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Abstract. The solution of nonlinear mathematical models has much importance and in 

soliton theory their worth has increased. In present article, a research has been made of 

nonlinear Jimbo Miwa and Kadomtsev-Petviashvilli equations, to discuss behavior of these 

equations and to attain travelling wave solutions. ))(( Exp -expansion technique is used to 

construct soliton wave solutions. Wave transformation is applied to convert problem in the 

form of ordinary differential equation. The drawn-out novel type outcomes pay an essential 

role in the transportation of energy. It is noticed that under study approach is extremely 

dependable and it may be prolonged to further mathematical models signified mostly in 

nonlinear differential equations.  

Keywords: ))(( Exp  expansion technique; Travelling wave solution; Jimbo Miwa 

equation; Kadomtsev-Petviashvilli (KP) equation; Homogeneous principle 

 

 

1. INTRODUCTION  

 

 

Recently solitary wave theory got some great improvements. Soliton wave occurrence 

enticed number of researchers for its comprehensive applications in engineering, and 

mathematical physics. Firstly J.S. Russell (by profession an engineer) contemplated the 

solitary wave in 1834. In the form of differential equations, various physical occurrences in 

nature are modeled. Vital effort for scientists is to get solution of such differential equations. 

To get soliton solutions, different attempts are made by scientists. Modeling of various 

physical, biochemical and biological occurrences are in the form of nonlinear PDEs. The 

vigorous attainment is the headway for exact soliton solutions of mathematically modelled 

differential equations. Different mathematical techniques are developed. For the observation 

of physical activities of problem exact solutions are vital. We have more applications and 

ability to examine the number of properties of mathematical model by utilizing the exact 

solution.        

NLE equations play a very vital part in innumerable engineering and scientific arenas, 

such as, the heat flow, quantum mechanics, solid state physics, chemical kinematics, fluid 

mechanics, optical fibers, plasma physics, the wave proliferation phenomena, proliferation of 

shallow water waves etc.  

Therefore, different techniques for finding exact solutions are used for a diversified 

field of partial differential equations like, The homogenious balance technique [1-2],  Hirota’s 
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bilinear approach [3-4], Auxiliary  equivalence  technique[5], Trial  task  technique [6], Jacobi  

elliptic task system [7], tanh-function technique [8-9]  by Malfliet, (1992), HPM [10], and 

method of sine- cosine [11-12], truncated Painleve expansion technique [13], variational 

iteration method (VIM) [14-16], Exp-function technique [17-18],       -expansion approach  

[19-27], Exact soliton solution [28-30]. On exact solution some novel results and 

computational methods involved to travelling-wave transformation, see the references, [31-

39]. 

In this work, our elementary incentive is the application of much reliable and effective 

technique known in literature by ))(exp(  -expansion technique to attain soliton like 

solutions of nonlinear differential equations. The applications of under study nonlinear 

equations are very vast. Additionally, such type of equation found in different physical 

phenomenon related to fluid mechanic, astrophysics, solid state physics, chemical kinematics, 

ion acoustic waves in plasma and nonlinear optics etc. The straightforward emphasis of our 

technique is that the obtained solutions of differential equations are expressed in the form of a 

polynomial in ))(exp(  , where )(  must satisfies the ordinary differential equation.  

    

,))(exp())(exp()(                                                                          (1) 

 

where .Vtzyx   

The degree of the polynomial is find by homogenous principle. By balancing the 

highest order derivative involved with nonlinear term, we attain set of algebraic equations. 

These algebraic equations are solved to obtain coefficients of the polynomial. Under study 

article is divided in different parts. In next section, we give the analysis of method used to 

attain soliton wave solutions. Third part is devoted to application of ))(exp(  - expansion 

technique. Last section, results and discussion are given to draw some conclusions. 

 

 

2. ANALYSIS OF TECHNIQUE 

 

 

             In this section, we discuss the algorithm of ))(exp(  -expansion technique for 

obtaining soliton solutions of nonlinear partial differential equations. 

