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Abstract. In this paper, we deal with a q-Dirac system. We investigate some spectral
properties and the asymptotic behavior of the eigenvalues and the eigenfunctions of this q-
Dirac system.
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1. INTRODUCTION

We consider a qg-Dirac system which consists of the system of q-differential
equations

Dt (0+ POOY:(X) = 4 (1) o
D3, (4) 1 (3) e (X) = 252 ).

and the boundary conditions
B.(y)=k,Y,(0)+k,Y,(0)=0, )
B,(y)=kxY:(a)+kyY,(aq™)=0, ©)

where kij(i,j:1,2) are real numbers, A is a complex -eigenvalue parameter,

X
y(x):{yl(( ))] 0<x<a<o, p(x) and r(x)are real-valued functions defined on [0,a]
Yo (X
and continuous at zero and p(x),r(x)e L, (0,a) (see[1]).
In [1], the authors introduced a q-analog of one-dimensonal Dirac equation (1) and

they investigated the existence and uniqueness of the solution of this equation and also gave
some spectral properties of the problem (1)-(3). Dissipative, accumulative, self-adjoint for the
same q-Dirac equation were described in [2].

In this paper, we study similar spectral properties and obtain the asymptotic formulas
of the eigenvalues and the eigenfunctions of the problem (1)-(3) in the light of the theory of g

-(basic) Sturm-Liouville problems [3, 4].
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2. PRELIMINARIES

In this section we introduce some of the required g-notations and results. Throughout
this paper q is a positive number with 0 <q <1.

A set Ac R is called g-geometric if, for every xe A, gxe A. Let f be a real or
complex-valued function defined on a q-geometric set A. The q-difference operator is
defined by

qu(X):ZW’HO' (4)

If 0 A, the q-derivative at zero is defined to be

f(xa")- f(0)

n

D, f (0):=lim

XeA, 5
4 n—o0 Xq ( )

if the limit exists and does not depend on x. Also, for x e A, Dq,l is defined to be

f(x)-f(a7)
D..f(x):= x(1-q7)
D, f(0), x=0,

q

, A\{0t,
x e A\{0} ©)

provided that qu(O) exists. The following relation can be verified directly from the
definition
D,y (%) =(Byy)(xa™): 0

A right inverse, q-integration, of the q-difference operator D, is defined by Jackson [5] as

0

If(t)dqt::x(l—q)Zq”f(xq”), Xe A (8)

n=0

provided that the series converges. A g-analog of the fundamental theorem of calculus is
given by

X

qu f(t)dt="f(x), [D,f(t)dt="(x)~limf(xq"), 9)

n—o0
0

where Iimf(xq”) can be replaced by f(O) if f is g-regular at zero, that is, if

n—oo

lim f (xq“): f (0) for all xe A. Throughout this paper, we deal only with functions q-

regular at zero.
The qg-type product formula is given by
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D, (fa)(x)=9(x) B f (x)+ f (ax) D,g (x), (10)

and hence the g-integration by parts is given by

a

jlg(x)qu (x)dx=(fg)(a)-(fg)(0)-[D,g(x) f (ax)d,x, (11)

0

where f and g are q-regular at zero.

For more results and properties in g -calculus, readers are referred to the recent works
[6-9].

The basic trigonometric functions cos(z;q) and sin(z;q) are defined on C by

n 2 2n
0 — n 1_
cos(z;q): Z (2(2-9)) , (12)
n=0 ’q)Zn
w (_ nqn n+1)( (1_q))2n+1
sin(z;q): : (13)
nZ (99),..
and they are -analogs of the cosine and sine functions [7, 10, 11].
Theorem 2.1. ([12]) If {x,} and {y,,} are the positive zeros of cos(z;q) and sin(z;q),
respectively, then we have for sufficiently large m,
{X,}=q ™2 (1—q)’1(1+o(qm)), (14)
{Yn}=a"(1-0q)" (1+0(a")). (15)

