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Abstract. Fuzzification of multilayer perceptron is proposed using generalized fuzzy 

numbers and an extension for the activation function of fuzzy neurons. All the operations take 

place in the generalized fuzzy numbers framework using the function principle. A new 

learning based on gradient methods is proposed and experimental results are also presented 
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1. INTRODUCTION  

 

 

Fuzzy numbers (FN), triangular fuzzy numbers (TFN), trapezoidal fuzzy numbers 

(TrFN) and applications are subject to intensive research. Definition of FNs with various 

shapes (symmetric-triangular, triangular, trapezoidal, Cauchy, exponential) along with basic 

operations are dealt with in many papers [1, 2].  Basic operations in a fuzzy framework, that is 

addition, subtraction, multiplication and division, can produce a FN with a modified shape. It 

is known that multiplication of two TFNs or multiplication of two TrFN have as result a FN 

with modified shape. In order to better approximate the results, the solution usually proposed 

is to make operations at each level of -cut [2]. 

There are many learning algorithms, some of them based on gradient methods, which 

approximate iteratively the parameters used by fuzzy neural networks (FNNs). Fuzzification 

is used for various parameters: weights, inputs, outputs, operations etc. [3, 4]. Very few 

papers deal with complete fuzzification of fuzzy neural networks: parameters, variables and 

operations [5-7]. One important question is the convergence of the learning algorithm. The 

gradient method applied to error minimization for crisp neural networks extended to FNNs 

generally guarantees a local minima but it is not sure that this point is also a global minima. 

There are various techniques available to overcome this drawback, especially the back 

propagation algorithm [8]. Another question is whether fuzzy neural networks can 

approximate any arbitrary continuous fuzzy functions. The general response is affirmative [9, 

10]. 

All FNNs in various architectures use FNs. To the best of our knowledge, no FNNs 

with generalized fuzzy numbers (GFNs) have been proposed yet. There are many papers that 

deal with GFNs [11-13], but very few applications in which GFNs play an important role. A 

solution to solve transportation problem in a given fuzzy environment is proposed in [13].  
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The cost of transportation costs is calculate using generalized trapezoidal fuzzy 

numbers (GTN) and an algorithm that minimize the cost of transportation with restrictions 

(constraints) is proposed in [13]. An interesting subject of research is fuzzy linear systems 

(especially when are used TrFN) [14]. The matrix pf coefficient that describes the system is 

partitioned into submatrices having TrFN matrices [14].  

We suggest the use of FNNs that have fuzzy neurons and all the arithmetic operations 

in these FNNs are part of the generalized trapezoidal number framework. 

 

 

2. MATERIALS AND METHODS 

 

 

2.1. GENERALIYED FUZZY NUMBERS AND FUNCTION PRINCIPLE 

 

 

A generalized fuzzy number (GFN) is a fuzzy set A
~

on  and its membership 
)(

~
xA



satisfies the following conditions: 

 

1. Any -level set of A
~

 denoted by A={x|  
)(

~
xA

} is a closed interval; 

 

2. Rx , such as w
xA


)(
~ . 

 

According to [9, 10], a trapezoidal generalized fuzzy number (TGFN) can be 

represented by 5-uple );,,,(
~

hdcbaA  , where we have the relations .dcba   If h = 1, 

we are in the traditional fuzzy number framework and the operations with these TFNs are 

mentioned in [1-5]. In a particular case, when b = c, conduct to a triangular generalized fuzzy 

number (TrGFN) and arithmetic operations [8, 9] proposed for TGFN are simplified. 

Let’s denote by );,,,(
~

111111 hdcbaA   and );,,,(
~

222222 hdcbaA  two TGFNs, and 

},{  the classic arithmetic operations addition and subtraction between two real numbers 

and }~,{
~

  the corresponding operations using function principle [9, 10]). The basic 

arithmetic operations between two TGFNs using the function principle are described in eq. 

(1)-(5) [9, 10]).  

 

);,,,();,,,();,,,(
~~~~

222221111121 hdcbahdcbahdcbaAAB             (1) 

 

),min(,,,,, 212121212121 hhhaaaaaaaacbbbaaa           (2) 

 

The multiplication and division between two GFNs have a different formalism. The 

multiplication between two GTFNs is given by (Fig. 1): 

 

)),min(;,,,();,,,();,,,(
~~~

21222221111121 hhdcbahdcbahdcbaAAB            (3) 

  

where 
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                (4) 

 

dcbadcbadcba  ,, 22221111                                     (5) 

 

The division between two GFNs is as shown in [9, 10], but this operation is not 

involved in fuzzification of proposed neural network.  Let’s denote by );,,,(
~

hdcbaA   a 

TGFN. In case all numbers {a, b, c, d} are positive, the equations (4)-(5) can be written in a 

simplified form. 
 

 
 

Figure 1. Multiplication of two GTFNs. 

