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Abstract. In this study, using Darboux vector of an isotropic curve given by Şemin in 

[1], we give a characterization of isotropic Darboux helices in the complex space 3C . We 

show that an isotropic curve to be a Darboux helix has to have a constant pseudo curvature. 

We obtain the position vector of a nonzero fixed direction .U  Then we give some 

characterizations related to the main theorem. 
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1. INTRODUCTION  
 

 

E. Cartan introduced the imaginary curves in the complex space. He defined the 

moving frame of an imaginary curve and its special equations in C
3
 [2]. Şemin had mentioned 

about complex elements and complex curves in the real space R3 [1]. The Cartan equations of 

isotropic curve were studied in the four dimensional Complex space C
4
 by Altinişik [3]. 

Moreover, Pekmen characterized minimal curves by means of E. Cartan equations in 3C  [4]. 

Characterizations of helices were characterized in the complex space C
3
 by [5]. Y lmaz 

examined the isotropic curves with constant pseudo-curvature which is called the slant 

isotropic helix in complex space C
4
 [6]. Yılmaz and Turgut gave some properties of isotropic 

helices in C
3
 [5]. Recently, the representation formula for an isotropic curve with pseudo arc 

length parameter and the structure function of such curves were defined by Qian and they 

characterized the isotropic Bertrand curve and k  type isotropic helices by using the 

representation and the Frenet formulas [7]. Several authors introduced different types of 

helices and investigated their properties. For instance, Barros et al. studied general helices in 

3-dimensional Lorentzian space [4]. Izumiya and Takeuchi defined slant helices by the 

property that principal normal makes a constant angle with a fixed direction [8]. Kula and 

Yaylı studied spherical images of tangent and binormal indicatrices of slant helices and also 

showed that spherical images are spherical helices [9]. Ali and Lopez gave some 

characterizations of slant helices in Minkowski 3-space 3

1E [10]. The Darboux vector of 

isotropic curves was introduced by Şemin [1]. As a special version of helices, Darboux 

helices are formed by obtaining the relation between the Darboux vector of the curve and a 

non-zero fixed direction. Darboux helices were studied in both Euclidean and Minkowski 3-

spaces by [11-13]. In this study, using Darboux vector of an isotropic curve given by Şemin in 

[1], we give a characterization of isotropic Darboux helices in the complex space C
3
. We 

show that an isotropic curve to be a Darboux helix has to be a constant pseudo curvature. We 

obtain the position vector of non zero fixed direction .U  Then we give some characterizations 

related to the main theorem. 
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2. MATERIALS AND METHODS 

 

 

The three dimensional complex space C
3
 is given with the standart flat metric as 

follows: 
2

2 1 3, 2 ,dx dx dx   

 

where 
1 2 3( , , )x x x  is a complex coordinate system of 3.C  

Let pr  be a complex analytic function of a complex variable t . Then the vector 

function 

                                                                   
3

1

( ) ( ) ,p p

p

r t r t k


                                                 (2.1) 

 

is called an imaginary curve, where 3

1 2= , :t t it r C C   and pk  are standard basis unit 

vectors of 
3E [1,14]. 

In this space, a vector which has a minimal direction is called an isotrop vector or 

minimal vector, that is, a vector u  is a minimal vector if and only if 2 0u  [1]. The curves, of 

which the square of the distance between the two points is equal to zero, are called minimal or 

isotropic curves [5]. Let s  denote pseudo-arclength, a curve is a minimal (isotropic) curve if 

and only if 2 = 0,ds  where s  denotes the pseudo arc-length. Thus it is obvious that an 

isotropic curve satisfies vectorial differential equation  
 

2[ ( )] = 0,r t                (2.2) 

where  = ( ) 0.
dx

r t
dt

   

For each point r  of the isotropic curve, E. Cartan frame is defined (for well-known 

complex number 2 1i   ) as follow [1,14]: 
 

                                                           

1

2

3

= ,

= ,

= ,
2

e x

e ix

e x x






  

                                                         (2.3) 

 

where 2= ( ) .r   The moving E. Cartan frame along the isotropic curve x  in 3C  is given by 