Corollary 2.1. ([12, Corollaries 3.2 and 3.4]) For r :=|z| — o« we have

M (r;cos(z;q)):o[exp[MU, (16)

logq

M (r;sin(z;q))o[exp[—wﬂ. (17)

logq

3. SPECTRAL PROPERTIES AND ASYMPTOTIC FORMULAS

In this section we give some spectral properties similar to [1, 13], then we obtain
asymptotic formulas for the eigenvalues and the eigenfunctions of the problem (1)-(3).
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Lemma 3.1. The eigenfunctions y(x, 4 )and z(x,4,)corresponding to different eigenvalues
A, # A, are orthogonal, i.e.,

Iydeqx:j{yl(x,ﬂl)zl(x,ﬂz)+ Y, (% 4) 2, (% 4,)}dx =0, (18)
0 0
where y* =(y,,Y,), + denotes the matrix transpose.

Proof. Since y(x, 4 )and z(x,4,) are solutions of the g-system (1),

——Dlvz {P(X) =4}y, =0,
DYy +{r(x) =4}y, =0,
——D122+{p(x
)-

,é)

)=}z =0,
Dz+{r(x A}z,=0.

Multiplying by z,, z,,—y, and -y, , respectively, and adding together and also using
the formulas (7) and (10), we obtain

D, (yl(x’ﬂﬂ)zz(xq_l’ﬂ’?)_ yz(xq_l’ﬂl)zl(x’%))

(19)
=(4=A){% (% A) 2 (X A) + Y, (% A4) 2, (X 4,)}-

Applying the q-integration to (19), we have

(h=%)

O ey

V(XA 2(% A X = {1 (6 2) 2 (X0 2) =y, (™ &)z (X &) (20)

It follows from the boundary conditions (2) and (3) the right hand side vanishes.
Therefore, we get

TyL 2,)dx=0. (21)

The lemma is thus proved, since 4, # 4, . m

Lemma 3.2. The eigenvalues of the problem (1)-(3) are real.

Proof. Assume the contrary that A,is a nonreal eigenvalue of the problem (1)-(3). Let

y(x,ﬂn) be a corresponding (nontrivial) eigenfunction. A4, is also an eigenvalue,

corresponding to the eigenfunction y(x,ﬂn) . Since 4, # /‘t_o by the previous lemma,
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& 2 2
J(Iys O 20)f [y (3,2 Jtox =0 22)
0

Hence y(x,ﬂo) =0 and this is a contradiction. Consequently, A, must be real. O

Now, we will construct a special system of solution of q-system (1). Let
WA
¢(x,/1):(zl(( ;)J be a solution of the q-system (1) that satisfies the initial conditions
2\

¢1(0’/1):k12’ , (O’i):_kll- (23)

The existence and uniqueness of this solution for the g-system (1) were presented in [1]. It is
obvious that ¢(x, 4) satisfies the boundary condition (2).

Theorem 3.1. The following integral equations hold for the solution of ¢(x,ﬂ)

¢, (X, A) =k, cos(Ax;q) -k, sin(1x;q)

+q_x[{sin(}tx;q)cos(/lqt;q)—cos(}tx;q)sin(/lqt;q)} p(qt)s (at, 2)dt (24)
_-X[{cos(ﬁx;q)cos(ﬂ\/at;q) \fsm A%;q) sm(ﬂft q)} )&, (t,A)d,t
& (X, A) =k, qsin(ﬂ\/ax;q)—kllcos(l\/ax;q)
+qjx'{cos(/l\/ax;q)cos(/lqt;qﬁ qsin(/l\/ax;q)sin(/lqt;q)}p(qt)¢1(qt,/1)dqt (25)
+\ﬁj{sin(ﬂ\/ax;q)cos(/1\/at;q) cos( A/ax; q)sm(l\ft q)} )¢, (1, A)d,t
Proof. Let us construct two solutions of the q-system (1) as
) P (X 2) ) cos(Ax;q) ) P (X, 1) ) sin(4x;q)
(01("/1)L(plz(x,/l)J{\/asin(ﬂ\/ax;q)}%(”ﬂ)((/)zz(x,/l)]{cos(i\/ax;q)]' 20
for p(x)=r(x)=0, with the g-Wronskian

