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Abstract. This paper refers to the study of generalized function       [   ]. Using 

generalized function       [   ] defined in [2], we derive various integral transform, 

including Euler transform, Laplace transform, Whittaker transform, Mellin transform, Hankel 

transform K-transform,    transform and Fractional Fourier transform. Some results are 

expressed in terms of generalized Wright function. The transforms found here are likely to 

find useful in problem of Sciences, engineering and technology. 
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1. INTRODUCTION  

 

 

Integral transform is widely used for problem solving in various fields of physics and 

applied mathematics. The present paper deals with the evaluation of various integral 

transforms of the generalized function       [   ]. 

 

Definition 1.1. Lorenzo and Hartley defined the following special function named as 

generalized function        [   ] [1-3] as: 

 

        [   ]          ∑
( )   (   ) 

 (       )  
 
   , Re(    )       (1) 

 

On taking     and       in equation (1), it reduces to special R-function which 

is defined by Lorenzo and Hartley [2] 

 

    [     ]  (   )     ∑
[ (   ) ] 

 (      )
 
                 (2) 

 

Details related to the function     [     ] and        [   ] can be seen in Lorenzo and 

Hartley [1, 2], H. Nagar and Menaria [3] 

 

Definition 1.2. The Euler transform of a function f(z) is defined as [4] 

 

 { ( )    }  ∫      

 
(   )    ( )           ( )     ( )     (3) 
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Definition 1.3. The Laplace transform of a function ( ), is given by the equation [4] 

 

 ( )   { ( )  }  ∫      

 
 ( )     ( )        (4) 

 

Provided that the integral (4) is convergent for     and of exponential order as 

   . Also 

 

 ∫      

 
       

 ( )

  ,   ( )     ( )         (5) 

 

Definition 1.4. The Whittaker Transform is defined as [5]: 

 

∫   
 

  
 

 
        ( )   

 (
 

 
    ) (

 

 
    )

 (     )
       (6) 

 

where  (   )    
 ⁄ and     ( )is the Whittaker confluent Hypergeometric function  

 

    ( )  
 (   )

 (  ⁄     )
    ( )  

 (  )

 (  ⁄     )
     ( ) (7) 

 

where     ( ) is given by 

 

    ( )     ⁄        ⁄   (
 

 
           )  (8) 

 

Definition 1.5. The Mellin transform of  ( ) is given as [6] 

 

 { ( )}( )  ∫      

 
 ( )  ,            ( )     (9) 

 

Definition 1.6. The Hankel transform of  ( ), denoted by  (   ) is defined as [7] 

 

 (   )  ∫ (  )
 

     (  ) ( )
 

 
           (10) 

 

The following formula can be used to solve the integral in equation (10) [8] 

 

∫      

 
  (  )          

 (
   

 
)

 (  
   

 
)
 (11) 

 

Definition 1.7. The K-transform is defined by the integral equation [9] 

 

  [ ( )  ]   [   ]  ∫ (  )  ⁄   (  ) ( )  
 

 
 (12) 

 

Here  ( )      ( ) is second kind Bessel function which is defined in [9] 

 

  ( )  (
 

  
)
  ⁄

    (  ) 

 

where     ( ) is the Whittaker function defined in equation (7). 
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In evaluating the integrals, the following result given by Mathai et al. [8] will be used 

 

∫       (  )           (
   

 
)

 

 
    ( )      (   )     (13) 

 

Definition 1.8. The    [ ( )  ] transform of a function f(t) ,in which s is a complex variable 

is defined as [10]: 

 

  [ ( )  ]     
( )  ∫ [  (   ) ] 

 

   
 

 
 ( )                                                    (14) 

 

  -Transform of the power function      is given by 

 

  [ 
     ]  (

   

  [  (   )] 
)
 
 ( ) (15) 

 

Definition 1.9. The fractional Fourier Transform of order         is defined by [11] 

 

  ̂( )    [ ]( )   









R

ti dttue


1

 (16) 

 

On taking   , equation (16) reduces to the conventional Fourier transform and 

on   , it reduces to Fractional Fourier transform given by Luchko et al. [11] 

 

Definition 1.10. Some compositions are expressed as generalized Wright Hypergeometric 

function [12]   ( ) (for detail, see [15]), for             and         { },  

(                  ), is defined as [12-14]: 

 

  ( )    [
(     )   

(     )   
  ]  ∑

∏  (      )   
   

∏  (      )
 
     

 
     (17) 

 

Definition 1.11. Generalized Hypergeometric Function is defined by [15]: 

 

  [
        

        
  ]  ∑

(  )  (  )
 

(  )  (  )
 

 
  

  
 
     (18) 

 

This series (1.18) is known as the generalized Gauss series or simply the Generalized 

Hyper-geometric function [16]. Here p and q are positive integers or zero, the numerator 

parameters         and the denominator parameters  
 
    

 
 take on complex values, 

provided that 

 
 
           (       )  

 

 

2. INTEGRAL TRANSFORMS OF        [   ] 

 

 

Theorem 2.1. Let            ,be such that 
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 {       [   ]    }  
 ( )

 ( )
   [

(   ) (          )

(      ) (            )
  ]  

 

where  ( )     ( )     
 

Proof: On using (1.1) and (1.3), we get 

 

 {       [   ]    }  ∫    

 

 

(   )          [   ]   

 

 ∑
( )   

 (       )   

 

   

∫              

 

 

(   )      

 

 ∑
 (   )   

 ( ) (       )   
  (

 

   

             ) 

 

 ∑
 (   )  

 ( ) (       )   
 

 

   

 (           ) ( )

 (             )
 

 

According to the definition of (1.17), we arrive at the result (2.1), which completes the 

proof of the theorem. 

