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Abstract. Formulas and identities involving many well-known special numbers (such 

as Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Horadam, and so on) in 

the algebras   play important roles in themselves and in their diverse applications. Various 

families of recurring numbers have been established by a number of authors in many different 

ways. This article presents the results of some new research on a new class of recurring 

integer sedenion numbers that unite the characteristics of the sedenion numbers and the 

Horadam numbers. 
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1. INTRODUCTION AND PRELIMINARIES  

 

 

The first four (real) algebras formed in the Cayley-Dickson process are the algebras

, , , . The next one is the 16-dimensional algebra S  of (real) sedenions. It is neither a 

division nor an alternative algebra. Also sedenion algebra is a non-associative, non-

commutative, and non-alternative but power associative 16-dimensional Cayley-Dickson 

algebra over the . There is well known fact that sedenion numbers play a great role in 

mathematics and physics. Over the last years it was considered in several papers by algebraists 

as well as by mathematical physicists [1-5]. We now recall some definitions and elementary 

properties of the notions needed in subsequent sections.  

A sedenion is defined as follows [1] 

 

 
15

0

i i

i

S a e


  Equation Section (Next)(1.1) 

 

where 
0 1 2 15, , ,...,a a a a are reals. The 16-dimensional algebra S  is the one algebra obtained by 

the Cayley-Dickson process. For the set  0 1 15, ,...,e e e , the multiplication table is given as 

follows [6]: 
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Table 1. The multiplication table for S. 

. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 -0 3 -2 5 -4 -7 6 9 -8 -11 10 -13 12 15 -14 

2 2 -3 -0 1 6 7 -4 -5 10 11 -8 -9 -14 -15 12 13 

3 3 2 -1 -0 7 -6 5 -4 11 -10 9 -8 -15 14 -13 12 

4 4 -5 -6 -7 -0 1 2 3 12 13 14 15 -8 -9 -10 -11 

5 5 4 -7 6 -1 -0 -3 2 13 -12 15 -14 9 -8 11 -10 

6 6 7 4 -5 -2 3 -0 -1 14 -15 -12 13 10 -11 -8 9 

7 7 -6 5 4 -3 -2 1 -0 15 14 -13 -12 11 10 -9 -8 

8 8 -9 -10 -11 -12 -13 -14 -15 -0 1 2 3 4 5 6 7 

9 9 8 -11 10 -13 12 15 -14 -1 -0 -3 2 -5 4 7 -6 

10 10 11 8 -9 -14 -15 12 13 -2 3 -0 -1 -6 -7 4 5 

11 11 -10 9 8 -15 14 -13 12 -3 -2 1 -0 -7 6 -5 4 

12 12 13 14 15 8 -9 -10 -11 -4 5 6 7 -0 -1 -2 -3 

13 13 -12 15 -14 9 8 11 -10 -5 -4 7 -6 1 -0 3 -2 

14 14 -15 -12 13 10 -11 8 9 -6 -7 -4 5 2 -3 -0 1 

15 15 14 -13 -12 11 10 -9 8 -7 6 -5 -4 3 2 -1 -0 

 

Sedenions are the hypercomplex numbers. The schoolbook multiplication of two 

sedenion numbers requires performing 256 real multiplications. Cariow and Cariowa [7] 

derived an algorithm for the fast multiplication of two sedenions. 

There has been an increasing interest on the new results on a new class of recurring 

integer quaternion, octonion and sedenion numbers that unite the characteristics of the 

quaternion, octonion and sedenion numbers and the recurring integer numbers. 

Horadam firstly defined Horadam numbers on  and then defined Horadam numbers 

on  and  [8,9]. Horadam quaternions are an important step in the development of 

contemporary the Cayley-Dickson algebra theory. Later, in [10], Halıcı gave a very complete 

survey about Horadam quaternions. In [11], Karataş and Halıcı defined Horadam octonions 

by Horadam sequence which is a generalization of second order recurrence relations. Also, 

they give some fundamental properties and identities related with these sequences. In [12], 

Halıcı and Karataş gave a new generalization for sequences of dual quaternions and dual 

octonions. Moreover, they derived some important identities such as Binet formula, 

generating function, Cassini identity, sum formula and norm formula by their Binet forms. In 

