ON THE FUNCTION SEQUENCES AND SERIES IN THE NON-NEWTONIAN CALCULUS

BIRSEN SAĞIR ${ }^{1}$, FATMANUR ERDOĞAN ${ }^{2}$
Manuscript received: 24.11.2017; Accepted paper: 15.11.2019;
Published online: 30.09.2019.

Abstract

The purpose of this study is to examine the function sequences and series in the non-Newtonian real numbers.

Firstly, the information about the studies that are done until today and the application areas, was briefly given. Non-Newtonian calculus was introduced which is an alternative to the classical calculus, definitions, theorems and properties were given. *-Function sequence, *-function series, *-pointwise convergence and ${ }^{*}$-uniform convergence were introduced and theorems were proven which are exposed important differences between *-pointwise convergence and *-uniform convergence. In addition, *-convergence tests such as *-Cauchy criterion and *-Weierstrass M-criterion were obtained. The relationship between *-uniform convergence of the *-continuity, *-integral and $*$-derivative was examined respectively.

Keywords: *-Function Sequences; *-Function Series; *-Pointwise Convergence; *-Uniform Convergence; *-Continuity.

1. INTRODUCTION AND PRELIMINARIES

Non-Newtonian calculus was firstly introduced and studied by Michael Grossman and Robert Katz between 1967 and 1970[1]. Various researchers have been developing its dimensions[2-8]. Grossman worked on some properties of derivatives and integrals[9]. Recently, Duyar, Sağır and Oğur obtained some basic topological properties on nonNewtonian real line[10]. Sağır and Duyar got some results on Lebesgue measure in the sense of non-Newtonian Calculus[11]. In this article, we examine $*$-function sequences and $*_{\text {- }}$ function series.

A generator is defined as an injective function with domain \mathbb{R} and the range of generator is a subset of $\mathbb{R} \cdot \mathbb{R}(N)_{\alpha}=\mathbb{R}(N)=\{\alpha(x): x \in \mathbb{R}\}$ is called set of non-Newtonian real numbers where α is a generator. Let take any α generator with range $A=\mathbb{R}(N)_{\alpha}$. Let define α-addition, α-subtraction, α-multiplication, α-division and α-order as follows:
α-addition
α-subtraction
α-multiplication
α-division

$$
\begin{aligned}
x \dot{+} y & =\alpha\left\{\alpha^{-1}(x)+\alpha^{-1}(y)\right\} \\
x \dot{-} y & =\alpha\left\{\alpha^{-1}(x)-\alpha^{-1}(y)\right\} \\
x \dot{\times} y & =\alpha\left\{\alpha^{-1}(x) \times \alpha^{-1}(y)\right\} \\
x \dot{/} y & =\alpha\left\{\alpha^{-1}(x) / \alpha^{-1}(y)\right\}
\end{aligned}
$$

[^0]α-order
$$
x \dot{<} y(x \leq y) \Leftrightarrow \alpha^{-1}(x)<\alpha^{-1}(y)\left(\alpha^{-1}(x) \leq \alpha^{-1}(y)\right) .
$$
for $x, y \in \mathbb{R}(N)_{\alpha}[1]$.
$\left(\mathbb{R}(N)_{\alpha}, \dot{,}, \dot{x}, \dot{\leq}\right)$ is totally ordered field[5,12].
The numbers $x>\dot{0}$ are α-positive numbers and the numbers $x<\dot{0}$ are α-negative numbers in $\mathbb{R}(N)_{\alpha}$. α-integers are obtained by successive α-addition of $\dot{1}$ to $\dot{0}$ and successive α-subtraction of $\dot{1}$ from $\dot{0}$. Hence α-integers are as follows:
$$
\ldots, \alpha(-2), \alpha(-1), \alpha(0), \alpha(1), \alpha(2), \ldots
$$

For each integer n, we set $\dot{n}=\alpha(n)$. If \dot{n} is an α-positive integer, then it is n times sum of i [1, 5, 13].
α-absolute value of a number $x \in \mathbb{R}(N)_{\alpha}$ is defined by

$$
|x|_{\alpha}=\alpha\left(\left|\alpha^{-1}(x)\right|\right)=\left\{\begin{array}{ccc}
x & \text { if } & x>\dot{0} \\
\dot{0} & \text { if } & x=\dot{0} \\
\dot{0} \dot{\oplus} x & \text { if } & x<\dot{0}
\end{array} .\right.
$$

For $x \in \mathbb{R}(N)_{\alpha}, \sqrt[p]{x}=\alpha\left(\sqrt[p]{\alpha^{-1}(x)}\right)$ and $x^{p_{\alpha}}=\alpha\left\{\left[\alpha^{-1}(x)\right]^{p}\right\}[1,5]$.
Let $\left(\mathbb{R}(N)_{\alpha},|\cdot|_{\alpha}\right)$ be non-Newtonian metric space. The point a is called $\alpha-$ accumulation point of set S (or non-Newtonian accumulation point of set S) if $(\dot{(a \dot{\circ}, ~}, a \dot{+} \dot{)}-\{a\}) \cap S \neq \varnothing$ for every $\varepsilon \dot{>} \dot{0}$ where $S \subset \mathbb{R}(N)_{\alpha}$ and $a \in \mathbb{R}(N)_{\alpha}$. The set of all α-accumulation points of set S is denoted by $S^{\prime \alpha}$.

Let sequence $\left(x_{n}\right)$ and a point x be given in non-Newtonian metric space $\left(\mathbb{R}(N)_{\alpha},|\cdot|_{\alpha}\right)$. If for every number $\varepsilon \dot{>} \dot{0}$ there exists $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $\left|x_{n} \dot{x}\right|_{\alpha} \dot{\varepsilon}$ for all $n \geq n_{0}$, then it is said that the sequence $\left(x_{n}\right)$ is non-Newtonian convergent(or α convergent) and this situation is denoted by ${ }^{\alpha} \lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \xrightarrow{\alpha} x$ as $n \rightarrow \infty$. When every number $\varepsilon \dot{>} \dot{0}$ is given, if there exists a $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $\left|x_{n} \dot{-x}\right|_{\alpha} \dot{<} \varepsilon$ for all $n, m \geq n_{0}$, then the sequence $\left(x_{n}\right)$ is called non-Newtonian Cauchy sequence[5].

Grossman and Katz described the *-calculus with the help of two arbitrary selected generators. In this study, we studied according to ${ }^{*}$-calculus. Let take any generators α and β and let * ("star") is shown the ordered pair of arithmetics (α-arithmetic, β-arithmetic). The following notations will be used[1].

	$\alpha-$ arithmetic	β-arithmetic
Realm	$A\left(=\mathbb{R}(N)_{\alpha}\right)$	$B\left(=\mathbb{R}(N)_{\beta}\right)$
Summation	$\dot{+}$	$\ddot{+}$
Subtraction	-	$\ddot{=}$
Multiplication	\dot{x}	\ddot{x}
Division	\dot{l}	\ddot{i}
Ordering	$\dot{ }$	$\ddot{<}$

In the $*$-calculus, α-arithmetic is used on arguments and β-arithmetic is used on values.

If the generators α and β are chosen as one of I and exp, the following special calculuses are obtained.

Calculus	α	β
Classic	I	I
Geometric	I	\exp
Anageometric	\exp	I
Bigeometric	\exp	\exp

The isomorphism from α-arithmetic to β-arithmetic is the unique function l (iota) that possesses the following three properties:

1. l is one to one,
2. t is on A and onto B,
3. For any numbers u and v in A,

$$
\begin{aligned}
& t(u \dot{+} v)=\imath(u) \ddot{+} \imath(v), \\
& t(u \dot{\oplus} v)=t(u) \ddot{\sim} t(v), \\
& \imath(u \dot{\times} v)=\imath(u) \ddot{\times} \imath(v), \\
& \imath(u \dot{j} v)=\imath(u) \ddot{/} \imath(v), v \neq \dot{0} \\
& u \dot{<} v \Leftrightarrow t(u) \ddot{<} t(v) .
\end{aligned}
$$

It turns out that $l(x)=\beta\left\{\alpha^{-1}(x)\right\}$ for every number x in A, and that $l(\dot{n})=\ddot{n}$ for every integer $n[1,14]$.

Let $X \subset \mathbb{R}(N)_{\alpha}, a \in X^{\prime \alpha}, b \in \mathbb{R}(N)_{\beta}$ and let $f: X \rightarrow \mathbb{R}(N)_{\beta}$ be a function. If for every $\varepsilon \ddot{>} \ddot{0}$ there exists a number $\delta=\delta(\varepsilon) \dot{>} \dot{0}$ such that $|f(x) \ddot{-} b|_{\beta} \ddot{<} \varepsilon$ for all $x \in X$ which holds condition $\dot{0} \dot{<}|x \dot{\dot{\circ}}|_{\alpha} \dot{<}$, then it is said that the ${ }^{*}$-limit of the function f (in the sense of Cauchy) at the point a is b and this is denoted by

$$
\text { *- } \lim _{x \rightarrow a} f(x)=b
$$

If sequence $\left(f\left(x_{n}\right)\right) \beta$-converges to the number b for all sequences $\left(x_{n}\right) \subset X-\{a\}$ which α-converge to point a, then it is said that the ${ }^{*}$-limit of the function f (*-sequential limit of the function f) at the point a is b and this is denoted by

$$
*-\lim _{x \rightarrow a} f(x)=b .
$$

Let $X \subset \mathbb{R}(N)_{\alpha}, \quad a \in X$ and a function $f: X \rightarrow \mathbb{R}(N)_{\beta}$ be given. If for every $\varepsilon \ddot{>} 0$ there exists a number $\delta=\delta(\varepsilon)>\dot{0}$ such that $|f(x) \ddot{\sim} f(a)|_{\beta} \ddot{<} \varepsilon$ for all $x \in X$ which holds condition $|x \dot{\circ}|_{\alpha} \dot{<} \delta$, then it is said that the function f is *-continuous at point $a \in X$. The function f is *-continuous at the point $a \in X$ iff this point a is an element of domain of the function f and $*-\lim _{x \rightarrow a} f(x)=f(a)$. If ${ }^{\beta} \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$ for all sequences $\left(x_{n}\right)$ which hold
conditions ${ }^{\alpha} \lim _{n \rightarrow \infty} x_{n}=a$ and $x_{n} \in X$ for $n=1,2,3, \ldots$, then the function f is called sequentially *-continuous at the point $a \in X$.

