
Proof: Let ∈ ∗ 0,∞  and let ∈ 0,∞  be a point fixed. For ∈ 0,∞ , by using 

Taylor expansion we have  
 

 , , 
 
where , → 0 as →  and , ∈ ∗ 0,∞ . Applying the operator , , we get  
 

 , ; , ; , ;  

                                     , , ; . 
 

Taking into account Remark 2, we reach the following result  
 

 lim
→ , ; lim

→
3 2  (31) 

                                                   lim
→ , , ; . 

 
From Cauchy-Schwarz inequality, we have  
 

 , , ; , , ;
/

, ;
/
. 

 
The properties of the function ,  implies that , 0 and , ∈

∗ 0,∞ . Hence from Theorem 8, we obtain  
 
 lim

→ , , ; , 0, 

 
uniformly with respect to ∈ 0, ⊂ 0,∞ . Hence, by using (11) we get  
 

 lim
→ , , ; 0. 
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Then, from (31) and by using the condition (3), we reach the desired result.  
 
 

6. EXAMPLES 
 
 
Now, we give some numerical examples showing the degree of approximation and 

illustrate the convergence of the operators to a certain function by means of graphics. 
 
Example 1. In Figs. 1-2, for 30,50,150 the convergence of ,  (yellow, green 

and pink in Figure 1, yellow, green and red in Figure 2) to 3/4  (blue) is 
illustrated with the different sequences pairs , ln√ 10 and , 
ln . It is easily seen that as the values of 		  increase, the convergence of , ;  to 

 becomes better. 
 

Figure 1.  For 
na n , ln 10nb n  , the 

convergence 
,

( ; )
n na bD f x  to ( )f x . 

Figure 2. For 
na n , lnnb n , the convergence 

,
( ; )

n na bD f x  to ( )f x . 

 
For 3/4 , ∈ 0,1 , we give the degree of , ;  in term of 

modulus of continuity in the following table. The error bound is smaller while the values of  
increase and it also changes for different  and  sequences. 

 
Table 1. The degree of approximation of , ;  in terms of modulus of continuity. 

n 
error bound for , 

 
error bound for , 

√  
1000 . 1109953430 . 09326718976 
1500 . 1024546745 . 08368864662 
2000 . 09583131158 . 07693160462 
5000 . 07693160462 . 05692206160 
7000 . 06635831382 . 05043469828 
100000 . 02375596746 . 01716194743 
100000 . 008631796320 . 006148873274 
1500000 . 007181537140 . 005109281812 
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