W (01,0,)(XA) = @y (%, 4) 0 (X0, 1) = 0y (%, 2) @, (a7, 2 ) =1. (27)

The function
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c,cos(Ax;q)+c,sin(Ax;q
w(xﬂ)}_[ (26:0)+ ¢;sin(4x:0) 29)

s qsin(ﬂ\/ax;q)mzcos(/lﬁx;q) '

is a fundamental set of the g-system (1) for p(x)=r(x)=0. Using q-analogue of the
method of variation of constants, a particular solution of the q-system (1) may be given by

¥, (X, 4) =c¢,(x)cos(Ax;q)+c,(x)sin(Ax;q),
29
Y, (% A4)= —cl(x)\/asin(;t\ﬁx; q)+c2 (x)cos(/l\/ax; Q). (@9)
Hence the functions c; (x)(i=1,2) satisfy the q-linear system of equations
cos(/lx;q)Dq,lcl(x)+sin(/1x;q)Dq,lcz(x):—r(xqfl)yz(xqfl,/l), 0
30
Jasin(4g™x;q) D_..c, (X)—cos(2q™*x,) D .c, (X) =—ap(X) 1 (%, 2).

Since the equality (27) satisfies, then (30) has a unique solution which leads

D,.c,(x)=-r(xq*)cos(A4a*x;q) y, (xa™*, 2)-ap(x)sin (2x:q) y, (%, 4), a

D_.c,(x)=ap(x)cos(Ax;q)y,(x,A)—- r(xq’l)\/asin(/?,q’“zx;q) Y, (xq’l,/i).

aq

Using the formula (7) and replacing x by xqin (31), then we obtain

¢ (x)=c, —qj p(qt)sin(Aqt;q)y,(at,2)d,t —Ir(t)cos(ﬂ\/at;q) Y, (t,A)dt,
0 0 (32)

c,(x)=c,+ q'xf p(qt)cos(Aat;q)y,(qt,2)d,t —'X[r(t)\/asin(ﬂ\/at;q) Y, (t,4)d,t,

when ¢, (x)(i=1,2) are qg-regular at zero (here c,:=c,(0),c, =c,(0)). That is the general
yl(x’ﬂ’)

solution y(x,4) = [yz (x.1)

] of the g-system (1) is obtained to be

Y, (X, 4) =c¢,cos(Ax;q)+c,sin(Ax;q)

+qi{sin(ﬂx;q)cos(ﬂqt;q)—cos(/lx;q)sin(/lqt;q)} p(qt)y,(at,A)d,t (33)

{cos(ﬂx;q)cos(ﬂ\/at;q)+\/Esin(ﬂx;q)sin(/i\/at;q)} r(t)y,(t,4)dgt,

O Gy <
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) ==cfasin(2ax;q)+c, cos( A4/ax;q)
+ qjx'{cos(i\/ax;q)cos(/lqt;q)+\/asin(/1\/ax; q)sin(/lqt;q)} p(at)y,(qt,2)d,t (34)

+\/_I{sm(}t\/_x q)cos(/i\/_t q) cos(2,/ax; q)sm(/l\/_t q)} )Y, (t,2)d,t.

It is easy to determine c,,c, for which ¢(x,/‘t)satisfies the q-system (1) and the conditions
(23), then we obtain (24) and (25). O

Theorem 3.2. As || — oo, the function ¢#(x, 1) has the following asymptotic relations

@ (X, A) =k, oS (A%;q) -k, sin (Ax; q)+0£|/1|1 exp((log|f(|);<glq)) J] (35)

A)= —klz\/asin(z\/ax;q)— Ky COS(/'L\/EX;Q)

‘0 |z|lex[ (log| 0" (1- ‘WJ <

logq

where for each x €(0,a] the O-terms are uniform on {xq": neN}.

Proof. Similar to asymptotic relations for q-Sturm-Liouville problems in [4] and from
Corollary (2.1), (35) and (36) can be obtained easily. O

Lemma 3.3. The eigenvalues of the problem (1)-(3) are simple.