 

In order to prevent an undesirable occurrence (e.g. b1<a1), the relation (5) must be 

satisfied in any update of the parameters of );,,,(
~

hdcbaA   with a quantity x  {a, b, 

c, d}. Practically, operations from eq. 4 (Fig. 1) are operations on corresponding intervals 

(Fig. 2) denoted by: ],[],[ RL XXbaX  . 

 

 
 

Figure 2.  Interval operation involved in multiplication of two GTFNs 

 

The sum between two TGFNs (positive or negative values) using the function 

principle is given by (1)-(2): 

 

)),min(;,,,();,,,();,,,(
~~~

21222221111121 hhdcbahdcbahdcbaAAB                           (6) 
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We can consider the operations described in eq. (2)-(3) as operations on two intervals: 

[a, d] = [a1, d1] [a2, d2] and [b, c] = [b1, c1] [b2, c2] with respect to relation (4). This remark 

will be used in developing a learning algorithm for fully fuzzified neural networks in which 

all the elements and arithmetic operations are in the GFN framework.  

 

 

2.2. FUZZY NEURAL NETWOFK WITH GENERALIZED FUZZY NUMBERS (FNN-GFNs) 

 

 

We suggest the use of the multilayer perceptron (MLP) architecture for FNN-GFNs in 

a generalized fuzzy number framework (Figure 3). All the variables are TGFNs and all the 

operations are made according to eq. (1)-(5). Each fuzzy neuron (Fig. 4) has two functions of 

transfer suggesting a tri-dimensional transfer function based on two functions: )(X where 

X are two intervals corresponding to a GTFN that is ad and bc ; a function (h) used to 

transfer the “level” of GTFN.  

It is clearly that due to min operation between levels of two GTFNs (h1 and h2), no 

further arithmetic operation can produce a value h>min (h1, h2) in basic arithmetic operations 

with other h levels. We introduced the (h) function that can be considered a function that 

can modify the “energy” level (h) of a GTFN. In equation (9),  plays the role of threshold 

from the known formula (8). 
 







xe
x

1

1
)(                          (8)

  







xe
x

1

1
)(                        (9)  

 

 

 

The architecture of 

the proposed FNN-GFNs is 

showed in Fig. 3, the fuzzy 

neuron is described in Fig. 

4 and the activation 

function for mapping 

intervals in Fig. 5. This 

mapping is similar to the 

approach presented in [5, 6, 

15, 16]. 

 

 
Figure 3. The FNN-GFNs architecture. 
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Figure 4. The proposed fuzzy neuron. 

 

 

 

 
 

Figure 5. Fuzzy activation function for the fuzzy neuron. 

 

 

 
 

Figure 6. Fuzzy activation function for w values and influence of threshold parameter . 

 

All arithmetic operations in FNN-GFNs are made using TGFN and equations (1)-(5) 

we denote by y the output nodes and by x the internal or input nodes. 

 

))~(),~((~)),~(),~((~ k
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A fuzzy weight k

ijw~  is a weight that connects the i
th

 fuzzy neuron from layer k with the 

j
th

 neuron from layer k-1. The input signal that is made by a vector of GTFM propagates 

simultaneously through each layer of neurons similar to the crisp multilayer perceptron [16]. 

 

 

2.3. THE LEARNING ALGORITHM BASED ON GRADIENT METHOD 

 

 

In order to develop a learning algorithm for FNN-GFNs, a cost error must be defined. 

The cost error from crisp case [17] is extended to the fuzzy case [6, 7, 15, 16].  

 



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n
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i

h

i

n

dcbari

r

i

r

ihr

n

i

itotal ydydEEeE
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,,,,1

2 )(2/1)(2/12/1                              (13) 

 

Since the h parameter is not related to {a, b, c, d} parameters, we can split the Etotal in 

two: parts Er and Eh. If we look at equation (4), (7) we can also split the Er in two disjoint 

parts with corresponding intervals: 
ab

E  and 
cd

E that can be treated in a similar manner as 

relation (5). Let’s denote by p{a, b, c, d, h} a parameter that must be update in order to 

minimize to total output error Etotal. Using the gradient method, the parameters p must be 

updated by: 

 

)()()1( tptptp                                         (14) 

 

p

tE
tp total






)(
)(                                                                                                             (15) 

 

In order to simplify the formulas, the parameter t (time) is omitted from notations. 

There are two parameters to be updated: the fuzzy weights and threshold . Let’s discuss the 

update of fuzzy weights. As far as the output layer is concerned, we can write (in a similar 

manner as in [16]). The signal is propagated through feed forward neuronal network, while 

the error is propagated backwards through the network (back propagation algorithm). 
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Because min and max operators are not derivable, the last partial derivative in equation 

(15) is difficult to calculate so we must find a technique that overcomes this difficulty. Few 

techniques for interval adaptation are presented in [5-7, 15, 16]. A more accurate technique is 

presented below. Let’s denote by X=[XL, XR] an interval of real numbers [16], where (XL, 

