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Abstract. Nonlinear mathematical problems and their solutions attain much attention 

in solitary waves. In soliton theory an efficient tool to attain various types of soliton solution 
is the exp-function technique. Under study article is devoted to find soliton wave solutions of 
fractional fifth order evolution equation via a reliable mathematical technique. By use of 
proposed technique we attain soliton wave solution of various types. The regulation of 
proposed algorithm is demonstrated by consequent analytical results and computational 
work. It is noticed that under discussion technique is user friendly with minimum 
computational work, also we can extend it for physical problems of different nature.   

Keywords: Exp-function technique; travelling wave solution; fractional calculus; fifth 
order evolution equation        
 
 
1. INTRODUCTION  
 

 
In the last few years we have observed an extraordinary progress in soliton theory. 

Solitons have been studied by various mathematician, physicists and engineers for their 
applications in physical phenomena’s. First soliton waves are observed by an engineer John 
Scott Russell. Wide ranges of phenomena in mathematics and physics are modeled by 
differential equations. In nonlinear sciences it is of great importance and interest to explain 
physical models and attain analytical solutions. In the recent past large series of chemical, 
biological, physical singularities are feint by nonlinear partial differential equations. At 
present the prominent and valuable progress are made in the field of physical sciences. The 
great achievement is the development of various techniques to hunt for solitary wave solution 
of differential equations. In nonlinear physical sciences, an essential contribution is of exact 
solutions because of this we can study physical behaviors and discus more features of the 
problem which give direction to more applications.   

At the disruption between chaos, mathematical physics and probability, factional 
calculus and differential equations are rapidly increasing branches of research. For accurate 
clarification of innumerable real-time models of nonlinear occurrence fractional differential 
equations (FDEs) of nonlinear structure have accomplished great notice. Because of its 
recognizable implementation in branch of sciences and engineering it turn out to be a topic of 
great notice for scientists. In many fields such as porous structures dynamical processes in 
self-similar or solute transport and fluid flow,  material viscoelastic theory, bio-sciences,  
control theory of dynamical systems, electromagnetic theory, dynamics of earthquakes, 
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astrophysics, optics, signal processing, chemical physics and so on implementations of 
fractional models [5-8] are beneficially exerted. As a consequence, hypothesis of fractional 
differential equations has shown fast growth [1-8]. 

In the recent past, to solve a nonlinear physical problems Wu and He [9] present a 
well-ordered procedure called exp-function method. The technique under study has 
prospective to deal with the complex nonlinearity of the models with the flexibility. It has 
been used as an effective tool for diversified nonlinear problems arising in mathematical 
physics. Through the study of publication exhibits that exp-function method is extremely 
reliable and has been effective for differential equations. 

After He et al. Mohyud-Din enlarged the exp-function method and used this algorithm 
to find soliton wave solutions of differential equations; Oziz used same technique for Fisher's 
equation; Yusufoglu for MBBN equations; Momani for travelling wave solutions of KdV 
equation of fractional order; Zhu for discrete mKdV lattice and the Hybrid-Lattice system; 
Kudryashov for soliton solutions of the generalized evolution equations arising in wave 
dynamics ;Wu et al. for the expansion of compaction-like solitary and periodic solutions; 
Zhang for high-dimensional nonlinear differential equations, see the references [10-34]. It is 
to be noticed that after applying under study technique i.e. exp-function method to any 
nonlinear ordinary differential equation Ebaid proved that fe  and rs  are the only 
relations of the variables that can be acquired [25]. 

This article is keen to the soliton like solutions of nonlinear fractional fifth order 
evolution equation [32] by applying a novel technique. The applications of under study 
nonlinear equation are very vast in different areas of physical sciences and engineering. 
Additionally, such type of equation found in different physical phenomenon related to fluid 
mechanic, astrophysics, solid state physics, chemical kinematics, ion acoustic waves in 
plasma, nonlinear optics, control and optimization theory etc.  