 

Theorem 2.2. Let               ( )   , be such that 

      

 {       [   ]  }  
     

 ( )
∑  (   )

 

   

(
 

  
)
 

 

 

Proof: On using (1.1) and (1.4), we get 

 

 {       [   ]  }  ∫            [   ]   

 

 

 

 

 ∑
( )   

 (       )  
∫           

 

 

    

 

   

   

 

 On using (1.5) 

 

 ∑
( )   

 (       )  

 

   

 
 (       )

        
 

 

This directly completes the proof. 
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Theorem 2.3. Let           ( )     (   )       be such that 

 

∫   
 
     

 

 

    ( )       [   ]  

 
 

 ( )
   [

(   ) (         
 

 
  )  (         

 

 
  )

(      ) (         
 

 
  )

  ] 

 

Proof: On using (1.1), we get 

 

∫   
 
     

 

 

    ( )       [   ]   ∫   
 
     

 

 

    ( ) (       ∑
( ) (   ) 

 (        )  

 

   

)   

 

 ∑
( )   

 (        )  

 

   

 ∫   
 
               

 

 

    ( )   

 

Making use of (1.6) 

 

 ∑
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 (        )  
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              )   (
 
 

              )

 (              
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 ( ) (        )  
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)   (            

 
 
)
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It directly completes the proof by using (1.17) 

  

Theorem 2.4. The Mellin Transform of Generalized function        [   ] is given by: 

 

∫            [   ]   
 

           
 ∑

( )    

 (       )

 

   

 

 

 

 

where           ( )   . 

 

Proof: Using the definition of Mellin Transform (1.9) 

 

 {       [   ]  }  ∫            [   ]  

 

 

 

and using (1.1)  
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∫            [   ]  

 

 

 ∫     (       ∑
( ) (   ) 

 (       )  

 

   

)  

 

 

 

 

on changing the order  

 ∑
( )   

 (       )  

 

   

 ∫               

 

 

   

 

On setting       , it completes the required result of (2.4). 

 

Theorem 2.5. The Hankel Transform of function        [   ] is given as 

 

 (   )  
 

√ 
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)
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(      ) (
       

 
 

 
  

 

 
)

  (
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where             . 

 

Proof: On using (1.10), we get 

 

 (   )  ∫(  )
 
 

 

 

  (  )       [   ]    

 

Making use of (1.1) and changing the order of integration 

 

 ∑
( )   

 (       )  

 

   

 ∫(  )
 
 

 

 

  (  )              

 

 ∑
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 (       )  

 

   

  
 
  ∫          
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On using (1.11), we get 

 ∑
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Using equation (1.17), this immediately leads to (2.5). 

Theorem 2.6. The K-transform of special        [   ] function for ( )             , is 

given as 

 

∫      

 

 

  (  )        [   ]    
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)
          

 ( )
  

    [
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)

(      )

  (
 

 
)
 

] 

 

Proof: On using (1.12) and (1.1) , we get 

 

∫      

 

 

  (  )        [   ]    ∫      

 

 

  (  ) ∑
( ) (   )        

 (       )  

 

   

    

 

Changing the order of integration 

 

 ∑
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 (       )  

 

   

 ∫               
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Using (1.13) for   ( )      ( 
   )    
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The required result in (2.6) directly follows on using (1.17). 

 

Theorem 2.7. For             , the following result holds true 
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  [       [   ]  ]  
 

( (   ))
        [

 
 

          
 

 (   )
] 

 

where  (   )  
  [  (   ) ]

   
. 

 

Proof: Using equation (1.14), we get 

 

  [       [   ]  ]  ∫[  (   ) ]  
 

   

 

 

        [   ]   

 

On changing the order of integration and using (1.1) 

 

 ∑
( )   

 (       )  
 ∫[  (   ) ] 

 
   

 

 

 

   

              

 

Here making use of result (1.15), we obtain 

 

 ∑
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In view of the definition (1.18), we arrive at the required result. 

 

Theorem 2.8. Let         ; be such that 
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( )       ( )
       

 (  )(         )   

 

   

 

 

where      
 

Proof: Using (1.1) and (1.16), it gives 
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On setting    (
 

 
)    , then we obtain 

 

 ∑
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This completes the proof. 

 

 

3. CONCLUSION 

 

  

The results obtained in this paper are new and can be further modified in various new 

and known integral transforms, which are used in various areas of engineering, science, 

applied mathematics, bio-engineering etc. 
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