XR) is one of the pairs (a, d) or (b,c).  
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In a similar manner for right value of the interval: 
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Finally, if we develop the eq. (15)-(16) we obtain the relations (q {L,R}) taking into 

account that for the sigmoidal function )](1[)()(/)( xxxxx   . 
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The next stage is to calculate the adaptation for second transfer function (x, ). The 

same method as in back propagation is applied here. The learning coefficient (0, 1) has the 

same meaning as in [16]. Sometimes, >1 if the convergence of the algorithm is too slow. 

 

k

i

h

i

h

i

h

i

h

ik

i

ih

i

h

i

h

i

h

ik

i

k

i

k

i

i

i

i

h

k

i

total hyyyd
y

yyyd
h

y

e

e

EE
)1()()1()(

),(































      (24) 

 



A proposal for Fuzzy neural network…                                                                          Dragos Arotaritei et al.                                                                    

 

www.josa.ro                                                                                                                                                           Physics Section  

772 

},{},min{ ,, rk

i

rk

ij

j

k

j

k

i xwjhh                    (25) 

 

For input hidden layers, the formula above becomes as in (22) with missing w term. 

However, even the adaptive solution proposed above has developed in order to have balanced 

values for  in all the fuzzy neurons, in all the layers an unbalanced exact solution can be 

developed.  

Let’s set all the  values to 0.5 e.g. for all the neurons in all the layers except the 

output layer. For each neuron in the output layer we will have an input hi (0, 1] value in the 

normalized case.  Let’s suppose that we have to obtain an output value )1,0(h

id , where the 

limit of interval to value “1” is approximated to a given tolerance. Then, i   is given by: 
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The algorithm can be summarized as follows: 

  

Step 1. Initialize the fuzzy weights with random GTFN. Set all the h values of weights 

and neurons to 0.5. 

 

Step 2. Feed forward input signal to output. 

 

Step 3. Estimate qk

ijw ,  by back propagation of error according to formulas (21)-(22)  

 

Step 4. Update each weight only if condition (5) is satisfied. If this condition is not 

satisfied, the weight remains unchanged.  

 

Step 5. Compute the total error Er, eq. (13). If Er is smaller than a desired value or the 

number of iterations has reached a prescribed number, go to Step. 6, otherwise 

go to Step 2. 

 

Step 6. Compute the exact values for hi in the output layer. 

 

Step 7. Stop the algorithm 

 

 

3. RESULTS AND DISCUSSION 

 

 

The proposed FNN with GTFN and the proposed algorithm has been tested in 

mapping a vector of GTFN into another vector of GTFN. We have chosen architecture with 4 

inputs, 5 neurons in hidden layer and 3 neurons in output layer (targets). The learning factor 

=0.54 has been chosen experimentally. The maximum iteration number was set to 250. The 

results of good performance are showed in Table 1. 
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Table 1. Input/Output mapping of two vectors of GTFN. 

 

Inputs (-0.2,-0.1, 0.1, 0.3) (0.2, 0.3, 0.1, 0.4) (-0.2,0.4, 0.7, 0.7) (-0.5,-0.1, 0.7, 0.9) 

Target (0.2, 0.3, 0.5, 0.9) (0.2, 0.3, 0.5, 0.3) (0.2, 0.3, 0.5, 0.8)  

Output (0.1998, 0.3002, 0.502, 

0.9) 

(0.2015, 0.300, 0.5001, 

0.3) 

(0.2000, 0.3001, 0.4999, 

0.8) 

 

 

The proposed algorithm is applicable not only to positive GTFN but also to negative 

values of the tuple {a, b, c, d} (one or more values in the tuple).  Another solution to deal with 

negative values is one inspired from crisp neural networks. We can map (or translate) the 

input interval into a convenient interval for all the values and, after training, the values are re-

mapped into initial interval. The same line of thinking is applied to output values.  

The function  can also have other forms, the activation function for crisp fuzzy 

neuron. A particular interest is a linear limited one [16]. This is much more suitable for 

calculating i values, especially for prediction usage of FNN. In this case, however, the 

computation by direct calculation of i is not suitable and an adaptive form is necessary to 

make a tradeoff among desired hi values of output during the trajectory of desired vectors of 

GTFN. 

 

 

4. CONCLUSION 

 

 

Fuzzification of multilayer perceptron is proposed using TGFN and an extension for 

activation function of fuzzy neurons. The proposed method is proven to be feasible in an 

example of mapping input-output vectors of GTFN of different dimensions. The results are 

very good, the maximum total error is below 0.410
-2

 in the worst-case scenario.                         

A learning algorithm for (x,) will be developed in further research.  The new parameter  

for each fuzzy neuron will be adapted using a gradient method. It is supposed that the new 

parameter can improve the accuracy of the proposed algorithm 
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