If the following *-limit exists, we denote it by $[\stackrel{*}{D} f](a)$ and call it the *-derivative of f at a, and say that f is $*$-differentiable at a :

$$
*-\lim _{x \rightarrow a}\{[f(x) \ddot{\varphi} f(a)] \ddot{j}[\imath(x) \ddot{-} \imath(a)]\} .
$$

If it exists, $[\stackrel{*}{D} f](a)$ is necessarily in B.
The ${ }^{*}$-average of a *-continuous function f on $\dot{[} r, s \dot{]}$ is denoted by $\stackrel{*}{M}_{r}^{s} f$ and defined to be β-limit of the β-convergent sequence whose nth term is β-average of $f\left(a_{1}\right), \ldots, f\left(a_{n}\right)$, where a_{1}, \ldots, a_{n} is the n-fold α-partition of $[r, s \dot{]}$.

The *-integral of a *-continuous function f on $\dot{[} r, s \dot{s}$, denoted by $\int_{r}^{*} f(x) d^{*} x$, is the number $[l(s) \ddot{\ddot{ }} \imath(r)] \ddot{\times} \stackrel{*}{M}_{r}^{s} f$ in $B[1]$.

Theorem 1: (First fundamental theorem of $*$-calculus) If f is $*$-continuous on $[r, s]$ and $g(x)={ }^{*} \int_{r}^{x} f(t) d^{*} t$ for every $x \in \dot{[} r, s \dot{1}$, then $\stackrel{*}{D} g=f$ on $\dot{[} r, s \dot{j}[1]$.

Theorem 2: (Second fundamental theorem of *-calculus) If $\stackrel{*}{D} h$ is *-continuous on $\dot{[} r, s \dot{\rfloor}$, then $\int_{r}^{s}[\stackrel{*}{D} h](x) d^{*} x=h(s) \ddot{-} h(r)[1]$.

2. THE RESULTS AND DISCUSSION

Proposition 1. The definitions *-limit in the sense of Cauchy and *-sequential limit are equivalent.

Proof: Let $*-\lim _{x \rightarrow a} f(x)=L$ in the sense of Cauchy. Then, for every $\varepsilon \ddot{>} \ddot{0}$ there exists a number $\delta=\delta(\varepsilon)>\dot{0}$ such that $|f(x) \ddot{\sim} L|_{\beta} \ddot{<} \varepsilon$ for all $x \in X$ which holds condition $\dot{0} \dot{<}|x \dot{\circ}-a|_{\alpha} \dot{<} \delta$. Let an arbitrary sequence $\left(x_{n}\right) \subset X-\{a\}$ such that ${ }^{\alpha} \lim _{n \rightarrow \infty} x_{n}=a$ be taken. Hence, specially for the number $\delta \dot{>} \dot{0}$ there exist a number $n_{0} \in \mathbb{N}$ such that $\left|x_{n} \dot{-}\right|_{\alpha} \dot{<} \delta$ for all $n>n_{0}$. Then, $\left|f\left(x_{n}\right) \ddot{=} L\right|_{\beta} \ddot{<} \varepsilon$ for all $n>n_{0}$. Namely, it is seen that ${ }^{*}$-sequential limit is * $-\lim _{x \rightarrow a} f(x)=L$.

Conversely, let the $*$-sequential limit be $*-\lim _{x \rightarrow a} f(x)=L$. Assume the contrary. Namely, ${ }^{*}-\lim _{x \rightarrow a} f(x) \neq L$ in the sense of Cauchy. In this case, for all number $\delta>\dot{0}$ there exist at least a number $\varepsilon \ddot{>} \ddot{0}$ such that $|f(x) \ddot{-} L|_{\beta} \ddot{\geq} \varepsilon$ for all $x \in X$ which holds condition $\dot{0}<|x \dot{\circ}|_{\alpha}<\delta$. Then, if $\delta=\frac{\dot{1}}{\dot{n}} \alpha$ is taken for all $n \in \mathbb{N},\left|f\left(x_{n}\right) \ddot{-} L\right|_{\beta} \ddot{\geq} \varepsilon$ for all $x_{n} \in X$ which holds condition $\left.\dot{0} \dot{<} x_{n} \dot{-} a\right|_{\alpha} \dot{<} \frac{\dot{1}}{\dot{n}} \alpha$. Thus, a sequence $\left(x_{n}\right) \subset X-\{a\}$ is found which $x_{n} \xrightarrow{\alpha} a$ but holds ${ }^{\beta} \lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$. This contradicts the hypothesis. Namely, * $-\lim _{x \rightarrow a} f(x)=L$ in the sense of Cauchy.

2.1. *-FUNCTION SEQUENCES

Definition 1. Let S be a nonempty subset of $\mathbb{R}(N)_{\alpha}$ and let $k \in \mathbb{N}$. The sequence $\left(f_{k}\right)=\left(f_{1}, f_{2}, \ldots, f_{k}, \ldots\right.$) is called $*$-function sequence (or non-Newtonian function sequence) for functions $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$. Here all functions f_{k} defined on same set. The sequence $\left(f_{k}\left(x_{0}\right)\right)$ is β-sequence (or non-Newtonian sequence) in $\mathbb{R}(N)_{\beta}$ for each $x_{0} \in S$.

Let take *-function sequence $\left(f_{k}\right)$ with $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ and let take sequence $\left(f_{k}\left(x_{0}\right)\right)$ such that β-convergent (or non-Newtonian convergent) for $x_{0} \in S$. Also, let ${ }^{\beta} \lim _{k \rightarrow \infty} f_{k}\left(x_{0}\right)=a_{x_{0}}$. Since β-limit of a sequence is unique, the number $a_{x_{0}}$ is unique. Let define the function f as $f\left(x_{0}\right)=a_{x_{0}}$ at the point x_{0}. If this process is done for each $x \in S$, then the function f is defined as $f: S \rightarrow \mathbb{R}(N)_{\beta}, f(x)={ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)$.

Definition 2. Let *-function sequence $\left(f_{k}\right)$, which $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be given. If the sequence $\left(f_{k}\left(x_{0}\right)\right)$ is β-convergent for $x_{0} \in S$, then the $*$-function sequence $\left(f_{k}\right)$ is called $*_{\text {- }}$ convergent (or non-Newtonian convergent). The *-function sequence $\left(f_{k}\right)$ is said *-pointwise converges or $*$-converges to function f , if the sequence $\left(f_{k}(x)\right)$ is β-convergent for each $x \in S$ and ${ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)=f(x)$. In this case, the function f is called $*$-limit of the $*$-function sequence $\left(f_{k}\right)$ and it is shown as follows:

$$
-\lim _{k \rightarrow \infty} f_{k}=f(-\text { pointwise }) \text { or } f_{k} \xrightarrow{*} f(*-\text { pointwise }) .
$$

Then, the $*$-function sequence $\left(f_{k}\right) *$-converges pointwise to the function f, if for any given $\varepsilon \ddot{>} \ddot{0}$, there exists a natural number $k_{0}=k_{0}(x, \varepsilon)$ such that $\left|f_{k}(x) \ddot{\sim} f(x)\right|_{\beta} \ddot{<} \varepsilon$ for all $k>k_{0}$ and for each $x \in S$.

Example 1. Let the functions $f_{k}: \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be defined as $f_{k}(x)=\frac{l(x)}{\ddot{k}} \beta$ for all

Solution 1. For each $x \in R(N)_{\alpha}$, we have

$$
{ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)={ }^{\beta} \lim _{k \rightarrow \infty} \frac{l(x)}{\ddot{k}} \beta=t(x) \ddot{x}^{\beta} \lim _{k \rightarrow \infty} \frac{\ddot{1}}{\ddot{k}} \beta=t(x) \ddot{\times} \ddot{0}=\ddot{0} .
$$

Then, we get $*-\lim _{k \rightarrow \infty} f_{k}=f=\ddot{0}(*-$ pointwise $)$.
Example 2. a) The function $* \sin : \mathbb{R}(N)_{\alpha} \rightarrow \ddot{[} \ddot{0} \ddot{=} \ddot{1}, \ddot{1} \ddot{j}$ defined as $* \sin y=\beta\left[\sin \left(\alpha^{-1}(y)\right)\right]$. Then, the inequality $\left.\left.\right|^{*} \sin y\right|_{\beta} \ddot{\leq} \ddot{1}$ holds for all $y \in \mathbb{R}(N)_{\alpha}$.
b) Let $\quad f_{k}: \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}, \quad f_{k}(x)=\frac{\ddot{1}}{\ddot{k}} \beta \ddot{x}^{*} \sin ((\dot{k} \dot{\times} x) \dot{+} \dot{k})$. Then, we have $f_{k} \xrightarrow{*} f=\ddot{0}(*-$ pointwise $)$.