Assume nonlinear partial differential equation in the general form: 

 

.0),,,,,,,( xzxyxxzyx sssssssP                                                                                              (2) 

 

Here ),,,( tzyxs is the function to be determined, P is a polynomial in ),,,( tzyxs and 

its partial derivatives. We work on following steps to obtain solution by using the ))(exp( 

-expansion technique. 

 

Step 1: Invoking the transformation 

 
.),(),,,( Vtzyxstzyxs                                                                                           

(3) 

 

where V is the wave speed. Using transformation given in (3), we convert equation (2) in the 

form of an ODE. 
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.0),,,,(  ssssQ                                                                                                                (4) 

 

where prime signifies the derivative w.r.t. ξ. If possible, integrate equation (4) one or more 

times, which yields a constant(s) of integration. 

 

 

Step 2: Suppose the solution of (4) can be expressed by a polynomial in the ))(exp(  as: 

 

 



1

1 ))))((exp())))((exp()( n

n

n

ns                                                              (5) 

 

where 1, n and V are constants to be determined later such that 0n and )( satisfies 

equation (1). 

 

Step 3: The positive integer n can be determined by using the homogeneous balance principle. 

We balance the highest order linear and nonlinear terms involving in (4). Our solutions now 

depend on the parameters involved in equation (1). 

 

Case 1: 042     and .0  

 

)}.))(tanh()4(2/1ln{)( 12

42
2







d                                                       (6) 

 

where 1d is a constant of integration. 

 

Case 2: 042   and .0  

 

)}.))(tanh()4(2/1ln{)( 12

42
2







d                                                         (7) 

 

Case 3: 0   and  .0  

 

 .ln)(
1))(exp( 1 


d

                                                                                                             (8) 

 

Case 4: 042   and 0 , .0  

 

 .ln)(
)(

2))((2

1
2

1

d

d









                                                                                                                 (9) 

 

Case 5: 0   and  .0  

 

).ln()( 1d                                                                                                             (10) 

 

Step 4: Inserting (5)into (4) and using (1) the left hand side is converted into a polynomial in  

)).(exp(   Equating each coefficient of this polynomial to zero, we obtain a set of algebraic 

equations for  ,,, V and .  
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Step 5: With the help of Maple software solving the algebraic equations obtained in step ,4  

we obtain the values for the constants  ,,, V and . Replacing the values of ,,, V and 

the general solution of (1) into solution (5), we obtain some useful traveling wave solutions of 

(2). 

 

 

3. APPLICATIONS OF THE TECHNIQUE 

 

 

In this section, we apply ))(exp(  -expansion technique for nonlinear partial 

differential equations such as the )13(   dimensional Jimbo Miwa equation and Kadomtsev-

Petviashvilli equation. 

The nonlinear Jimbo Miwa equation governing the isomonodromic 

deformation of meromorphic linear systems. It has vast applications in many fields of 

physical sciences. These are natural reductions of the Ernst equation and thus provide 

solutions to the Einstein field equations of general relativity, also give solutions of the 

Einstein equations in terms of theta functions. They have applications in the work in mirror 

symmetry. They are used to explain properties of shock wave formation for the dispersion less 

limit of the KdV equation. 

 

.03233  xztyxyxxxyxxxy sssssss                                                                                   (11) 

 

Introducing a transformation as ,Vtzyx   

 

.0326  sVssss iv                                                                                                    (12) 

 

On integrating, we have 

 

.03)(32 2  ssssVA                                                                                              (13) 

 

where prime signifies the derivative w.r.t . 

By balancing the highest order linear and nonlinear terms, we attain value of n. 

 

.1n  

Equation )5( reduces to 

 

.)( ))((

10

  es                                                                                                              (14) 

 

where
0 and 1 are the constants. 