[13], Cimen and İpek defined the Jacobsthal and Jacobsthal-Lucas octonions over the 

octonion algebra . They presented generating functions and Binet formulas for the 

Jacobsthal and Jacobsthal-Lucas octonions, and derived some identities of Jacobsthal and 

Jacobsthal-Lucas octonions. The Horadam numbers are very important in mathematics. Their 

several properties were studied by many mathematicians and they arise in the examination of 

various areas of science. For , , ,a b p q , Horadam in [14] defined the Horadam numbers by 

the recursive equation 

   1 2( , ; , ) : ; ( 2)n n n nw a b p q w pw qw n   
  

               (1.2) 

 

where initial conditions are 
0 1, ,w a w b n   . 

For special choices of , ,a b p and q , the recurrence relations (1.2) generates a number 

of the remarkable numerical sequences that are widely used in mathematics. 
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For 1, 1a b  , it is obtained generalized Fibonacci numbers: 

 

1 2n n nU  = pU + qU 
. 

 

For 2,a b p  , it is obtained generalized Lucas numbers: 

 

1 2.n n nV  = pV  + qV 
 

 

For 0, 1, 1, 1a b p q    , it is obtained classical Fibonacci numbers: 

 

1 2.n n nF  = F + F 
 

 

For 2, 1, 1, 1a b p q    , it is obtained classical Lucas numbers: 

 
.n n-1 n-2L = L  + L  

 

For 0, 1, 2, 1a b p q    , it is obtained Pell numbers: 

 

1 2.n n nP  = 2P  + P 
 

 

For 2, 2, 2, 1a b p q    , it is obtained Pell-Lucas numbers: 

 

1 2.n n nQ  = 2Q + Q 
 

 

For 0, 1, 1, 2a b p q    , it is obtained Jacobsthal numbers: 

 

1 2n n nJ  = J  + 2J 
. 

 

For 2, 1, 1, 2a b p q    , it is obtained Jacobsthal-Lucas numbers: 

 

1 2.n n nj  = j  + 2j 
 

 

Binet formulas are well known in the Fibonacci-like numbers theory. 

These formulas allow all Horadam numbers 
nw  to be represented by the roots of 

2 0t pt q    that is the characteristic equation of (1.2). 

The roots of the characteristic equation are 

 
2 4

2

p p q 
  and 

2 4

2

p p q 
  .

   
 (1.3) 

 

Thus Binet's formula for the sequence 
nw  to be represented by the roots  and  : 

 

 
n n

n

A B
w

  


 
     (1.4) 

 

where A b a    and B b a   . 

Horadam numbers has properties that are similar to the classical Fibonacci numbers. 
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The generating function for Horadam numbers is 

 

 
 0 1 0

2
( )

1

w w pw t
g t

pt qt

 


 
.    (1.5) 

 

The Cassini identity for Horadam numbers is 

 

  2 1 2 2

1 1 0 1 1 0 .n

n n nw w w q pw w w w q

     
  

 (1.6) 

 

A summation formula for Horadam numbers is 

 

 

 
 1 0 1

0

1

1

n
n n

i

i

w w p qw w
w

p q





   


 
 .   (1.7) 

 

Let us consider the Horadam numbers nw  and define the basic recurrence relation for 

the Horadam Sedenions. The nth Horadam sedenion numbers are given by the following 

recurrent relation: 

 
15

1

0

.n n i

i

SG w e



      (1.8) 

 

This paper is devoted to studying the Horadam sedenions. In this study, we introduce 

and investigate a new class of Horadam sedenion numbers (such as recurrence relations, 

summation formulas, Binet's formulas, generating functions and norm formula by their Binet 

forms). By specifying the parameters, the Horadam sedenions  , , ,nSG a b p q  reduce to some 

well-known ones such as those under the names Fibonacci, Lucas, Pell, Pell-Lucas, 

Jacobsthal, Jacobsthal-Lucas sedenions. In [15], Bilgici, Tokeser and Unal defined the 

Fibonacci and Lucas sedenions over the sedenion algebra  S . In [16], Çimen and İpek 

defined the Jacobsthal and Jacobsthal-Lucas sedenions over the sedenion algebra S . They, 

nth Jacobsthal sedenion is 
15

0

n n s s

s

SJ J e



  and the nth Jacobsthal-Lucas sedenion is 

15

0

n n s s

s

Sj j e



 . They presented the generating functions and Binet formulas for the Jacobsthal 

and Jacobsthal-Lucas sedenions, and derive some identities of Jacobsthal and Jacobsthal-

Lucas sedenions.  