Solution 2. a) We have $\alpha^{-1}(y) \in \mathbb{R}$ for all $y \in \mathbb{R}(N)_{\alpha}$ and $\left|\sin \left(\alpha^{-1}(y)\right)\right| \leq 1$ for all $\alpha^{-1}(y) \in \mathbb{R}$. Thus

$$
\left.\left.\right|^{*} \sin y\right|_{\beta}=\beta\left(\left|\sin \left(\alpha^{-1}(y)\right)\right|\right) \ddot{\leq} \beta(1)=\ddot{1}
$$

b)Since $\left|{ }^{*} \sin y\right|_{\beta} \ddot{\leq} \ddot{1}$ for all $y \in \mathbb{R}(N)_{\alpha}$, we have

$$
\begin{aligned}
\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta} & =\left|\frac{\ddot{1}}{\ddot{k}} \beta \ddot{x}^{*} \sin ((\dot{k} \dot{\times} x)+\dot{k}) \ddot{-} \ddot{0}\right|_{\beta} \\
& =\left|\frac{\ddot{1}}{\ddot{k}} \beta \ddot{x}^{*} \sin ((\dot{k} \dot{\times} x)+\dot{k})\right|_{\beta} \\
& \ddot{\leq} \frac{\ddot{1}}{\ddot{k}} \beta .
\end{aligned}
$$

Thus we get $f_{k} \xrightarrow{*} f=\ddot{0}(*-$ pointwise $)$ for all $k>k_{0}$, where $\ddot{k}_{0} \ddot{>} \frac{\ddot{1}}{\ddot{k}} \beta, \frac{\ddot{1}}{\ddot{k}} \beta \ddot{<} \varepsilon$.
Although *-convergence is useful in many cases, there are some special cases, which it is not sufficient. Let $\left(f_{k}\right) *$-converges pointwise to the function f. In this case, ${ }^{*}$-limit function f may not be $*$-continuous even if all of the functions f_{k} are $*$-continuous. For example, let the $*$-function sequence $\left(f_{k}\right)$ be given as follows

$$
f_{k}(x)=\left\{\begin{array}{cc}
\ddot{0} & , \quad x \geq \frac{\dot{1}}{\dot{k}} \alpha \\
(\ddot{0} \ddot{-} \ddot{k}) \ddot{\times} l(x) \ddot{+} \ddot{1} & , \quad \dot{0} \leq x<\frac{1}{\dot{k}} \alpha
\end{array} .\right.
$$

Then, $f_{k}(x)$ is *pointwise converges to the function f, where $f(x)= \begin{cases}\ddot{0} & , x \neq \dot{0} \\ \ddot{1} & , x=\dot{0}\end{cases}$ for all $x \in \dot{[0}, i]$. The function f is not $*$-continuous although the function f_{k} is $*$-continuous for all number k.

Example 3. Let $\left.f_{k}: \dot{(0}, \dot{1}\right) \rightarrow \mathbb{R}(N)_{\beta}$ and $f_{k}(x)=l(x)^{k_{\beta}}$. Then ${ }^{*}$-pointwise limit of the sequence $\left(f_{k}\right)$ is $\ddot{0} \in \mathbb{R}(N)_{\beta}$.

Solution 3. Let take arbitrary $\varepsilon \ddot{>} \ddot{0}$ and let take $x_{0} \in(\ddot{0}, \dot{1})$. If the natural number k_{0} is chosen as $k_{0} \geq \frac{\ln \beta^{-1}(\varepsilon)}{\ln \alpha^{-1}\left(x_{0}\right)}$, then

$$
\left|f_{k}\left(x_{0}\right) \ddot{=} f\left(x_{0}\right)\right|_{\beta}=\left|\imath\left(x_{0}\right)^{k_{\beta}} \ddot{=} \ddot{0}\right|_{\beta}=\imath\left(x_{0}\right)^{k_{\beta}} \ddot{<} \varepsilon
$$

for all $k>k_{0}$. Hence, ${ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)={ }^{\beta} \lim _{k \rightarrow \infty} t(x)^{k_{\beta}}=\ddot{0}=f(x)$ on α-interval $\left.\ddot{(0}, i\right)$ since x_{0} is arbitrary. Then $f_{k} \xrightarrow{*} f=\ddot{0}(*-$ pointwise $)$.

Definition 3. Let take the *-function sequence $\left(f_{k}\right)$, where $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$. The *function sequence $\left(f_{k}\right)$ *-uniform converges to the function f on set S, if for any given $\varepsilon \ddot{>} \ddot{0}$, there exists a natural number k_{0} depends on number ε but not depend on variable x such that $\left|f_{k}(x) \ddot{\sim} f(x)\right|_{\beta} \ddot{<} \varepsilon$ for all $k>k_{0}$ and each $x \in S$. We denote $*$-uniform convergence by $*-\lim _{k \rightarrow \infty} f_{k}=f(*-$ uniform $)$ or $f_{k} \xrightarrow{*} f(*-$ uniform $)$.

Example 4. Let $f_{k}: \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ and $f_{k}(x)=\frac{{ }^{*} \sin x}{\ddot{k}} \beta$. The *-function sequence $\left(f_{k}\right)$ *-uniform converges the function f which $f(x)=0$ on $\mathbb{R}(N)_{\alpha}$.

Solution 4. For any $\varepsilon \ddot{>} \ddot{0}$ and all $x \in \mathbb{R}(N)_{\alpha}$, we have

$$
\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta}=\left|\frac{{ }^{*} \sin x}{\ddot{k}} \beta \ddot{-} \ddot{0}\right|_{\beta}=\frac{\left.\left.\right|^{*} \sin x\right|_{\beta}}{\ddot{k}} \beta \ddot{\leq} \frac{\ddot{1}}{\ddot{k}} \beta
$$

and therefore for natural number k_{0}, which is chosen as $k_{0} \geq \frac{1}{\beta^{-1}(\varepsilon)}$, one finds that $\frac{\ddot{1}}{\ddot{k}} \ddot{<} \varepsilon$ where all $k>k_{0}$. Then we get $f_{k} \xrightarrow{*} f(*-$ uniform $)$ since $k_{0}=k_{0}(\varepsilon)$.

Example 5. If $\left.f_{k}: \dot{[0}, \dot{+} \infty\right) \rightarrow R(N)_{\beta}$ and $f_{k}(x)=\frac{l(x)}{\ddot{k}} \beta$, the sequence $\left(f_{k}\right)$ is not $*$-uniform convergent.

Solution 5. It has been shown that this sequence *-pointwise converges to the function $f=\ddot{0}$ (see Example 1). If $f_{k} \xrightarrow{*} f(*-$ uniform) had held, there would existed a natural number k_{0} which is corresponds $\varepsilon=\ddot{1}$ such that

$$
\left|\frac{l(x)}{\ddot{k}} \beta \ddot{-} \ddot{0}\right|_{\beta} \ddot{<} \ddot{1}
$$

for $k>k_{0}$ and on α-interval $\left.\ddot{[0}, \dot{+} \infty\right)$. Especially, $\left|\frac{t(x)}{\ddot{k}_{0} \ddot{+} \ddot{1}} \beta\right|_{\beta} \ddot{<} \ddot{1}$ is obtained for $k=k_{0}+1$ and all $x \in[\ddot{0}, \dot{+} \infty)$. But

$$
\ddot{1} \ddot{>}\left|\frac{t(x)}{\ddot{k}_{0} \ddot{+} \ddot{1}} \beta\right|_{\beta}=\left|\frac{\ddot{2} \ddot{x}\left(\ddot{k}_{0} \ddot{+} \ddot{1}\right)}{\ddot{k}_{0} \ddot{+} \ddot{1}} \beta\right|_{\beta}=\ddot{2}
$$

for the point $\left.x=\dot{2} \dot{\times}\left(\dot{k}_{0} \dot{+} \dot{1}\right) \in \dot{[0}, \dot{+\infty}\right)$. This is a contradiction. Then f_{k} is not $*$-uniform convergent to the point $0 \ddot{0}$.

Remark 1. While a ${ }^{*}$ - function sequence is *-uniform convergent on a set, this *-function sequence may not be *-uniform convergent on another set. Every *-uniform convergent sequence is *-pointwise convergent, but every *-pointwise convergent sequence does not have to be $*$-uniform.

Theorem 3. Let the sequence $\left(f_{k}\right)$ with $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be *-convergent the function f on the set S and let

$$
c_{k}={ }^{\beta} \sup \left\{\left|f_{k}(x) \ddot{=} f(x)\right|_{\beta}: x \in S\right\} .
$$

In this case, the sequence is *-uniform convergent to the function f on the set S iff ${ }^{\beta} \lim _{k \rightarrow \infty} c_{k}=\ddot{0}$ holds.

Proof: Let the sequence $\left(f_{k}\right)$ be *-uniform convergent on the set S. For arbitrary $\varepsilon \ddot{>} 0$, there exist $k_{0} \in N$ such that

$$
\left|f_{k}(x) \ddot{=} f(x)\right|_{\beta} \ddot{<} \varepsilon
$$

for all $x \in S$ and for $k>k_{0}(\varepsilon)$. Hence, we have $c_{k} \ddot{<\varepsilon}$. Since $\varepsilon \ddot{>} \ddot{0}$ is arbitrary, we get ${ }^{\beta} \lim _{k \rightarrow \infty} c_{k}=\ddot{0}$.