(2.3) which is denoted by 1 2 3{ , , }.e e e  The inner products of these frame vectors are given by 

 

0 if = 1,2,3;Mod(4),
. =

1 if = 4.
j k

j k
e e

j k





              (2.4) 

 

The vector and mixed products of these frame vectors are given by 
 

2 1 2 3, .( ) ,j k j ke e ie e e e i      

for , =1,2,3.j k   

The pseudo-arclength  
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1

2 4

0

= [( ) ]

t

t

s x dt  

 

is an invariant with respect to parameter t  [1]. Thus the vectors 
1e  and 3e  are isotropic 

vectors, while 2e  is a real vector. E. Cartan derivative formulas can be deduced from (2.3) as 

follows 

1 2

2 1 3

3 2

= ,

= ( ),

= ,

e ie

e i e e

e i e





 

 

 

                                                        (2.5) 

where  

1
= ( ), ( )

2
r s r s  

 
  

is called pseudo-curvature of isotropic curve ( )r r s  [4]. These equations can be used if the 

minimal curve is at least of class 4.C  Here ( ' ) denotes derivative according to pseudo 

arclength s . In the rest of the paper, we suppose that pseudo-curvature   is non-vanishing 

except in the case of an isotropic cubic. 
 

Definition 2.1. An isotropic curve  in  is called an isotropic cubic if pseudo-

curvature  of  is congruent to zero [4]. 

 

Definition 2.2. An isotropic curve  in 3C  is called an isotropic helix if the tangent 

vector  of  is isotropic vector [9]. 

Let  be an isotropic curve with the pseudo-curvature  the pseudo-

Darboux vector of the curve is defined as  
 

 
= , ( = 1,...,3).q qe w e q 

 
 

If we write the pseudo-Darboux vector of the curve as follows, 
 

  

then we obtain  

  

 

The norm of Darboux vector of the curve  in  is defined as  
 

  

which is called pseudo-Lancret curvature [9]. 
 

Definition 2.3. Let  be an isotropic curve framed by  in C
3
. If there exists a 

nonzero constant vector field 3U C  such that   is a (complex) constant, 

then it is said to be a type (  respectively) isotropic helix and  is called the 

axis of  [15]. 

)(= srr 3C

 )(sr

)(= srr

1e )(sr

)(= srr 0,

,=
1=

3

qq

q

erw 

.= 31 eew 

)(= srr 3C

 2=)(= 2

31 ieew 

)(sr },,{ 321 eee

Uek , 0,1,2)=(k

k 0,1,2,=k U
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3. RESULTS AND DISCUSSION 
 

 

Definition 3.1. An isotropic curve 3:r I C C   with the Darboux vector  is called 

Darboux helix, if there exists a non-zero fixed direction 3U C  such that  is a 

(complex) constant. 
 

Theorem 3.2. Let  be an isotropic curve in 3.C   is a Darboux helix if and only if 

the pseudo curvature  is a constant. 
 

Proof: ( ): Assume that  is a Darboux helix. Hence there is a relation between the 

Darboux vector w and the non-zero fixed direction  such that 
 

  (3.1) 

 

where  is a complex constant from definition of Darboux helix. Considering Cartan frame, 

the axis  can be decomposed by 
 

  (3.2) 

 

where = ( ), ( =1,2,3)i i s i   are analytic functions of pseudo arc length .s  Putting (2.3) and 

(3.2) into (3.1), we obtain  
 

     (3.3) 

 

Differentiating (3.2) with respect to s, we get  
 

                                             1 2 1 2 1 3 2 3 2 3( ) ( ) ( ) = 0,i e i i e i e               (3.4) 

 

which suggests the following system of differential equations: 
 

 

1 2

2 1 3

3 2

= 0,

= 0,

= 0.

i

i i

i

 

  

 

  

   


 

 (3.5) 

Differentiating (3.3) gives 
 

 3 3 1= .       (3.6) 

Substituting (3.5)  and (3.5)  into (3.6), we find 

 

 3 = 0.   (3.7) 

 

We examine the equation (3.7) according to the following cases: 
 

Case 1. If = 0 , then  is a constant pseudo curvature. Differentiating the Darboux vector 

in (2.3) and considering the pseudo curvature as constant, we see that since  
 

 1 1 2 1 3 2 2= = = = 0,w e e e e e i e i e              (3.8) 

w

Uw,

)(= srr )(sr



 )(sr

U

,=, 0CUw

0C

U

,= 332211 eeeU  

.= 013 C 

1 3


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the Darboux vector is a fixed vector under this case. 
 