By inserting )14( into )13( , we attain a polynomial in )(e . After equating each 

coefficient of polynomial to zero, a set of algebraic equations are attained as: 

 

,02368 11

3

1

2

11   V  

 

,0637832 2

1

22

1

2

1111  V  

 

https://en.wikipedia.org/wiki/Meromorphic
https://en.wikipedia.org/wiki/Ernst_equation
https://en.wikipedia.org/wiki/Einstein_field_equations
https://en.wikipedia.org/wiki/Theta_function
https://en.wikipedia.org/wiki/Mirror_symmetry_(string_theory)
https://en.wikipedia.org/wiki/Mirror_symmetry_(string_theory)
https://en.wikipedia.org/w/index.php?title=Dispersionless_limit&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Dispersionless_limit&action=edit&redlink=1
https://en.wikipedia.org/wiki/Korteweg%E2%80%93de_Vries_equation
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,0612 2

11    

 

,036 2

11    

 

.03232 1

2

1

22

1

2

11  VA  

 

After solving the simultaneous algebraic equations, we obtain the following solution 

set 

 

.2,,0,2 1002
32

2
1   AV                                                                           (15) 

 

where and  are arbitrary constants. 

By using )15(  into ),14( we obtain 

 

.2 ))((

0

  es                                                                                                                    (16) 

 

where .Vtzyx   

Substituting the solutions of )1( into ),16( we get five cases of traveling wave solutions 

for the Jimbo Miwa equation. 

 

Case 1. When 042   and 0 we attain the hyperbolic function solution: 

 

.
))(4tanh(4

4

01
1

2

2

12 





d

S  

 

Case 2. When 042   and 0 we attain the trigonometric solution: 

 

.
))(4tanh(4

4

02
1

2

2

12 d
S






  

 

Case 3. When 0 and ,0 we obtain the exponential solution: 

 

.
1))(exp(

2
03 1 


d
S


  

 

Case 4. When 042   0,   and ,0 we attain the solution: 

 

.
2)((

)(

04 1

1
2






d

d
S




  

 

Case 5. When 0 and 0 we attain the rational function solution: 

 

.
1

2
05 d

S





  

 

where .)2(
2
32

2
1 tzyx    
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Figure 1. Trigonometric and exponential functions solution respectively for different values of parameters 

and for 0 5,  30 30.t x       

 

      
Figure 2. Rational and hyperbolic functions solution for different values of parameters and for 

0 5,  30 30.t x      

 

Consider the Kadomtsev-Petviashvilli equation, which explains nonlinear wave 

motion and is completely integrable equation. It is a generalization to two spatial 

dimensions, x  and y , of the one-dimensional Korteweg–de Vries equation. Kadomtsev-

Petviashvilli (KP) equation is the mathematical modelling of the solitons in shallow water. 

The KP equation can be utilized to model water waves of long wavelength, with weakly 

nonlinear restoring forces and frequency dispersion. It can also be used to model waves 

in ferromagnetic media. 

 

.0)6(  yyxxxxxt sssss                                                                                                (17) 

 

Introducing a transformation as ,Vtyx   

 

  .066
2

 ssssssV iv                                                                                         (18) 

https://en.wikipedia.org/wiki/Spatial_dimension
https://en.wikipedia.org/wiki/Spatial_dimension
https://en.wikipedia.org/wiki/Korteweg%E2%80%93de_Vries_equation
https://en.wikipedia.org/wiki/Water_wave
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Dispersion_(water_waves)
https://en.wikipedia.org/wiki/Ferromagnetism
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On integrating twice, we have,  
 

.03 2  sVsssFE                                                                                                 (19) 

 

where prime signifies the derivative w.r.t . 

By balancing the highest order linear and nonlinear terms, we attain value of n. 
 

.2n  

 

Equation )5( reduces to  

 
    .)()( 2)(

2

)(

10

    ees                                                                                   (20) 

 

where 10 , and
2 are the constants. 

We insert )20( into )19( and get a polynomial in .)(e After equating each coefficient 

of polynomial to zero, we attain a set of algebraic equations as follows: 
 

,06226 1101

2

11   V  

 

,034368 2

12

2

221202   V  

 

,02610 1212    

 

,036 2

22    

 

.023 2

2100

2

0   VFE  

 

After solving simultaneous algebraic equations, the following solution set is obtained. 
 