Conversely, if ${ }^{\beta} \lim _{k \rightarrow \infty} c_{k}=\ddot{0}$, then there exists a number k_{0} such that for $k>k_{0}$ for any $\varepsilon \ddot{>} 0 \ddot{\text {. Since }} c_{k}{ }^{\beta}\left\{\sup \left|f_{k}(x) \ddot{=} f(x)\right|_{\beta}: x \in S\right\}$, we get

$$
\begin{array}{r}
\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta} \ddot{\leftrightharpoons} c_{k} \\
\ddot{<} \varepsilon
\end{array}
$$

for all $x \in S$ and for all $k>k_{0}$. Thus, $f_{k} \xrightarrow{*} f(*-$ uniform $)$.
Remark 2. If $\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta} \xrightarrow{\beta} \ddot{0}$ for each $x \in S$, then we have $f_{k} \xrightarrow{*} f(*-$ pointwise $)$ and if ${ }^{\beta} \sup \left\{\left|f_{k}(x) \ddot{\circ} f(x)\right|_{\beta}: x \in S\right\} \xrightarrow{\beta} \ddot{0}$, we have $f_{k} \xrightarrow{*} f(*-$ uniform $)$.

Example 6. We investigate the *-pointwise limit of the sequence $\left(f_{k}\right)$ where $\left.f_{k}: \dot{0}, \dot{1}\right] \rightarrow \mathbb{R}(N)_{\beta}, f_{k}(x)=l(x)^{2_{\beta}}=\frac{l(x)}{\ddot{k}} \beta$ and show this convergence is *-uniform.

Solution 6. For each $x \in \dot{[} \dot{0}, \dot{1}]$, since $\frac{l(x)}{\ddot{k}} \beta \xrightarrow{*} \ddot{0}(*-$ pointwise $)$ holds in example 1 ,

$$
{ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)={ }^{\beta} \lim _{k \rightarrow \infty}\left(l(x)^{2_{\beta}} \ddot{=} \frac{l(x)}{\ddot{k}} \beta\right)=l(x)^{2_{\beta}}=f(x)
$$

hence $f_{k} \xrightarrow{*} f(*-$ pointwise $)$ is found. Additionally, by the theorem 3 , this convergence is *-uniform since

$$
\left.c_{k}={ }^{\beta} \sup \left\{\left|f_{k}(x) \ddot{=} f(x)\right|_{\beta}: x \in[\ddot{[0}, \mathrm{i}]\right\}={ }^{\beta} \sup \left\{\frac{l(x)}{\ddot{k}} \beta: x \in \dot{[0}, \dot{\mathrm{i}}\right]\right\}=\frac{\ddot{1}}{\ddot{k}} \beta
$$

and ${ }^{\beta} \lim _{k \rightarrow \infty} c_{k}={ }^{\beta} \lim _{k \rightarrow \infty} \frac{\ddot{1}}{\ddot{k}}=\ddot{0}$.

2.2. *-FUNCTION SERIES AND CONSEQUENCES OF *-UNIFORM CONVERGENCE

Definition 4. Let take *-function sequence $\left(f_{k}\right)$ with $f_{k}: A \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$. The infinite β-sum

$$
{ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f_{1} \ddot{\mp} f_{2} \ddot{\mp} \ldots \ddot{\mp} f_{k} \ddot{\mp} \ldots
$$

is called *-function series (or non-Newtonian function series). The $\beta-\operatorname{sum} S_{k}={ }_{\beta} \sum_{n=1}^{k} f_{n}$ is called k-th partial β-sum of the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ for $k \in N$.

Definition 5. Let the ${ }^{*}$-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ with $f_{k}: A \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ and the function $f: A \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be given. If the β-partial sums sequence $\left(S_{n}\right)$, where $S_{n}={ }_{\beta} \sum_{k=1}^{n} f_{k}$ is *-pointwise convergent to the function f, then $*$-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ *-converges pointwise to the function f on the set A and

$$
{ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f(*-\text { pointwise })
$$

is written. In this situation, the function f is called β-sum (or non-Newtonian sum) of *-series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$.

If $S_{k} \xrightarrow{*} f\left(*-\right.$ uniform), then the $*$-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is called $*$-uniform convergent to the function f on the set A and ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f$ ($*$-uniform) is written.

The set of numbers x is called *-convergence set (or non-Newtonian convergence set) of the $*$-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ where the $*$-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x)$ is *-convergent on.

Example 7. Let the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ with $f_{k}:(\dot{0} \cdot \dot{1}, \dot{1}) \rightarrow R(N)_{\beta}, f_{k}(x)=\imath(x)^{k_{\beta}}$ be given. We show that this series,
a) is *-pointwise convergent but is not *-uniform convergent on $(\dot{0} \dot{-}, \dot{1})$,
b) is *-uniform convergent on $\dot{[0} \dot{\circ} a, a$], where $\dot{0}<a \dot{<}$.

Solution 7. a)Since k-th partial β-sum

$$
s_{k}(x)=\ddot{1} \ddot{\mp} \imath(x) \ddot{\mp} \imath(x)^{2_{\beta}} \ddot{\mp} \ldots \ddot{\mp} \imath(x)^{(k-1)_{\beta}}=\frac{\ddot{1} \ddot{=} \imath(x)^{k_{\beta}}}{\ddot{1} \ddot{\ddot{ }} \imath(x)} \beta
$$

and

$$
{ }^{\beta} \lim _{k \rightarrow \infty} s_{k}(x)={ }^{\beta} \lim _{k \rightarrow \infty} \frac{\ddot{\ddot{O}} \ddot{\square} l(x)^{k_{\beta}}}{\ddot{1} \ddot{\because} t(x)} \beta=\frac{\ddot{1}}{\ddot{1} \ddot{\ddot{ }} t(x)} \beta
$$

the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x)={ }_{\beta} \sum_{k=1}^{\infty} \imath(x)^{k_{\beta}}$ is *-convergent to the function $f(x)=\frac{\ddot{1}}{\ddot{1} \ddot{-} \imath(x)} \beta$ on $\ddot{(0} \div 1, i)$. Therefore ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f \quad(*-$ pointwise $)$. Since the partial β-sums sequence $\left(s_{k}(x)\right)$ is not *-uniform convergent on $\dot{(0} \cdot \dot{1}, \dot{1})$, the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is not *-uniform convergent.
b) By (a), we have

$$
\begin{aligned}
\left|s_{k}(x) \ddot{\sim} f(x)\right|_{\beta} & =\left|\frac{\ddot{1} \ddot{\because} \imath(x)^{k_{\beta}}}{\ddot{1} \ddot{\sim} \imath(x)} \beta \ddot{=} \frac{\ddot{1}}{\ddot{1} \ddot{=} \imath(x)} \beta\right|_{\beta} \\
& =\frac{|\imath(x)|_{\beta}^{k_{\beta}}}{|\ddot{1} \ddot{\because} \imath(x)|_{\beta}} \beta \\
& \ddot{\leq} \frac{\imath(a)^{k_{\beta}}}{|\ddot{1} \ddot{=} \imath(a)|_{\beta}} \beta
\end{aligned}
$$

for all $x \in[\dot{0} \dot{-} a, a]$. Since $\dot{0} \dot{<} a \dot{<} \dot{1}, \quad l(a)^{k_{\beta}} \xrightarrow{*} \ddot{0}$ holds independently from choosing of $x \in \dot{[0} \dot{\circ} a, a \dot{]}$, then the series ${ }_{\beta} \sum_{k=1}^{\infty} \imath(x)^{k_{\beta}}$ is $*_{\text {-uniform convergent to tunction }}$ $f(x)=\frac{\ddot{1}}{\ddot{1} \ddot{=} \imath(x)} \beta$ on α-interval $\left.\ddot{0} \dot{-} \dot{a}, a\right]$, since k depends on only the number ε. Hence ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f(*-$ uniform $)$.

Theorem 4. (*-Cauchy criterion for *-function sequences) Let the *-function sequence $\left(f_{k}\right)$ with $f_{k}: S \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be given. The sequence $\left(f_{k}\right)$ is *-uniform convergent iff for arbitrary $\varepsilon \ddot{>} \ddot{0}$, there exists a number $k_{0} \in N$ such that $\left|f_{k}(x) \ddot{\sim} f_{p}(x)\right|_{\beta} \ddot{<} \varepsilon$ for $k \geq p>k_{0}$ and all $x \in S$.

