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Abstract. This study is concerned with finding the threshold parameter that determines 

the status of infected individuals in a discrete-time SIS disease model transmitting the 

infection to other individuals and determining the number of individuals catching the 

infection. In this study, we firstly examined the equilibrium points of the model, and we 

determined the presence of a single positive equilibrium point depending on the number of 

diseased individuals. Then, based on the threshold parameter, we investigated the local 

asymptotic stability conditions. Moreover, we provided a topological classification of these 

equilibria. Finally, we obtained the condition providing the emergence of “period-doubling 

bifurcation” in the given model. The theoretical results that were obtained were verified with 

numerical examples by using the Mathematica software. 
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1. INTRODUCTION  

 

 

One of the prominent ways of investigating the basic problems that exist in life is 

mathematical modelling. It is possible to investigate problems that arise in biology, zoology, 

agriculture, chemistry, engineering, physics, medicine and several other branches of science 

by using discrete-time and continuous-time mathematical models [1-8]. Especially because of 

the significance of diseases in human life, investigating these models carries great 

significance. Epidemic diseases are also a part of such research. In such diseases, complete 

recovery is out of the question. The spreading rate of the disease, the temporary recovery 

process of the patient or effects that speed up the temporary recovery process are factors that 

constitute topics of research. The SIS model is one of such models, and it divides a 

community into two groups as susceptible individuals and infectious individuals. In the 

model, ( )S t  refers to susceptible individuals over a time t , while ( )I t  
refers to infectious 

individuals over a time t . The N  value that refers to the total population is constant. In 

epidemic diseases such as bacterial throat infections, meningitis, gonorrhea and syphilis, 

infected individuals may recover, but the infection does not form immunity. The first 

contributions to the epidemic disease model were made by Hamer (1906) [9], Ross (1911) 

[10] and Kermack and McKendrick (1927) [2]. An in-depth analysis of an SIS epidemic 

model formed on gonorrhea was discussed by Hethcote et al. [7].  

 

                                                 

 
1 Adiyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adiyaman, Turkey.  

E-mail: akgumus@adiyaman.edu.tr 
2 Adiyaman Academy Anatolian High School, 27107, Adiyaman, Turkey. 

  

file:///C:/Users/pc/Downloads/akgumus@adiyaman.edu.tr


 Period-Doubling Bifurcation analysis and …                                                                 Ozlem Ak Gumus et. al. 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

906  

2. MATERIALS AND METHODS 

 

 

2.1. MATERIALS 

 

 

 In this study, we will take on the following model:  

 

1

1

( )

(1 )

t t t t t

t t t t

S S I S b I
N

I I b I S
N











   

   

                                                                  (1) 

 

where , 0b   , the conditions of 0 1b     and 0 1   are applicable. Additionally, 

0 0, 0I S   and 0 0I S N  . The parameter b  
that is used in this model corresponds to the 

probability of death. The parameter   refers to the average number of contacts that facilitate 

infection through infected individuals. The 
S

N


 ratio is the number of contacts of a 

susceptible individual with an infected individual, while the 
SI

N


 ratio is the total number of 

contacts of the infected class that result in infection. Additionally, individuals are born 

susceptible, and the disease is not carried from mothers to offspring. The parameter   

represents the probability of recovery, and the 
1


 ratio refers to the average length of infection 

that does not result in death. The length of the infection period may be shortened due to death. 

This is why the 
1

b 
 ratio is the length of infection in the case of including deaths. 

As the relationship of 
t tS I N   is known, if 

t tI N S   placed in Eq. (1), 

 

1

1

( )( )

(1 )

t t t t t

t t t t

S S I S b N S
N

I I b I S
N











    

   

                                                   (2) 

 

is obtained.  

Now, let us consider following Jacobian matrix that is taken at an equilibrium point 

( , )x y  to study the dynamics of the system (1)  

 

11 12

21 22

( , )
a a

J x y
a a

 
  
 

.                                                           (3) 

 

The characteristic equation is written as 

 
2 ( ) det 0Tr J J                                                           (4)  
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where 
11 22( )Tr J a a   and 

11 22 12 21det( )J a a a a  .   

 

Theorem 1: Let 1  and 2  be the roots of the characteristic equation (4). If 1,2 1   or 

( ) 1 det 2Tr J J   , the equilibrium point  ,x y  is locally asymptotically stable [4].  