 

 

2. HORADAM SEDENIONS 

 

 

In this section, we first give some properties of the Horadam sedenion numbers, and 

then investigate Binet formula, generating function, Cassini identity, summation formula and 

norm value for these numbers. 

After some necessary calculations we acquire the following recurrence 

 

1 1.n n nSG pSG qSG    

 



On Horadam sedenions                                                                                                          Cennet Cimen et al. 

 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

891 

Let 
nSG  and 

nSM  be two Horadam sedenions such that 
0 1 1 2 2n n n nSG w e w e w e    

3 3 15 15... ,n nw e w e    and 
0 1 1n n nSM m e m e   2 2 15 15...n nm e m e   . The scalar and the vector part of 

Horadam sedenions 
nSG  and 

nSM  are denoted by 
0nSG nS w e , 1 1 2 2nSG n nV w e w e   

3 3 15 15...n nw e w e   , 
0nSM nS m e  and 1 1 2 2 15 15... ,

nSM n n nV m e m e m e       respectively. Therefore, the 

addition, substraction and multiplication of these sedenions directly are obtained, respectively, 

as following 

 
15

0

n n s s s

s

SG SM w m e


    Equation Section 2(2.1) 

and 
.

.

n n n n n n

n n n n

n n SG SM SG SM SG SM

SG SM SG SM

SG SM S S S V V S

V V V V

  

   

   (2.2) 

 

The conjugate of 
nSG  is defined by 

 

 
0 1 1 2 2 15 15... .n n n n nSG w e w e w e w e      

  
 (2.3) 

 

The norm of nSG  is defined by 

 

 2 2 2 2

1 2 15... .
nSG n n n n n nN SG SG w w w w       

 
 (2.4) 

 

Let us find some mathematical properties of the Horadam sedenions introduced above. 

Now we present some identities for the Horadam sedenions. 

 

Theorem 2.1. For 2n  , we have the following identities: 

 

 
02 ,n n nSG SG w e 

   
 (2.5) 

 

 2 . 2 . .n n n n nSG SG SG w SG     (2.6) 

 

Proof: From (1.8) and (2.3), we get 

 
15 15

0

0 1

02

n n n s s n n s s

s s

n

SG SG w e w e w e

w e

 

 

   



 

 

 

which gives (2.5). On the other hand, from (2.2) and (2.5) we have  

 

 2

0. 2

2 . .

n n n n n n

n n n n

SG SG SG SG w e SG

w SG SG SG

  

 

 

and so  
2 . 2 . .n n n n nSG SG SG w SG 
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Theorem 2.2. For 2n  , we have the following identities: 

 

1 2.n n nqSG pSG SG  
 

Proof: It follows from (1.8) and (2.1) that 

 
15 15

1 1

0 0

15

1

0

( · · ) ,

n n n s s n s s

s s

n s n s s

s

qSG pSG q w e p w e

q w p w e

   

 

  



  

 

 



 

 

and therefore by using the identity 
1 2n n nw pw qw    (12); we get 

 
15

1 2

0

2 .

n n n s s

s

n

qSG pSG w e

SG

  





 



  

 

We now will give Binet's formulas for Horadam sedenions. 

The characteristic equation of the relation 
2 1n n nSG pSG qSG    is as follows 

 

 2 0.t pt q        (2.7) 

 

So, the roots of this characteristic equation are 
2 4

2

p p q 
   and 

2 4

2
.

p p q 
   Note that 

 

 2, 4p p q          and .q  
  

 (2.8) 

 

The following theorem gives Binet's formulas for Horadam sedenions the roots of the 

charactersictic equation associated to the recurrence relation the Eq.(2.7). 

 

Theorem 2.3. Binet's formulas for 
nSG  is as follows 

 

 
n n

n

A B
SG

  


 
    

(2.9) 

 

where ,A b a    ,B b a    
15

0

s

s
s

e


     and 
15

0

s

s
s

e


    . 