 
 

2. PRELIMINARIES AND NOTATION 
 
 
Some important results of fractional calculus are discussed in under study section. The 

fractional integral and derivatives defined on  ba,  are given below: 
 
Definition 1. A real function   ,0, xxf is said to be in the space ,, RC  If there 

exists a real number  p such that    ,1 xfxxf p where     ,01 Cxf  and it is said to 

be in the space  
mC  if ., NmCf m    

 
 Definition 2. The Riemann-Liouville fractional integral operator of order 0 of a 

function ,1,  Cf is defined as 
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Some properties of the operator aJ  are discussed in the following 
 
For 0,,,1,  Cf and 1   
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There arise some demerits of Riemann-Liouville derivative when we apply it to model 
real world problems in the form of fractional differential equations. There is a need to 
overcome this deficiency. For this M. Caputo introduce modified version of fractional 
differential operator which we used in our article. 

 
Definition 3. Caputo time fractional derivative operator is defined below, for the 

smallest integer n that exceeds. 
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Chain rule  
 
In this segment we used a complex fractional transformation to convert differential 

equation of fractional order into classical differential equation. We apply the following chain 
rule  
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It is a Jumarie's modification of Riemann-Liouville derivative. There are few results, 

which are very important and useful  
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The value of s is determined by assuming a special case given below       

  
tq  and nqw    

We have 
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Thus we can calculate q  as 
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Other fractional indexes  zyx   ,, can determine in similar way. Li  and  He [2-8] 

proposed  following  fractional  complex  transform  for converting  fractional  differential  
equations  into  ordinary differential  equations,  so  that  all  analytical  methods  for 
advanced calculus can be easily applied to fractional calculus.  
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Where ,k  and M  are constants.   
 
 
3. ANALYSIS OF TECHNIQUE 
 
 
 
             We suppose the nonlinear FPDE of the form  
 

.10,0,.....),,,,,,,(   wDwDwDwwwwQ xxxtxxxt                                                        (5) 

 
Where wDwDwD xxxt

 ,, are the modified Riemann-Liouville derivative of w  with respect to t

and x   respectively. 
 Invoking the transformation 
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Here ,k  and M are all constants. 
 We can write equation (5) again in the form of following nonlinear ODE    
 

.0),,,,(  wwwwQ                                                                                                             (7) 
 
Where prime signify the derivative of w with respect to . In proportion to Exp-function 
method, we suppose that the wave solution can be written in the form given below 
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Where ers ,,   and f are positive integers which we have to find, mb  and na are unknown 

constants. We can write equation (8) again in the following equivalent form 
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 This equivalent transformation plays a fundamental and important part to solve the 
problem for analytical solution. To find the value of s and r by using [25], we have 

 
., fres   

 
 
4. APPLICATIONS OF THE TECHNIQUE 
 
 
 Exp-function technique is applied to attain soliton wave solutions of fifth order 
fractional evolution equation [32]. The obtained results are very efficient and encouraging. 
 Consider the following fractional partial differential equation  
 

.0))((4)()(3  xxtxxxtxxxxtt wDwwDwDwD                                                                (10) 

 
 Using (6) equation (10) can be converted into an ODE of the form 
 

.04 32)(43  wwkwkwkw v                                                                          (11) 
 
Where prime signify the derivative w.r.t . Equation (9) is the expressed solution of the 
equation (11) .To find the value of r and s , by using [25] 
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Case 1. We can frequently select the parameters r and s , for directness, we set 1 es and

1 fr equation (9) becomes  
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 Using equation (12) into equation (11), we have 
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Where 4

101 ))exp()exp((   aaaB , ic  are constants whose values are attained by 

Maple 16. By equalizing the coefficients of )exp( m  to zero, we attain 
 

.4,3,2,1,0,0  jl j                                                                                                        (13) 

 
 The given equation (10) is satisfied by following solution sets. 
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 The attain generalized soliton solution ),( txw  is given as, 
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Figure 1a. 2D and 3D representation of solution for β=0.25. 