Case 2. If , then using (3.5), . Thus the vector  becomes zero vector. So 

we exclude that case because it contradicts the definition of the fixed axis. 

( ): Conversely, Assume that the pseudo curvature  is constant. We define the vector field 

 as 

 

2 2

1 2 3 1

2 2

1 2 2

2 2

1 2 4 3

= { }
2 2

{ }

1 1
{ } ,

2 2

s sU C ie C ie C e

s sC e C e e

s sC ie C ie C e

 

 

 

 

 







  

 

   

 (3.9) 

 

where  are (complex) constants. Differentiating (3.9) and considering the pseudo 

curvature  as constant and (2.5), we have = 0U  , that is,  is a constant vector field. 

Because  is a constant, so we arrive the result that  is a Darboux helix. 

 

Corollary 3.3. Let  be an isotropic Darboux helix in 3.C  Then the axis of isotropic Darboux 

helix is obtained as  

 

2 2

1 2 1

2 2

1 2 2

2 2

1 2 3

= { ( ) }

{ }

{ ( ) } ,

s sU C i e C i e ds e

s sC e C e e

s sC ie C ie ds e

 

 

 

  





 

 

  





 (3.10) 

 

where  are (complex) constants. 

Proof: As it is shown in above theorem, the pseudo curvature  is constant. By taking the 

pseudo curvature  constant in the system (3.5), we solve the system as follows:  

Differentiating (3.5)  gives 

                                                                2 1 3= .i i             (3.11) 

 

Using the equations (3.5)  and (3.5)  in (3.11), we get 

 

 2 2= 2 .   (3.12) 

 

The solution of the differential equation (3.12) is 

  (3.13) 

 

where  are constants. From (3.5)  and (3.5) , we have the solutions of and  as 

follows: 

2 2 2 2

1 1 2 1 2 3= ( ) =
2 2

s s s sC i e C i e ds C ie C ie C    
                   (3.14) 

and  

2 2 2 2

3 1 2 1 2 4

1 1
= ( ) =

2 2

s s s sC ie C ie ds C ie C ie C   
 

                 (3.15) 

 

0=3 0== 21  U

 

U

4321 ,,, CCCC

 U

34=, CCUw  )(sr

r

4321 ,,, CCCC




2

1 2

,= 2

2

2

12

seCseC  

21,CC 1 3 1 3
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where  are (complex) constants. Using (3.13), (3.14), and (3.15) in (3.2), we have the 

axis  as in (3.10). 
 

Corollary 3.5. Let  be an isotropic Darboux helix in 3.C  Isotropic Darboux helix is not a 

curve of constant precession. 
 

Proof: Scofield defined that curves of constant precession are curves whose Darboux vectors 

make a constant angle with a fixed direction and rotate about it with a constant speed [16]. 

Taking isotropic Darboux helix  with the Darboux vector w  into account, the speed of 

Darboux vector is vanishing, hence the proof is completed [17, 18]. 
 

Corollary 3.6. Isotropic cubic is a Darboux helix with the axis 
 

  

 

Proof: Isotropic cubic is an isotropic curve with the vanishing pseudo curvature. Thus the 

proof of corollary is straightforwardly seen by result of Theorem 3.2. 
 

Corollary 3.7. If the pseudo curvature  vanishes, then the Darboux vector of an isotropic 

curve is an isotropic vector. 
 

Proof: It is straightforwardly seen by using (2.3). 
 

Theorem 3.8. Let  be an isotropic Darboux helix in 3.C  Then,  is a type 

slant helix if and only if the equation  
 

  (3.16) 

 

holds. Here  are constants. 