 

Proof: Using the Binet formula (1.4), we have 

 
15

0

15

0

15 15

0 0

n n i i

i

n i n i

i

i

n i n i

i i

i i

SG G e

A B
e

A B
e e





 



 

 



  


 

 
 

   





 
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15 15

0 0

.

n n
i i

i i

i i

n n

A B
e e

A B

 

 
   
   

    


 

 

 

 

Theorem 2.4. The following formulas are true: 

 

 
1 1

1

1
,

1 1

n nn

i

i

B A
SG K

 



  
   
     

    (2.10) 

 

where K  is as follows, 

 

1
.

1 1

BA
K

 
  
    

 

 
Proof: Using the Binet formula for the Horadam sedenions, we can calculate the summation 

formula as follows 

 

1 1

1 1

1 1

1 1

1 1

1 1
.

1 1 1 1

i in n

i

i i

n n
i i

i i

n n

n n

A B
SG

BA

BA

B BA A

 

 

 

  


 


   
   

     
    
        

    
                

 

 

 

 

Theorem 2.5. The following formulas are true:  

 

 
2 22 2

2 2 2
1

1
,

1 1

nnn

i

i

BA
SG M





 
   

       
    (2.11) 

 

where M  is as follows, 
2 2

2 2

1
.

1 1

B A
M

  
  

         
 

Proof: Using the Binet formula for 
nSG , we can calculate the summation formula as follows 
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   

2 2

2

1 1

2 1 2 12 2

1 1

22 2 2

2 2

2 22 2

2 2

2 2

2 2

1

1 1

1 1

1

1 1

1
.

1 1

i in n

i

i i

n n
i i

i i

n n

nn

A B
SG

A B

BA

BA

B A

 

 

 



  


 

 
      
   

       
    
         

 
  

       

  
  

       

 

 

 

 

Theorem 2.6. The following formulas are true: 

 

 
2 12 1

2 1 2 2
1

1
,

1 1

nnn

i

i

BA
SG L







 
   

       
    (2.12) 

where L  is as follows, 

 

2 2

1
.

1 1

B A
L

 
  
      

 

 

Proof: Using the Binet formula for 
nSG , we can calculate the summation formula as follows 

 

   

2 1 2 1

2 1

1 1

2 12 1

1 1

2 1 2 1

1 1

2 2

2 2

2 12 1

2 2

2

1

1 1

1 1

1

1 1

1

1

i in n

i

i i

iin n

i i

n n
i i

i i

n n

nn

A B
SG

BA

A B

BA

BA

B A

 



 



 

 

 



  


 


 

   

 
      
   

       
    
         

 
  

       

 
 
   

 

 

 

2
.

1

 
 

    
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Thus, we complete the proof. 

In the following theorem, we state to different Cassini identities which occur from 

non-commutativity of sedenion multiplication. 

 

Theorem 2.7.(Cassini's identities) For Horadam sedenions the following identities are hold: 

 

 
 

12

1 1.
n

n n nSG SG SG q AB


 

  
    

   
   (2.13) 

 

 
 

12

1 1.
n

n n nSG SG SG q AB


 

 
    

   
  

 (2.14) 

 

Proof: Using the Binet's formula in equation (2.13); we get  

 
1 1

2

1 1

1 1

2

.

.

n n

n n n

n n

n n

A B
SG SG SG

A B

A B

 

 

 

   
   

   

   
 
   

   
 
   

 

 

If necessary calculations are made, we obtain 

 

 
 

1
.

n
q AB

   
  

   
 

 

In a similar way, using the Binet's formula in equation (2.14); we obtain 

 

 
 

1 1

2

1 1

1 1

2

1

.

.

n n

n n n

n n

n n

n

A B
SG SG SG

A B

A B

q AB

 

 

 



   
   

   

   
 
   

   
 
   

 
   

   

 

 

which is desired. Thus, the identities are proved. 
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We now derive the ordinary generating function 
0

( ) n

n

n

x SG x




   defined by (1.8):  

 

Theorem 2.8. For 
nSG  defined by (1.8), the following is its ordinary generating function: 

 

 
 0 0 1

2
( ) .