 

Definition 1: The following situaitons are valid for the equilibrium point  ,S I  of any system 

[6] 

( ) If 1 1   and 2 1  , it is a sink point and locally asymptotically stable; 

(  ) If 1 1  and 2 1  , it is a source point and locally unstable; 

(   ) If 1 1   and 2 1   (or 1 1  and 2 1  ), it is a saddle point; 

(  ) If 1 1   or 2 1   it is non-hyperbolic. 

 

Theorem 2: Let’s take 2( )F x x Bx C    such that (1) 0F  [6]. Also 1x and 2x are two roots 

of ( ) 0F x  . So 

( ) If ( 1) 0F   and 1C  , 1 1x   and 2 1x  ; 

(  ) If ( 1) 0F   , 1 1x   and 2 1x  (or 1 1x   and 2 1x  ); 

(   ) If ( 1) 0F   and 1C   , 1 1x   and 2 1x  ; 

(  ) If ( 1) 0F    and 0,2B  , 
1 1x    and 2 1x  ; 

( ) If 2 4 0B C  and 1C  , 1x and 2x  complex roots, and 1 2 1x x   

are valid. 

 

 

2.2. METHODS 

 

 

This section provides the mathematical analyses required to examine the status of the 

individuals who are infectious in the population discussed in System (1).  

 

 

2.2.1. Dynamics of System (1) Depending on Constrained Positive Parameters 

 

In this section, under the conditions of 0 1b     and 0 1  , the stability 

analyses of System (1) are carried out such that , 0b   . We obtained the following theorem 

for System (1). 

 

Theorem 3: System (1)  

(i) has disease-free (not containing the number of infected individuals) equilibrium point 

0 ( ,0)E N  for all positive parameter values. 

(ii) has a unique diseased (containing the number of infected individuals) equilibrium 

point 1

( ) ( )
,

N b b
E N

  

 

    
   

  
when b   . 

 



 Period-Doubling Bifurcation analysis and …                                                                 Ozlem Ak Gumus et. al. 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

908  

Proof: Equilibrium points of System (1) are 

 

( )( )

(1 ) .

S S IS b N S
N

I I b IS
N







    

   

 

 

By solving the equations above, we obtain 
0 ( ,0)E N  for all positive parameter 

values and  1

( ) ( )
, ,

N b b
E S I N

  

 

    
    

  
 when b   . 

Let us give the theorem below which provides information about the local asymptotic 

stability of the equilibrium points 
0E .  

 

Theorem 4: If 0 1R
b




 


, then equilibrium point  , 0N  is locally asymptotically stable. 

 

Proof: The Jacobian matrix of  System (1) is found with a simple calculation as 

 

1 ( )

( , )

(1 )

I b S
N N

J S I

I b S
N N

 


 


 
   

  
    
 

.                                                                      (5) 

 

Moreover, the Jacobian matrix in the neighbourd of the disease-free equilibrium point 

is 

 

1 ( )
( ,0)

0 (1 )

b
J N

b

 

 

   
  

   
.                                                                                  (6) 

 

The eigenvalues of this matrix are obtained as 1 1 ( )b      and 
2 (1 )b      . 

From Theorem 1, it is clear that the equilibrium point  , 0N  is locally asymptotically stable.  

 

Remark 1: The 
b



 
 ratio which is denoted by    is the threshold parameter of the     

epidemic model, and this threshold parameter is called the “basic reproduction rate” or the 

“basic reproduction number”. The 0R
b







 ratio has a biological interpretation. The 

0R  

value is the number of secondary infections caused by one infected person in the infection 

period (Anderson and May, 1991). If 0 1R   then there is only one equilibrium point as the 

disease-free equilibrium point, and this equilibrium point is locally asymptotically stable. 

 

Theorem 5: The following topological classifications are applicable for the equilibrium point 

0E  of System (1): 

(i) If b   , it is a “sink” point, 
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(ii) If b   , it is a “source” point, 

(iii) If b   , it is a “non-hyperbolic” point. 

 

Proof: It is clear from Theorem 4. 