Proof: Let the function sequence $\left(f_{k}(x)\right)$ be *-uniform convergent to the function f on the set S and let take arbitrary $\varepsilon \ddot{>} \ddot{0}$. Thus, there exists a natural number k_{0} such that

$$
\left|f_{k}(x) \ddot{=} f(x)\right|_{\beta} \ddot{<} \frac{\varepsilon}{\ddot{2}} \beta
$$

for all $x \in S$ and all $k>k_{0}$. Then,

$$
\begin{aligned}
\left|f_{k}(x) \ddot{-} f_{p}(x)\right|_{\beta} & =\left|f_{k}(x) \ddot{-} f(x) \ddot{\mp} f(x) \ddot{-} f_{p}(x)\right|_{\beta} \\
& \ddot{\leq}\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta} \ddot{+}\left|f_{p}(x) \ddot{-} f(x)\right|_{\beta} \\
& \ddot{<} \frac{\varepsilon}{\ddot{2}} \beta \ddot{\mp} \frac{\varepsilon}{\ddot{2}} \beta=\varepsilon
\end{aligned}
$$

for all $x \in S$ and $k \geq p>k_{0}$.
Conversely, suppose that there exists a positive integer number k_{0} for arbitrary $\varepsilon \ddot{>} \ddot{0}$ such that $\left|f_{k}(x) \ddot{\sim} f_{p}(x)\right|_{\beta} \ddot{<} \varepsilon$ on the set S for $k \geq p>k_{0}$. This means that the sequence $\left(f_{k}(x)\right)$ is a β-Cauchy (or non-Newtonian Cauchy) sequence for each $x \in S$. Therefore, we get the sequence $\left(f_{k}(x)\right)$ is β-convergent. Let ${ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)=f(x)$. The proof is completed if we show this convergence is *-uniform.

Let $\varepsilon \ddot{>} \ddot{0}$ be given. By the hypothesis, there exists a natural number k_{0} such that $\left|f_{k}(x) \ddot{-} f_{p}(x)\right|_{\beta} \ddot{<} \varepsilon$ for all $x \in S$ and $k \geq p>k_{0}$. Then, we get

$$
{ }^{\beta} \lim _{p \rightarrow \infty}\left|f_{k}(x) \ddot{\sim} f_{p}(x)\right|_{\beta}=\left|f_{k}(x) \ddot{-} f(x)\right|_{\beta} \ddot{<} \varepsilon
$$

for all $x \in S$ and $k>k_{0}$. Hence $f_{k} \xrightarrow{*} f(*-$ uniform $)$.
Corollary 1. (*-Cauchy criterion for $*$-function series) Let $*$-series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ with $f_{k}: S \subseteq R(N)_{\alpha} \rightarrow R(N)_{\beta}$ and $\varepsilon \ddot{>} \ddot{0}$ be given. The *-series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is *-uniform convergent iff there exists a number $k_{0} \in N$ such that

$$
\left|s_{k}(x) \ddot{-} s_{p}(x)\right|_{\beta}=\left|{ }_{\beta} \sum_{n=p+1}^{k} f_{n}(x)\right|_{\beta} \ddot{<} \varepsilon
$$

on the set A for $k \geq p>k_{0}$.
Corollary 2. Let the *-function series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ and $\varepsilon \ddot{>} \ddot{0}$ be given. The $*$-series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is $*_{\text {- }}$ uniform convergent iff there exists a number $k_{0} \in N$ such that

$$
\left|R_{k}(x)\right|_{\beta}=\left|{ }_{\beta} \sum_{n=k+1}^{\infty} f_{n}(x)\right|_{\beta} \ddot{<} \varepsilon
$$

for $k>k_{0}$ and all $x \in A$.
Now an important test known as *-Weierstrass M-criterion will be obtained to determine $*$-uniform convergence of $*$-function series.

Theorem 5. (*-Weierstrass M-criterion) If there exist β-numbers M_{k} such that $\left|f_{k}(x)\right|_{\beta} \ddot{<} M_{k}$ for all $x \in A$ where $f_{k}: A \subseteq \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ and if the series ${ }_{\beta} \sum_{k=1}^{\infty} M_{k}$ is $\beta-$ convergent, then the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is *-uniform convergent and β-absolutely convergent.

Proof: By the hypothesis, there exists a number $k_{0} \in N$ such that ${ }_{\beta} \sum_{n=p+1}^{k} M_{n} \ddot{<} \varepsilon$ for $\varepsilon \ddot{>} \ddot{0}$ and $k>p>k_{0}$. Hence, by the β-triangle inequality, we have

$$
\begin{equation*}
\left|s_{k}(x) \ddot{=} s_{p}(x)\right|_{\beta}=\left|{ }_{\beta} \sum_{n=p+1}^{k} f_{n}(x)\right|_{\beta} \ddot{ذ}_{\beta} \sum_{n=p+1}^{k}\left|f_{n}(x)\right|_{\beta} \ddot{ذ}_{\beta} \sum_{n=p+1}^{k} M_{n} \ddot{<} \varepsilon . \tag{2.1}
\end{equation*}
$$

Then, we get $\left|s_{k}(x) \ddot{=} s_{p}(x)\right|_{\beta} \ddot{<} \varepsilon$ for all $x \in A$. Thus, by corollary 2, the series ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}$ is *-uniform convergent on the set A. Also, by the inequality 2.1 , the series ${ }_{\beta} \sum_{k=1}^{\infty}\left|f_{k}(x)\right|_{\beta}$ is *convergent.

Example 8. If the series ${ }_{\beta} \sum_{k=1}^{\infty} a_{k}$ is β-absolutely convergent, then the series ${ }_{\beta} \sum_{k=1}^{\infty}\left(a_{k} \ddot{x}^{*} \sin x\right)$ is *-uniform convergent on $R(N)_{\alpha}$.

Solution 8. The inequality $\left|a_{k} \ddot{x}^{*} \sin x\right|_{\beta} \ddot{\leq}\left|a_{k}\right|_{\beta}$ holds for all $x \in \mathbb{R}(N)_{\alpha}$. By the hypothesis, ${ }_{\beta} \sum_{k=1}^{\infty}\left|a_{k}\right|_{\beta}$ is $*_{\text {-convergent. Then, in view of } * \text {-Weierstrass } M \text {-criterion, the series }}$ ${ }_{\beta} \sum_{k=1}^{\infty}\left(a_{k} \ddot{x}^{*} \sin x\right)$ is $*$-uniform convergent.

Example 9. Since $\alpha=I, \beta=\exp$ in geometric calculus, we have $\mathbb{R}(N)_{\alpha}=\mathbb{R}$ and $\mathbb{R}(N)_{\beta}=\mathbb{R}^{+}$. According to this, the function series ${ }_{\beta} \sum_{n=1}^{\infty} f_{n}(x)={ }_{\beta} \sum_{n=1}^{\infty} e^{\frac{3 \cdot x^{n}}{n!}}=\prod_{n=1}^{\infty} e^{\frac{3 \cdot x^{n}}{n!}}$ is uniform convergent with respect to geometric calculus where $f_{n}:\left[\frac{1}{2}, 2\right] \rightarrow \mathbb{R}^{+}, f_{n}(x)=e^{\frac{3 \cdot x^{n}}{n!}}$.

Solution 9. We have $\left|e^{\frac{3 \cdot x^{n}}{n!}}\right|_{\beta}=e^{\frac{3 \cdot x^{n}}{n!}} \check{\leq} e^{\left.\frac{3 \cdot 2^{n}}{n!} \right\rvert\,}$ for all $x \in\left[\frac{1}{2}, 2\right]$ since $\left|\frac{3 \cdot x^{n}}{n!}\right| \leq \frac{3 \cdot 2^{n}}{n!}$. Let $M_{n}=e^{\frac{3 \cdot 2^{n}}{n!}}$. By non-Newtonian rate test [13]

$$
{ }^{\beta} \lim _{n \rightarrow \infty}\left|\frac{e^{\frac{3 \cdot 2^{n+1}}{(n+1)!}}}{e^{\frac{3 \cdot 2 n}{n!}}} \beta\right|_{\beta}=\lim _{n \rightarrow \infty}\left|\frac{e^{\frac{3 \cdot 2^{n+1}}{(n+1)!}}}{e^{\frac{3 \cdot n^{n}}{n!}}} \beta\right|_{\beta}=\lim _{n \rightarrow \infty}\left|e^{\frac{\frac{3 \cdot 2^{n+1}}{(n+1)!}}{\frac{3 \cdot n^{n}}{n!}}}\right|_{\beta}=\lim _{n \rightarrow \infty} e^{\frac{\frac{3 \cdot 22^{n+1}}{(n+1)!}}{\frac{3 \cdot 2^{n}}{n!}}}=\lim _{n \rightarrow \infty} e^{\frac{2}{n+1}}=e^{0}=\ddot{0} \ddot{<} \ddot{1}
$$

Therefore the series ${ }_{\beta} \sum_{n=1}^{\infty} M_{n}$ is β-absolutely convergent. Thus ${ }_{\beta} \sum_{n=1}^{\infty} M_{n}$ is β-convergent. Hence, by the $*$-Weierstrass M-criterion the series ${ }_{\beta} \sum_{n=1}^{\infty} f_{n}(x)$ is $*$-uniform convergent on $\left[\frac{1}{2}, 2\right]$.

2.3. *-UNIFORM CONVERGENCE AND *-CONTINUITY

The most essential property related with $*$-uniform convergence, as expressed in following theorem, is its relation with *-continuous functions.