.2,2,,
,4283,68

2100

222

00

2

0

2

0







FF
EV                                   (21) 

 

where and are arbitrary constants. 

By using )21( into ),20( we get  

 
    .)(22)( 2)()(

0

   ees                                                                                    (22) 

 

where .Vtyx     

Substituting the solutions of )1( into ),22( following five cases are obtained. 

  

Case 1. When 042   and ,0 we get the hyperbolic function solution: 

 

.4
2

1
2

2

12

2

1
2

2

12 ))(4tanh(4

8

)(4tanh(4
01











dd

s  

Case 2. When 042   and ,0 we get the trigonometric solution: 

 

.4
2

1
2

2

12

2

1
2

2

12 ))(4tanh(4

8

)(4tanh(4
02











dd

s  
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Case 3. When 0  and ,0 we get the exponential solution: 

 

.2
1

2

1

2

))1)((exp(

2
)1)(exp(

2
03 


dd

s




  

 

Case 4. When 0,042   and ,0 we get the rational function solution: 

 

.2
1

2
1

4

1

1
3

)2)((

)(

2
1

)2)((

))((

04 








d

d

d

d
s








  

 

Case 5. When 0 , ,0 we get rational function solution: 

 

.2
1 )(

2
05 d

s





  

 

where as .)68( 2

0 tyx    

              
Figure 3. Hyperbolic and trigonometric functions travelling wave solution respectively for different values 

of parameters and for .3030,50  xt  

    
Figure 4. Exponential and rational function solutions for different values of parameters and for 

.3030,50  xt  
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4. PHYSICAL DISCUSSION ON RESULTS 

 

 

Soliton wave structure of non-linear partial differential equations via a reliable 

mathematical technique have been studied. It is noticed that, soliton is a wave which preserve 

its shape and speed. Mainly soliton wave is generated due to balance among the non-linear 

and dispersive effects. From graphical results it is noticed, an important feature of soliton 

waves is that these waves reserve its shape on interaction with same kind of waves. We have 

noticed that for positive values of velocity parameter soliton wave moves in right direction, 

and turns in left direction for negative values of velocity parameters. Some other behaviour of 

soliton waves are controlled by additional free parameters.    

First we discuss graphical representation of nonlinear Jimbo Miwa equation. Fig. 1 

shows trigonometric function travelling wave solution and exponential solution of Jimbo 

Miwa equation respectively for .1,1,1,1 01   d Also Fig. 2 shows rational 

function solution and hyperbolic function solution for .1,1,1,1 01   d At the end 

discuss graphical representation of nonlinear KP equation. Fig. 3 shows hyperbolic and 

trigonometric function travelling wave solution respectively for 

.1,1,1,1,1 01   c Fig. 4 shows exponential and rational function solution for 

.1,1,1,1,1 01   c Figures indicates graphical solutions for altered values of 

physical parameters. Since it is noticed that graphical representation of solution be not 

influenced by arbitrary parameters. We conclude that, different constraints being set as input 

to simulations.  

 

 

5. CONCLUSION 

 

 

In this paper, ))(exp(  -expansion method is suggested and is applied successfully 

on well-known nonlinear partial differential equations; namely, the )13(   dimensional Jimbo 

Miwa equation and Kadomtsev-Petviashvilli equation. As a result, different types of the 

solutions i.e., trigonometric, hyperbolic and rational function solutions with numerous 

capricious parameters are revealed. The obtained solutions are more general with more 

parameters, and abundant new solutions are also attained by using the under study method. 

Computational work coupled with the graphical representation verifies the accuracy of the 

projected algorithms. Another important feature is that, there is no need of linearization, 

discretization or perturbation of terms for application of this technique. It is monitored that 

this technique is quite helpful, competent, also can be used for nonlinear physical problems. 

Computational work accompanied with the graphical presentation verifies the effectiveness of 

this technique.       
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