 

Example 1. At a population density of 100N  , with the parameters 0.5b  ; 0.1  ; 

0.5  , let’s take the following  system  

 

1

1

0.6(100 )

0.5
0.4

100

t t t t t

t t t t

S S I S S
N

I I I S






   

 

 

 

where the number of susceptible individuals are 70S   and the number of infected 

individuals are 30I  . 

 

 
 

Figure 1. The time series plot of System (1) with the parameter values of 0.5b  ; 0.1   and 0.5   

 

Now, to continue the analysis of the     epidemic model, let us assume that 0 1R  . 

When we look at the local asymptotic stability condition for the endemic (diseased) 

equilibrium point, we obtain the theorem below. With this theorem, we express the local 

asymptotic stability condition of the equilibrium point 1E  . 

 

Theorem 6:  Assume that the trace of the matrix ( , )J S I  of System (1) is non-negative. If 

0

2
1

( )
R

b 
 


 then the endemic equilibrium point is locally asymptotically stable. 

 

Proof: The Jacobian matrix form taken in the neighbourd of the endemic equilibrium point is 

obtained as follows: 

 

0

0

0

1 ( )
( , )

( )( 1) 1

b R
RJ S I

b R






 
  


 
   

.                                                                                            (7) 

 

 :              

 :    
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From this, we get 

 

0( ) 2 ( )Tr J b R    and 
0 0

0

det( ) 1 ( ) ( )( 1)J b R b R
R


       .                    (8) 

 

By using theorem 1; the local asymptotic stability condition 

 

0 0 0

0

2 ( ) 2 ( ) ( )( 1) 2b R b R b R
R


                                               (9) 

 

can be written, and if this statement is simplified then we get 

 

0

0

1
0 (1 ) R

R
    .                                                  (10)   

 

It is clear that the inequality 
0

1
(1 ) 1

R
    holds since      and 1  . With the 

assumption of the trace of the matrix ( , )J S I  is non-negative, 
0

2
R

b 



 is true.  

 

Example 2. At the population density of 100N  , with the parameter values of 0.5b  ; 

0.1  ; 0.8  , let’s take the following  system  

 

1

1

0.6(100 )

0.8
0.4

100

t t t t t

t t t t

S S I S S
N

I I I S






   

 

 

 

where the number of susceptible individuals are 70S  and the number of infected 

individuals are 30I  . 

The equilibrium point  75, 25 of the system is locally asymptotically stable. 

 

 
Figure 2. The time series plot of System (1) with the parameter values of 0.5b  ; 0.1   and 0.8   

  

 :              

 : 
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2.2.2. Dynamics of System (1) Depending on Unconstrained Positive Parameters 

 

Let us take System (1) without any constraint such that 0b  , 0   and 0  . 

Considering Definition 1, a topological classification for the equilibrium point 1E  is given 

with the following theorem. 

 

Theorem 7: Let’s b   .  

(i) If 2b    for 0 2b    then the equilibrium point 1E   of System (1) is a 

“sink” point. 

(ii) If 2b     for 2b   , then the equilibrium point 1E   of System (1) is a 

“source” point. 

(iii) If 0 2b    and 2b     or 2b    and 2b    , then the 

equilibrium point 1E   of System (1) is a “saddle” point. 

(iv) If 2 b    for 2,b     then the equilibrium point 1E   of System (1) is a 

point of “period-doubling bifurcation”. 

 

Proof: It is clear from Theorem 2. 

 

Example 3. At the population density of 100N  , with the parameter values of 0.5b  ;

0.1  ; 2.5  , let’s take the following system 

 

1

1

0.6(100 )

2.5
0.4

100

t t t t t

t t t t

S S I S S
N

I I I S






   

 

 

 

where the number of susceptible individuals are 70S  and the number of infected 

individuals are 30I  . 

The equilibrium point  1 24,76E  of the system is locally asymptotically stable. 

 

       
                  (a)                                                                            (b) 

Figure 3. (a) The time series plot of System (1) with the parameter values of  0.5b  ; 0.1  and 2.5   

(b) The bifurcation plot based on 0.5b  ; 0.1   and the values in the interval of (2.2,3)   
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3. RESULTS AND DISCUSSION 

 

 

3.1. RESULTS 

 

 

From Fig. 1, the equilibrium point  0 100,0E   of the system is locally 

asymptotically stable. In  Example 1, a population of 100 individuals was considered. 