Theorem 6. If $f_{k}: A \subset \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ is *-continuous and if the *-function sequence $\left(f_{k}\right)$ is *-uniform convergent to function f on the set A, then the function f is *-continuous on the set A. Namely,

$$
-\lim _{k \rightarrow \infty}\left[-\lim _{x \rightarrow x_{0}} f_{k}(x)\right]=*-\lim _{x \rightarrow x_{0}}\left[*-\lim _{k \rightarrow \infty} f_{k}(x)\right] .
$$

Proof: Let take an arbitrary $x_{0} \in A$. Since $f_{k} \xrightarrow{*} f(*-$ uniform $)$, for $\varepsilon \ddot{>} 0$ there exists $k_{0} \in N$ such that

$$
\left|f_{k}(x) \ddot{=} f(x)\right|_{\beta} \ddot{<} \frac{\varepsilon}{\ddot{3}} \beta
$$

for $k>k_{0}(\varepsilon)$ on the set A. Furthermore, since f_{k} is $*$-continuous on the point x_{0} for all $k \in \mathbb{N}$ there exists a number $\delta>\dot{0}$ such that for $x \in A$

$$
\left|f_{k}(x) \ddot{\circ} f_{k}\left(x_{0}\right)\right|_{\beta} \ddot{<} \frac{\varepsilon}{3} \beta
$$

whenever $\left|x-x_{0}\right|_{\alpha} \dot{<}$. Therefore, we have

$$
\begin{aligned}
& \left|f(x) \ddot{=} f\left(x_{0}\right)\right|_{\beta}=\left|f(x) \ddot{=} f_{k}\left(x_{0}\right) \ddot{\mp} f_{k}\left(x_{0}\right) \ddot{=} f_{k}(x) \ddot{\mp} f_{k}(x) \ddot{\sim} f\left(x_{0}\right)\right|_{\beta} \\
& \ddot{\leq}\left|f(x) \ddot{=} f_{k}(x)\right|_{\beta} \ddot{+}\left|f_{k}(x) \ddot{\sim} f_{k}\left(x_{0}\right)\right|_{\beta}+\left|f_{k}\left(x_{0}\right) \ddot{=} f\left(x_{0}\right)\right|_{\beta} \\
& \because \underset{\ddot{3}}{\dddot{\varepsilon}} \beta \ddot{+} \frac{\varepsilon}{\ddot{3}} \beta \ddot{\ddot{3}} \frac{\varepsilon}{\dddot{3}} \beta=\varepsilon
\end{aligned}
$$

for $x \in A$. Hence the function f is *-continuous at the point x_{0} and the function f is *-continuous on the set A since $x_{0} \in A$ is arbitrary.

Corollary 3. Let the functions $f_{k}: A \subset \mathbb{R}(N)_{\alpha} \rightarrow \mathbb{R}(N)_{\beta}$ be $*$-continuous and let the function $f: A \rightarrow \mathbb{R}(N)_{\beta}$ be given. If ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f(*-$ uniform $)$, then the function f is $*$-continuous on the set A.

Example 10. If $f(x)={ }^{*} \sin x={ }_{\beta} \sum_{k=1}^{\infty}\left((\ddot{0} \ddot{-} \ddot{1})^{k_{\beta}} \ddot{\times} \frac{l(x)^{(2 k+1)_{\beta}}}{(\ddot{2} \ddot{\times} \ddot{k} \ddot{+})!!_{\beta}} \beta\right)$, then the function f is *continuous on space $\mathbb{R}(N)_{\alpha}$.

Solution 10. By corollary 3 , we need to show that the partial sums of series *-converges uniformly to the function ${ }^{*} \sin x$. Since $n!_{\beta}=\ddot{1} \ddot{\times} \ddot{2} \ddot{\chi} . . \ddot{x} n$, we have

$$
\left|s_{k}(x) \ddot{\because} \sin x\right|_{\beta}=\left|{ }_{\beta} \sum_{n=k+1}^{\infty}\left((\ddot{0} \ddot{-} \ddot{1})^{n_{\beta}} \ddot{\times} \frac{t(x)^{(2 n+1)_{\beta}}}{((\ddot{2} \ddot{x} \ddot{n}) \ddot{+} \ddot{1})!_{\beta}} \beta\right)\right|_{\beta} \ddot{\leq}_{\beta} \sum_{n=k+1}^{\infty}\left(\frac{t(a)^{(2 n+1)_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{n}) \ddot{+} \ddot{1})!_{\beta}} \beta\right),
$$

where $a \dot{>} \dot{0}$ and $|x|_{\alpha} \dot{<} a$. Thus $s_{k}(x) \xrightarrow{*}{ }^{*} \sin x(*-$ uniform). Since, by corollary 3, the function ${ }^{*} \sin x$ is ${ }^{*}$-continuous on $[\dot{0} \dot{-} a, a]$ and since a is arbitrary, the function ${ }^{*} \sin x$ is *-continuous on $\mathbb{R}(N)_{\alpha}$.

Example 11. Let $f_{n}(x)=l(x)^{n_{\beta}}, \dot{0} \leq x \leq \dot{1}$. Then $\left(f_{n}\right)$ is not *-uniform convergent.
Solution 11. It is easy to see that $\left(f_{n}\right)^{*}$-converges pointwise to the function $f(x)=\left\{\begin{array}{ll}\ddot{0} & , x \neq \mathrm{i} \\ \ddot{1} & , \\ i=1\end{array}\right.$. Since f is not *-continuous, by theorem 6 , we get $\left(f_{n}\right)$ is not *-uniform convergent.

2.4. *-UNIFORM CONVERGENCE AND *-INTEGRAL

Theorem 7. Let the functions $f_{k}: \dot{[} a, b \dot{j} \rightarrow \mathbb{R}(N)_{\beta}$ be $*$-continuous on $\dot{\lceil } a, b \dot{]}$ for all $k \in \mathbb{N}$ and let $f_{k} \xrightarrow{*} f(*-$ uniform $)$ on $\dot{[} a, b \dot{]}$. Then the function f is *-continuous on $\dot{[} a, b \dot{]}$ and

$$
-\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k}(x) d^{} x=\int_{a}^{b} f(x) d^{*} x
$$

$$
\left(\text { or } *-\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k}(x) d^{*} x=\int_{a}^{b}\left(*-\lim _{k \rightarrow \infty} f_{k}(x)\right) d^{*} x\right)
$$

Proof: By theorem 6, the function f is $*$-continuous on the interval $\dot{[} a, b \dot{]}$. Therefore, the function $f_{k} \ddot{=f}$ is *-continuous on the interval $\dot{[} a, b \dot{]}$ and hence is $*$-integrable on $\dot{[} a, b \dot{]}$. Let $\varepsilon \ddot{>} \ddot{0}$ be given. Then, there exists a number $k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\left|f_{k}(x) \ddot{\because} f(x)\right|_{\beta} \ddot{<} \frac{\varepsilon}{t(b) \ddot{-} t(a)} \beta
$$

on $\check{\lceil } a, b\rfloor$ for $k>k_{0}$. Thus, we get

$$
\begin{aligned}
\left|\int_{a}^{b} f_{k}(x) d^{*} x \ddot{*}^{*} \int_{a}^{b} f(x) d^{*} x\right|_{\beta} & =\left|\beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}\left(f_{k}(\alpha(x))\right) d x\right) \ddot{=} \beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}(f(\alpha(x))) d x\right)\right|_{\beta} \\
& =\left|\beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}\left(f_{k}(\alpha(x))\right) d x-\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}(f(\alpha(x))) d x\right)\right|_{\beta} \\
& =\beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}\left(f_{k}(\alpha(x))\right) d x-\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \beta^{-1}(f(\alpha(x))) d x \mid\right) \\
& \left.=\beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)}\left[\beta^{-1}\left(f_{k}(\alpha(x))\right)-\beta^{-1}(f(\alpha(x)))\right] d x\right)\right) \\
& \ddot{\leq} \beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)}\left|\beta^{-1}\left(f_{k}(\alpha(x))\right)-\beta^{-1}(f(\alpha(x)))\right| d x\right) \\
& \ddot{<} \beta\left(\int_{\alpha^{-1}(a)}^{\alpha^{-1}(b)} \frac{\beta^{-1}(\varepsilon)}{\alpha^{-1}(b)-\alpha^{-1}(a)} d x\right) \\
& =\beta\left(\frac{\beta^{-1}(\varepsilon)}{\alpha^{-1}(b)-\alpha^{-1}(a)} \cdot\left(\alpha^{-1}(b)-\alpha^{-1}(a)\right)\right) \\
& =\beta\left(\beta^{-1}(\varepsilon)\right) \\
& =\varepsilon
\end{aligned}
$$

for $k>k_{0}$. Namely, *- $\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k}(x) d^{*} x=\int_{a}^{b} f(x) d^{*} x$.
Corollary 4. If the functions $f_{k}: \dot{[a, b]} \rightarrow \mathbb{R}(N)_{\beta}$ are $*_{\text {-continuous on }[a, b] \text { and }}$ ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x)=f(x)(*-$ uniform $)$, then the function f is $*$-continuous on $\dot{[} a, b \dot{]}$ and

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left(\int_{a}^{b} f_{k}(x) d^{*} x\right)==^{*} f(x) d^{*} x \\
\left(\operatorname{or}_{\beta} \sum_{k=1}^{\infty}\left(\int_{a}^{*} f_{k}^{b}(x) d^{*} x\right)=*^{*} \int_{a}^{b}\left({ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x) d^{*} x\right)\right) .
\end{gathered}
$$

Proof: Let $s_{n}(x)={ }_{\beta} \sum_{k=1}^{n} f_{k}(x)$. By hypothesis, the sequence $s_{n}(x) *$-converges uniformly to the function f. Then, by theorem 7, we have

$$
-\lim _{k \rightarrow \infty} \int_{a}^{b} s_{k}(x) d^{} x=\int_{a}^{b} f(x) d^{*} x \text { or }{ }_{\beta} \sum_{k=1}^{\infty}\left(\int_{a}^{*} f_{k}(x) d^{*} x\right)={ }^{*} \int_{a}^{b}\left({ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x) d^{*} x\right) .
$$

Example 12. Let $f_{k}:[\dot{0}, \dot{]}] \rightarrow \mathbb{R}(N)_{\beta}$, where $f_{k}(x)=l(x)^{2 \beta}=\frac{l(x)}{\ddot{k}} \beta$. Then we investigate $*-\lim _{k \rightarrow \infty} \int_{0}^{i} f_{k}(x) d^{*} x$.