 

Proof: Let the isotropic Darboux helix  be type slant helix in 3.C  Then the 

relation  

  (3.17) 

 

holds. Differentiating (3.17), we have 
 

 
2 2

1 2 1 2, = , = ( ) = 0.s se U ie U i C e C e      (3.18) 

 

From (3.18), we obtain the relation in (3.16). Conversely, assume that the relation 

(3.16) holds. Then, since  is a isotropic Darboux helix, the pseudo curvature is 

constant. Using the axis in (3.9) which a non-zero fixed direction, we have the result  
 

  (3.19) 

 

where  is a constant. Rewriting (3.16) as  

  (3.20) 

43 ,CC

U

r

r

.})({}{= 321221 eidsCCeCCU  



)(= srr )(= srr 0

0=2

2

2

1

seCseC  

21,CC

)(= srr 0

constant=,1 Ue

)(= srr
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2

1

2

1
=, 4

2

2

2

11 CsieCsieCUe   


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1
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C

C
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Substituting (3.20) into (3.19) gives  
 

  (3.21) 

 

The equation (3.21) means that isotropic Darboux helix  is a type slant 

helix. 
 

Theorem 3.9. Let  be an isotropic Darboux helix in 3.C  Then,  is a type 

slant helix if and only if either  
 

  (3.22) 

 

where are constants. 

 

Proof: Let  be type slant helix in 3.C  Then the relation  

 

  (3.23) 

 

holds. Differentiating (3.22), we have 
 

 
2 2

2 1 3 1 2, = , = 2 ( ) = 0,s se U i e ie U C e C e ds        (3.24) 

 

by using the axis  in (3.10). From (3.24), we obtain the relations in (3.21). 

Conversely, assume that the relation (3.22) holds. Then, since  is a isotropic 

Darboux helix, the pseudo curvature is constant. Using the axis  in (3.9) which a non-zero 

fixed direction, we have the result  
 

  (3.25) 

Using one of the conditions in (3.22), it turns out that constant. This means 

that isotropic Darboux helix  is a type slant helix. 

 

Theorem 3.10. Let  be an isotropic Darboux helix in  Then,  is a type 

slant helix if and only if  

  (3.26) 

 

Proof: Let the isotropic Darboux helix  be type slant helix in 3.C  Then the 

relation  

  (3.27) 

 

holds. Differentiating (3.27), we have 
 

 
2 2

3 2 1 2, = , = ( ) = 0.s se U i e U i C e C e        (3.28) 

From (3.28), we obtain the relation in (3.25). Conversely, assume that the relation 

(3.25) holds. Then, since  is a isotropic Darboux helix, the pseudo curvature is 

constant. Using the axis in (3.9) which a non-zero fixed direction, we have the result  

.=, 41 CUe

)(= srr 0

)(= srr )(= srr 1

0,=or0= 2

2

2

1

seCseC  

21,CC

)(= srr 1

constant=,2 Ue

U
)(= srr

U

.=, 2

2

2

12

seCseCUe  

=,2 Ue

)(= srr 1

)(= srr .3C )(= srr 2

0,=or0= 2

2

2

1

seCseC  

)(= srr 2

constant=,3 Ue

)(= srr
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  (3.29) 

 

Substituting one of the conditions in (3.26) into (3.29) gives  
 

  (3.30) 

 

The equation (3.31) means that isotropic Darboux helix  is a type slant 

helix. We can give the following result based on the results of Theorem 3.8, 3.9, 3.10: 
 

Corollary 3.11. Let  be an isotropic cubic Darboux helix in 3.C  Then every isotropic 

cubic Darboux helices are k-type Darboux helices. 
 

Proof: It is the straightforward result of Theorem 3.8, 3.9, 3.10. 
 

Corollary 3.12. Let  be an isotropic Darboux helix in 3.C  Then excluding the case to 

be isotropic cubic curve, the following expressions are equivalent: 

(i)  is a type slant helix, 

(ii)  is a type slant helix, 

(iii)  is a type slant helix, 

(v)  

 

Proof: It is a direct result of Theorem 3.8, 3.9, 3.10, and Corollary 3.11. 
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