Looking at the initial status, it is clear that 70 individuals were susceptible, while 30 were 

carrying the disease. As the rate of contact between infected individuals and susceptible 

individuals had a small value, it is seen that the 30 patients recovered in time, and 100 

individuals continued their lives as susceptible. Considering the selected parameter values in 

the mathematical sense, it is seen that b   , and the equilibrium point  100,0 of System 

(1) is locally asymptotically stable. Moreover, the condition 0 0.83 1R   shows the presence 

of an equilibrium point where there are no infected individuals, and this equilibrium point is a 

unique point. 

 The Fig. 2 shows that, in a population of 100 where 70 individuals were susceptible 

and 30 were carrying the disease, the number of infected individuals dropped to 25 in time, 

and the number of susceptible individuals increased from 70 to 75. Looking at the selected 

parameter values in the mathematical sense, it is seen that      ,  and the equilibrium 

point  1 75, 25E   of System (1) is locally asymptotically stable. Moreover, 
0 1.33 1R   , 

and from Theorem 6, the value 
01 3.33R   shows the presence of an equilibrium point 

containing the number of infected individuals and that this unique equilibrium point is stable. 

 As seen in Fig. 3(a), because the rate of contact between infected individuals and 

susceptible individuals was higher than the rate of recovery, we see that the number of 

infected individuals increased from 30 to 76 in time, while the number of susceptible 

individuals decreased from 70 to 24. In this case, the disease was spread. Looking at the 

selected parameter values in the mathematical sense, it is seen that 2b    , and the 

equilibrium point  1 24,76E   of System (1) is locally asymptotically stable.  

In Fig. 3(b), we see how the equilibrium points of the population varied based on the   

contact rate values while keeping the 0.5b  ; 0.1   values constant. There was a bifurcation 

at the 2.6   value. The dynamicity of the population displays a change at this point. This 

situation provides information on the numbers of carrying the disease as the contact rate of the 

disease changes. 

 

 

3.2. DISCUSSION 

 

 

Keeping the initial conditions  ( , ) 70,30S I   constant, when we observe the changes 

in the case of changing the rates of recovery or mortality, we see that different dynamics are 

formed.  
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Figure 4. The bifurcation plot based on 0.5b  ; 3  and the values in the interval (0,1.4)   

 

As seen in Fig. 4, a bifurcation plot was obtained on the varying values of recovery 

rates where the parameters 3  , 0.5b   were constant. At 0.5  , after “period-doubling 

bifurcation”, it is seen that stable equilibrium points emerged against the increasing values of 

the recovery rate. As the recovery rate was high, it is seen that the infected population 

decreased in time.  
 

 
(a) 

 
(b) 

Figure 5. (a) The bifurcation plot based on 0.05b  ; 3   and the values in the interval (0,2)   

(b) The bifurcation plot based on 0.05b  ; 3.5   and the values in the interval (0.5,1.5)   

 

As seen in Fig. 5(a), a bifurcation plot was obtained on the varying values of recovery 

rates where the parameters 3  , 0.05b   were constant. For the value of the probability of 

mortality 0.05b  , if the rate of the recovery was low, then a chaos state emerged. As seen 

here, at the value of 0.95  , period-doubling bifurcation disappeared, and there was a 

transition into a stable state as the recovery rate increased. As seen in Fig. 5(b), when the 
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parameters of 3.5  and 0.05b  are taken, it is seen that there was a chaos corresponding 

to the low values of  . As seen here, at the value of          period-doubling bifurcation 

disappeared, and there was a transition into a stable state as the recovery rate increased.  
 

 
Figure 6. The bifurcation plot based on 0.75  ; 3  and the values in the interval (0,1)b . 

 

As seen in Fig. 6, a bifurcation plot was obtained on the varying values of mortality 

rates where the parameters 3  , 0.75  were constant. As seen here, at the value of 

0.25b  , period-doubling bifurcation disappeared, and there was a transition into a stable 

state with increased recovery rate as the mortality rate increased. 
 

 

4. CONCLUSION 
 

 

This study presents the existence of equilibrium points of a discrete-time epidemic 

system and the spreading analysis of the disease based on these equilibrium points. 

Constraints on the parameter values and the changes in population in unconstrained 

conditions were investigated. Using data on the recovery rate, contact rate and mortality rate, 

the changes in the number of infected individuals were examined via plots. 
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