1

SG pSG SG x
x

px qx

  
 

 
    (2.15) 

 

Proof: Firstly, we need to write generating function for Horadam sedenions: 

 
0 2

0 1 2( ) ... ...n

nx SG x SG x SG x SG x        

 

Secondly, we need to calculate ( )px x and 2 ( )qx x as the following equations: 

 

1 2 2

0 0

( ) ( ) .n n

n n

n n

px x pSG x   and  qx x qSG x
 

 

 

      

 

Finally, if we made necessary calculations, then we have 

 

 0 0 1

2
( )

1

SG pSG SG x
x

px qx

  
 

 
 

 

which is the generating function for Horadam sedenions. 

 

Theorem 2.9. The norm of nth Horadam sedenion is  

 

 
 

 
 

2 2 2 4 30

2

2 2 2 4 30

2

1 ...
( )

1 ...

n

n

n

A
N SG

B
T

    


 

    
 

 

 

where T  is 

        
 

2 30

2

2 1 ...
n

AB q q q q
T

       


 
. 

 

Proof: The norm of nth Horadam sedenion is   2 2 2

1 15... .n n n n n n n nN SG SG SG SG SG w w w      
 

Making necessary calculations and using the equalities 
n n

n

A B
w

  


 
, p   and q   , 

we obtain 
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 
 

 
 

        
 

2 2 2 4 30

2

2 2 2 4 30

2

2 30

2

1 ...
( )

1 ...

2 1 ...
.

n

n

n

n

A
N SG

B

AB q q q q

    


 

    


 

       


 

 

 

 

3. CONCLUSIONS 

 

 

In this paper, we give a systematic investigation of new classes of sedenion numbers 

associated with the familiar Horadam numbers. We obtain various results including 

recurrence relations, summation formulas, Binet's formulas and generating functions for these 

classes of sedenion numbers. It is interesting to mention here that, whenever a generalized 

Fibonacci type sedenion number reduces to Fibonacci sedenion number and other related 

sedenion numbers, the results become relatively more important from the application 

viewpoint. Therefore, the numerous numbers involving extensions and generalizations of the 

Fibonacci type numbers are capable of playing important roles in mathematics. Considering 

the fundamental role of the sedenion numbers and Horadam numbers in the mathematical 

tools of the modern science, it is possible to suppose that the new theory of the Horadam 

sedenions will bring the new results. 

 

 

Acknowledgement: This work was supported by Hacettepe University Scientic Research 

Coordination Unit. Project number: FED-2017-14548. The authors would like to thank the 

Editor and the anonymous referees for their helpful comments and suggestions. 

 

 

REFERENCES 

 

[1] Koshy, T., Fibonacci and Lucas numbers with applications, Wiley-Intersection Pub., 

2001. 

[2] Imaeda, K., Imaeda, M., Appl. Math. Comp., 115, 77, 2000. 

[3] Niederreiter, H., Spanier, J., Monte Carlo and Quasi-Monte Carlo Methods, Springer, 

Berlin, 2000. 

[4] Vajda, S., Fibonacci and Lucas numbers and the Golden section, Ellis Horwood 

Limited Publ., 1989. 

[5] Moreno, G., Alternative elements in the Cayley-Dickson algebras. In García-Compeán, 

H., Mielnik, B., Montesinos, M., Przanowski, M. (Eds.), Topics in Mathematical 

Physics, p. 333, 2006. 

[6] Cawagas, R. E, Discuss. Math. Gen. Algebra Appl., 24, 251, 2004. 

[7] Cariow, A., Cariowa, G., Inform. Process. Lett., 113, 324, 2013. 

[8] Horadam, A.F., Amer. Math. Monthly, 70, 289, 1963. 

[9] Udrea, G., Portugaliae Mathematica, 53(24), 143, 1996. 

  



On Horadam sedenions                                                                                                          Cennet Cimen et al. 

 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

898 

 

[10] Halici, S., arXiv:1611.07660, 2016. 

[11] Karatas, A., Halici, S., An. St. Univ. Ovidius Constanta, 25(3), 97, 2017. 

[12] Halici, S., Karatas, A., arXiv:1702.08657, 2017. 

[13] Cimen, C.B., Ipek, A, Mediterr. J. Math., 14, 37, 2017. 

[14] Horadam, A. F., The Fibonacci Quarterly, 3(3), 61, 1965. 

[15] Bilgici, G., Tokeser, U., Unal, Z., Journal of Integer Sequences, 20, 17.1.8., 2017. 

[16] Cimen C.B., Ipek A, Mathematica Aeterna, 7(4), 447, 2017. 

 

 

 

 