Solution 12. Since $f_{k}(x) \xrightarrow{*} t(x)^{2_{\beta}}(*-$ uniform $)$, we get

$$
\begin{aligned}
-\lim _{k \rightarrow \infty} \int_{0}^{} f_{k}^{\mathrm{i}}(x) d^{*} x=\int_{0}^{*} \int_{0}^{\mathrm{i}} f(x) d^{*} x={ }^{*} \int_{0}^{\mathrm{i}} l(x)^{2_{\beta}} d^{*} x=\beta\left(\int_{0}^{1} \beta^{-1}\left[\iota(\alpha(x))^{2_{\beta}}\right] d x\right) & =\beta\left(\int_{0}^{1} x^{2} d x\right) \\
& =\beta\left(\frac{1}{3}\right) \\
& =\frac{\ddot{1}}{3} \beta
\end{aligned}
$$

Example 13. Let $x \in \mathbb{R}(N)_{\alpha}$ and let $f(x)={ }_{\beta} \sum_{k=1}^{\infty}\left[(\ddot{0} \ddot{-} \ddot{1})^{(k+1)_{\beta}} \ddot{\times} \frac{l(x)^{(2 k-1)_{\beta}}}{\left((\ddot{2} \ddot{\ddot{x}} \ddot{)} \ddot{\ddot{1}})!_{\beta}\right.} \beta\right]$. Then we investigate the ${ }^{*}$-integral $\int_{0}^{x} f(t) d^{*} t$.

Solution 13. Let $a \in \mathbb{R}(N)_{\alpha}$ such that $|x|_{\alpha} \dot{\leq} a \dot{+}+\infty$ and $\lim _{x \rightarrow+\infty} \alpha(x)=\dot{+\infty}$. Then, we have

$$
(\ddot{0} \ddot{-} \dot{1})^{(k+1)_{\beta}} \ddot{\times} \frac{t(x)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{1})!!_{\beta}} \beta \ddot{\leq} \frac{t(a)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{-})!_{\beta}} \beta
$$

for all $k \in \mathbb{N}$. If we apply β - rate test[13] for the series ${ }_{\beta} \sum_{k=1}^{\infty}\left[\frac{t(a)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{\otimes} \ddot{k}) \ddot{-})!_{\beta}} \beta\right]$, then we get

$$
\begin{aligned}
& { }^{\beta} \lim _{k \rightarrow \infty}\left|\frac{\frac{t(a)^{(2 k+1)_{\beta}}}{((\ddot{\sim} \ddot{x} \ddot{k}) \ddot{+})!_{\beta}}}{\frac{t(a)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{1})!_{\beta}} \beta} \beta\right|_{\beta}={ }^{\beta} \lim _{k \rightarrow \infty}\left|\frac{t(a)^{2_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{+} \ddot{1}) \ddot{\times}(\ddot{2} \ddot{\times} \ddot{k})} \beta\right|_{\beta} \\
& =t(a)^{2_{\beta}} \ddot{x}^{\beta} \lim _{k \rightarrow \infty}\left|\frac{\ddot{1}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{+} \ddot{1}) \ddot{x}(\ddot{2} \ddot{x} \ddot{k})} \beta\right|_{\beta} \\
& =t(a)^{2_{\beta}} \ddot{x}^{\beta} \lim _{k \rightarrow \infty} \frac{\ddot{1}}{(\ddot{2} \ddot{\times} \ddot{k})} \beta \ddot{=} \lim _{k \rightarrow \infty} \frac{\ddot{1}}{(\ddot{2} \ddot{\times} \ddot{k}) \ddot{+} \ddot{1}} \beta \\
& =l(a)^{2_{\beta}} \ddot{\times}(\ddot{0} \ddot{=} \ddot{0}) \\
& =\ddot{0} \\
& \ddot{<} \text { i. }
\end{aligned}
$$

Thus, this series is β-convergent and by *-Weierstrass M-criterion, the series

$$
\sum_{\beta=1}^{\infty}\left[(\ddot{0} \ddot{-} \ddot{1})^{(k+1)_{\beta}} \ddot{\times} \frac{l(x)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{x} \ddot{k}) \ddot{-})!_{\beta}} \beta\right]
$$

is *-uniform convergent on $\dot{[} \dot{0} \dot{\div}, a]$. Then, by virtue of corollary 4, the series is term by term *-integrable and

$$
\begin{aligned}
{0}^{x} f(t) d^{} t & ={ }{\beta} \sum_{k=1}^{\infty}\left[\int_{0}^{x}\left((\ddot{0} \ddot{0} \ddot{1})^{(k+1)_{\beta}} \ddot{\times} \frac{l(t)^{(2 k-1)_{\beta}}}{((\ddot{2} \ddot{\times} \ddot{k}) \ddot{-})!_{\beta}} \beta\right) d^{*} t\right] \\
& ={ }_{\beta} \sum_{k=1}^{\infty}\left[(\ddot{0} \ddot{0} \ddot{1})^{(k+1)_{\beta}} \ddot{\times} \frac{l(x)^{(2 k)_{\beta}}}{(\ddot{2} \ddot{\times} \ddot{k})!_{\beta}} \beta\right] .
\end{aligned}
$$

Example 14. Let $\left(f_{n}(x)\right)$ be ${ }^{*}$-uniform convergent on $\dot{0} \dot{\leq} x \dot{\leq}$ and let f_{n} be $*_{-}$ differentiable. The ${ }^{*}$-derivative sequence $\left({ }^{*} D f_{n}\right)(x)$ is not necessary to be $*$-uniform convergent.

Solution 14. Let sequence $f_{n}(x)=\frac{{ }^{*} \sin \left(\dot{n}^{2} \dot{x} x\right)}{\imath(\dot{n})} \beta$ be given. The sequence $f_{n}(x)$ is *-
uniform convergent to function $f=\ddot{0}$. Then we have $\left(\stackrel{*}{D} f_{n}\right)(x)=\imath(\dot{n}) \ddot{\times} \cos \left(\dot{n}^{2} \dot{\times} x\right)$ since

$$
\begin{aligned}
\stackrel{*}{D\left({ }^{*} \sin x\right)} & =\beta\left(D\left[\beta^{-1}\left({ }^{*} \sin \alpha(t)\right)\right]\right) \\
& =\beta\left(D\left[\beta^{-1}\left(\beta\left[\sin \alpha^{-1}(\alpha(t))\right]\right)\right]\right) \\
& =\beta(D(\sin t)) \\
& =\beta(\cos t) \\
& =\beta\left(\cos \alpha^{-1}(x)\right) \\
& ={ }^{*} \cos x
\end{aligned}
$$

where $x=\alpha(t)$. However, the *-derivative sequence $\left(\stackrel{*}{D} f_{n}\right)(x)$ is not even *-pointwise convergent. Because $\left(\stackrel{*}{D} f_{n}\right)(x)=t(\dot{n})$ at the point $x=\dot{0}$.

2.5. *-UNIFORM CONVERGENCE AND *-DERIVATIVE

We know that all *-uniform convergent *-function sequences or series can not be term by term *-differentiable. Therefore, we need additional conditions to *-uniform convergence for term by term *-differentiability.

Theorem 8. Let the ${ }^{*}$-derivatives of the functions $f_{k}: \dot{[} a, b \dot{]} \subset R(N)_{\alpha} \rightarrow R(N)_{\beta}$ exist on $\dot{[} a, b \dot{]}$ and let they be *-continuous. Additionally, let

1. $f_{k} \xrightarrow{*} f(*-$ pointwise $)$
2. $\stackrel{*}{D} f_{k} \xrightarrow{*} g(*-$ uniform $)$.

Then, g is *-differentiable on $[a, b \dot{]}$ and $\stackrel{*}{D} f=g$, namely $\stackrel{*}{D}\left(*-\lim _{k \rightarrow \infty} f_{k}(x)\right)=*-\lim _{k \rightarrow \infty}(* *)(x)$.

Proof: By theorem 6, g is *-continuous and hence *-integrable on $\dot{[} a, b \dot{]}$. Therefore, by theorem 7 and second fundamental theorem of *-calculus, we have

$$
\int_{a}^{*} g(t) d^{*} t={ }^{*}-\lim _{k \rightarrow \infty} \int_{a}^{x}\left({ }^{*} D f_{k}\right)(t) d^{*} t={ }^{*}-\lim _{k \rightarrow \infty}\left[f_{k}(x) \ddot{-} f_{k}(a)\right]=f(x) \ddot{-} f(a)
$$

for $x \in \dot{[} a, b]$. Thus, we get $f(x)=f(a) \dddot{\mp} \int_{a}^{x} g(t) d^{*} t$. In view of the first fundamental theorem
of *-calculus, we obtain $(\stackrel{*}{D} f)(x)=g(x)$. This completes the proof.
Example 15. $\mathbb{R}(N)_{\alpha}=\mathbb{R}(N)_{\beta}=\mathbb{R}^{+}$since $\alpha=\beta=\exp$ in bigeometric calculus. Let $f_{k}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, f_{k}(x)=\frac{\imath(x)}{\ddot{k}} \beta$. Then we investigate $\stackrel{*}{D}\left(*-\lim _{k \rightarrow \infty} f_{k}(x)\right)$.