Proof. The solution ¢(x,/1)defined above is a nontrivial solution of the q-system (1)

satisfying the boundary condition (2). To find the eigenvalues of the problem (1)-(3), we have
to insert this function into the boundary condition (3) and find the roots of the obtained

equation. So, putting the function ¢(x,/1) into the boundary condition (3) we get the
following equation

A(2)=Kouth (8, 2) +Kyoth, (207, 2). (37)

dA(ﬂ’):k a¢1(a’/1)+k 8¢2(aq‘1,2)

Then
da 262 2 oA

. Let 4, be a double eigenvalue, and ¢°(x, 4,)

dA
one of the corresponding eigenfunctions. Then the conditions A(ﬂo) =0, # =0 should

be fulfilled simultaneously, i.e.,
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K" (2120 ) + Kooty (807 2 ) = 0,

0 ,o O 0t _
k=4 (2, 20) ko " (a7, ) =0,

(38)

Since k,,and k,, cannot vanish simultaneously, it follows from (38) that

04, (aq™, &)
oA

—¢2°(aq-1,io)M=0- (39)

4 (a.k) ”

Now, differentiating the q-system (1) with respect to A, we obtain

1p (Y I
qul(aﬂj-i_{p(x) l}ﬁﬂ, Yir

D, (%}L{r(x)—/i}%: Y,

(40)

M ¥,
oA 04
together and integrating with respect to x from Oand a, we obtain

Multiplying the g-system (1) and (40) by ,—Y, and —vy,, respectively, adding them

{yz (xq‘l,ﬂ)%_ yl(x,/l)W} - I{yl2 (X, A)+Y," (x,/l)}dqx. (41)

Putting 4 =4,, taking into account that =0, and using the

x=0

04’ (% 0)|  _ 04 (%)
oA oA

x=0
equality (39), we obtain the relation

i (8 (020)) +(8° (02)) Jdpx=0. (42)

Hence ¢°(x 4))=4,"(X 4)=0, which is impossible. Consequently 2, must be a simple
eigenvalue. O

Theorem 3.3. As |/1| — oo the function A(/i) has the following asymptotic relation

A(A) =k, <k, cos(Aa;q)— kllsin(ﬂa;q)+o{|/1|1 eXp[—(log|}t|a(l—q))z ﬂ}

logq

—(log|2|ag ™ (1-q))’
+k,, klz\/asin(iq”za;q)kllcos(lq”Za;q)+o[|g|lexp[ (log| |T:gq( 9)) N .

(43)
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Proof. The proof is immediate by substituting (35) and (36) into the relation
A(2) =K (a,2)+ k22¢2(aq-1’/1). i

Theorem 3.4. The eigenvalues {4} are the zeros of A(4) has the following asymptotic
relationsas m — oo :

Case 1. k, #0,k;, =0;

i) A, = q(l_q)(1+o(qm’2)), Ky, =0, (44)

i) 1 = aq(lmf:)(uo(qm)), Ky, =0, (45)
Case 2. ky, =0,k #0;

)4 zac(*l_—:)(uo(qm)), k,, =0, (46)

Dy a((i__mq)(uo(qm)), k,, =0. (47)

Proof. Similar to asymptotic relation for q-Sturm-Liouville problems [4] and from Theorem
2.1, the asymptotic relations (44)-(47) can be obtained easily. O

Then from (35) and (36) and above theorem, the asymptotic relations of the
eigenfunctions of the problem (1)-(3) is given by

Case 1. k, #0,k, =0;

logq

. cos(imx;q)+0{|im|lexp{(Iog|lm|x(1q))2 B

logq

—(1oala la¥2x (1= 2
-k, C]Sin(/lm\/ax;q)_,_o |ﬂm|lexp{ (Og| m|q X( q)) } ’
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Case 2. k, =0,k;, #0;

¢(X’ﬂm)=(¢l(x,ﬂm)]

¢, (% Ay)

_ | 1— 2
_knsin(ﬂm)(;Q)-l-O |/1m|1exp[ (09|ﬁ;:)|gx(§ CI)) ] )

—(Iog|/1m|q1’2x(1—q))2
logq

_kncos(}tm\/ax;q)+o |2,| " exp
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