 

 
Figure 1b. 2D and 3D representation of solution for β=0.50.  

 

 
Figure 1c. 2D and 3D representation of solution for β=0.75.  
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Figure 1d. 2D and 3D representation of solution for β=1.  

 
2nd solution set 
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 We attain soliton solution ),( txw  as, 
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Figure 2a. 2D and 3D representation of solution for β=0.25.  

 

 
Figure 2b. 2D and 3D representation of solution for β=0.50.  
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Figure 2c. 2D and 3D representation of solution for β=0.75.  

 
Figure 2d. 2D and 3D representation of solution for β=1.  

 
3rd Solution set 
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Figure 3a. 2D and 3D representation of solution for β=0.25.  

 
Figure 3b. 2D and 3D representation of solution for β=0.50.  

 
Figure 3c. 2D and 3D representation of solution for β=0.75.  



Travelling wave solutions of …                                                                                               Kamran Ayub et al. 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

920

 
Figure 3d. 2D and 3D representation of solution for β=1.  

 
4th Solution set 
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 We obtained the following generalized solitary solution ),( txw   
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Figure 4a. 2D and 3D representation of solution for β=0.25.  



Travelling wave solutions of …                                                                                               Kamran Ayub et al. 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

921

 
Figure 4b. 2D and 3D representation of solution for β=0.50.  

 
Figure 4c. 2D and 3D representation of solution for β=0.75. 

 
Figure 4d. 2D and 3D representation of solution for β=1. 

 
Case II.  By setting 2 es and 1 fr  the trial solution takes the form  
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Proceeding as earlier, we attain  
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5th solution set 
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 We attain the solution  txw ,  as, 
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Figure 5a. 2D and 3D representation of solution for β=0.25. 

 
Figure 5b. 2D and 3D representation of solution for β=0.50. 

 
Figure 5c. 2D and 3D representation of solution for β=0.75. 
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Figure 5d. 2D and 3D representation of solution for β=1. 

 
 
5. RESULTS AND DISCUSSION   
 
 
 From the above figures we note that soliton is a wave which preserves its shape after it 
collides with another wave of the same kind. By solving nonlinear fractional fifth order 
evolution equation, we attain desired kink wave solutions for 1t  and different value of   
such as 0.25, 0.5, 0.75 and 1. The solitary wave moves toward right if the velocity is positive 
or left directions if the velocity is negative and the amplitudes and velocities are controlled by 
various parameters. Solitary waves show more complicated behaviors which are controlled by 
various parameters. Figures signify graphical representation for different values of 
parameters. In both cases, for various values of parameters sfe ,, and r we attain identical 
solitary wave solutions which obviously comprehend that final solution does not effectively 
based upon these parameters. So we can choose arbitrary values of such parameters. Since the 
solutions depend on arbitrary functions, we choose different parameters as input to our 
simulations.     
 
 
6. CONCLUSION 
 
 

This article is devoted to attain, test and analyze the novel soliton wave solutions and 
physical properties of nonlinear partial differential equation. For this, fractional order 
nonlinear evolution equation is considered and we apply Exp function method. We attain 
desired soliton solutions of various types for different values of parameters. It is guaranteed 
the accuracy of the attain results by backward substitution into the original equation with 
Maple 16. The scheming procedure of this method is simplest, straight and productive. We 
observed that the under study technique is more reliable and have minimum computational 
task, so widely applicable. In precise we can say this method is quite competent and much 
operative for evaluating exact solution of NLEEs. The validity of given algorithm is totally 
hold up with the help of the computational work, the graphical representations and successive 
results. Results obtained by this method are very encouraging and reliable for solving any 
other type of NLEEs. The graphical representations clearly indicate the solitary solutions.   
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