Solution 15. Since

$$
f_{k}(x)=\frac{l(x)}{\ddot{k}} \beta=e^{\frac{\ln x}{k}}=x^{\frac{1}{k}} \text { and }{ }^{\beta} \lim _{k \rightarrow \infty} f_{k}(x)=\lim _{k \rightarrow \infty} x^{\frac{1}{k}}=\lim _{k \rightarrow \infty} e^{\frac{\ln x}{k}}=\lim _{k \rightarrow \infty}\left(e^{\frac{1}{k}}\right)^{\ln x}=1,
$$

we have $f_{k}(x) \xrightarrow{*} 1=\ddot{0}(*-$ pointwise $) . \bar{f}_{k}(x)=\ln \left(e^{x}\right)^{\frac{1}{k}}=\frac{x}{k}$ since $f_{k}(x)=x^{\frac{1}{k}} \quad$ [1]. From $D \bar{f}_{k}(x)=\frac{1}{k}$, we get $\stackrel{*}{D} f_{k}(x)=\beta\left(D \bar{f}_{k}(\bar{x})\right)=e^{\frac{1}{k}}$. Since $c_{k}={ }^{\beta} \sup \left\{\left|*_{D}^{D} f_{k}(x) \ddot{-}\right|_{\beta}, x \in \mathbb{R}\right\}=e^{\frac{1}{k}}$ and ${ }^{\beta} \lim _{k \rightarrow \infty} c_{k}=1=\ddot{0}, \stackrel{*}{D} f_{k}(x) \xrightarrow{*} 1(*-$ uniform $)$. Hence, by the theorem 8 , we get

$$
\stackrel{*}{D}\left(*-\lim _{k \rightarrow \infty} f_{k}(x)\right)=\stackrel{*}{D}\left(*-\lim _{k \rightarrow \infty} x^{\frac{1}{k}}\right)=\lim _{k \rightarrow \infty} e^{\frac{1}{k}}=1 .
$$

If the theorem 8 is used, then the following corollary is obtained.
Corollary 5. Let the derivatives $\stackrel{*}{D} f_{k}$ exists and continuous on $\left.\dot{[} a, b\right\rfloor$ where $f_{k}: \dot{[} a, b \dot{j} \rightarrow \mathbb{R}(N)_{\beta}$. Moreover, suppose that

1. ${ }_{\beta} \sum_{k=1}^{\infty} f_{k}=f(*-$ pointwise) on $\dot{[} a, b \dot{]}$ and,
2. ${ }_{\beta} \sum_{k=1}^{\infty} \stackrel{*}{D} f_{k}=h(*-$ uniform) on $[\mathfrak{a}, b \dot{]}$.

Then, $\stackrel{*}{D} f=h$ or $\stackrel{*}{D}\left({ }_{\beta} \sum_{k=1}^{\infty} f_{k}(x)\right)={ }_{\beta} \sum_{k=1}^{\infty}\left(\stackrel{*}{D} f_{k}\right)(x)$ on $\dot{[} a, b \dot{]}$.
Example 16. Let the ${ }^{*}$-series ${ }_{\beta} \sum_{k=1}^{\infty} \frac{{ }^{*} \sin (\dot{k} \dot{x} x)}{\ddot{2}^{k_{\beta}}} \beta$ be given on the set $\mathbb{R}(N)_{\alpha}$. Since $\left|\ddot{2}^{(-k)_{\beta}} \ddot{x}^{*} \sin (\dot{k} \dot{x} x)\right|_{\beta} \ddot{\leq} \ddot{2}^{(-k)_{\beta}}$ for all $x \in \mathbb{R}(N)_{\alpha}$ and the series ${ }_{\beta} \sum_{k=1}^{\infty} \ddot{2}^{(-k)_{\beta}}={ }_{\beta} \sum_{k=1}^{\infty} \frac{\ddot{1}}{\ddot{2}^{k_{\beta}}} \beta$ is β-convergent, by the ${ }^{*}$-Weierstrass M -criterion, the ${ }^{*}$-series ${ }_{\beta} \sum_{k=1}^{\infty} \frac{{ }^{*} \sin (\dot{k} \dot{\times} x)}{\ddot{2}^{k_{\beta}}} \beta$ is ${ }^{*}$-convergent uniformly. Let $f(x)={ }_{\beta} \sum_{k=1}^{\infty} \frac{{ }^{*} \sin (\dot{k} \dot{\times} x)}{\ddot{2}^{k_{\beta}}} \beta$. Here, if $f_{k}(x)=\frac{{ }^{*} \sin (\dot{k} \dot{\times} x)}{\dot{2}^{k_{\beta}}} \beta$ and
$t=\alpha^{-1}(x)$ is written for $x \in \mathbb{R}(N)_{\alpha}$, then

$$
\begin{aligned}
\stackrel{*}{D} f_{k}(x) & =\stackrel{*}{D}\left(\frac{{ }^{*} \sin (\dot{k} \dot{\times} x)}{\ddot{2}^{k_{\beta}}} \beta\right) \\
& =\stackrel{*}{D}\left(\beta\left[\frac{\sin \left(\alpha^{-1}(\dot{k} \dot{\times} x)\right)}{2^{k}}\right]\right) \\
& =\beta\left(D\left[\beta^{-1}\left(\beta\left[\frac{\sin \left(\alpha^{-1}(\dot{k} \dot{\times} \alpha(x))\right.}{2^{k}}\right]\right)\right]\right) \\
& =\beta\left(D\left[\frac{\sin (k \cdot x)}{2^{k}}\right]\right) \\
& =\beta\left(\frac{k}{2^{k}} \cdot \cos (k \cdot x)\right) \\
& =\frac{\ddot{k} \ddot{x}^{*} \cos (\dot{k} \dot{\times} x)}{\ddot{2}^{k_{\beta}}} \beta
\end{aligned}
$$

Since the *-derivative $\left[\begin{array}{l}D \\ D\end{array} f_{k}\right](x)$ is also $*$-continuous, $\left|\frac{\ddot{k} \ddot{x} * \cos (\dot{k} \dot{x} x)}{\ddot{2}^{k_{\beta}}} \beta\right|_{\beta} \ddot{\leq} \frac{\ddot{k}}{\ddot{2}^{k_{\beta}}} \beta$ and the series $\sum_{k=1}^{\infty} \frac{\ddot{k}}{\ddot{2}^{k_{\beta}}} \beta$ is β-convergent, by $*$-Weierstrass M -criterion, the $*$-derivative series

$$
\sum_{\beta} \sum_{k=1}^{\infty} \frac{\ddot{k} \ddot{x}{ }^{*} \cos (\dot{k} \dot{x} x)}{\ddot{2}^{k_{\beta}}} \beta
$$

is also *-uniform convergent on $\mathbb{R}(N)_{\alpha}$. Thus, by virtue of corollary 5 , we get

$$
[\stackrel{*}{D} f](x)={ }_{\beta} \sum_{k=1}^{\infty} \frac{\ddot{k} \ddot{x}^{*} \cos (\dot{k} \dot{\times} x)}{\ddot{2}^{k_{\beta}}} \beta .
$$

REFERENCES

[1] Grossman, M., Katz, R., Non-Newtonian Calculus, Lee Press, Pigeon Cove, Massachusetts, 1972.
[2] Stanly, D., Primus, 9(4), 310, 1999.
[3] Bashirov, A.E., Misirli Kurpinar, E., Ozyapici, A., Journal of Mathematical Analysis and Applications, 337, 36, 2008.
[4] Uzer, A., Computers and Mathematics with Applications, 60, 2725, 2010.
[5] Çakmak, A.F., Başar, F., Journal of Inequalities and Applications, 228(1), 1, 2012.
[6] Filip, D., Piatecki, C., Applied Mathematics J. Chinese Univ., 28, 2014.
[7] Binbaşıoğlu, D., Demiriz S., Türkoğlu D., Journal of Fixed Point Theory and Applications, 18(1), 213, 2015.
[8] Erdogan, M., Duyar, C., Journal of Sciences and Arts, 1(42), 2018.
[9] Grossman, J., Meta-Calculus: Differential and Integral, Archimedes Foundation, Rockport Massachussetts, ${ }^{\text {st }}$ Ed., 1981.
[10] Duyar, C., Sagir, B., Ogur, O., British Journal of Mathematics \& Computer Science, 9(4), 300, 2015.
[11] Duyar, C., Sagir, B., Journal of Mathematics, 2017, 2017.
[12] Rudin, W., Principles of Mathematical Analysis, Mc Graw-Hill, Inc., New York, $3^{\text {rd }}$ Ed., 1953.
[13] Duyar, C., Erdogan, M., IOSR Journal of Mathematics, 12(6)(IV), 34, 2016.
[14] Grossman, M., Bigeometric Calculus: A System with a Scale Free Derivative, Archimedes Foundation, Rockport Massachusetts, 1st ed., 1983.

[^0]: ${ }^{1}$ Ondokuz Mayıs University, Faculty of Arts and Sciences, Departmant of Mathematics, Samsun, Turkey.
 E-mail:bduyar@omu.edu.tr
 ${ }^{2}$ Ondokuz Mayıs University, Graduate of Sciences, Doctoral student, Samsun, Turkey.
 E-mail:fatmanurkilic89@hotmail.com

