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Abstract. In this paper, we defined Fermi-Walker derivative in Galilean space  

Fermi-Walker transport and non-rotating frame by using Fermi-Walker derivative are given 

in . Being conditions of Fermi-Walker transport and non-rotating frame are investigated 

along any curve for Frenet frame and Darboux frame.  

Keywords: Fermi-Walker derivative, Fermi-Walker transport, Darboux frame, Non-

rotating frame, Galilean space. 

 

 

1. INTRODUCTION  

 

 

The universe is perceptible through observation. A relativistic observer g  needs 

reference frames, for measurements of durations and of (”geo”) metric quantities: the proper 

time (”proper clock”) is given by its own canonical parameter running on an interval of the 

real numbers axis; the restspaces are refered to ”fixed” directions, maintained by gyroscopes 

focused toward ”fixed” celestial bodies. 

The choice of an appropriate reference frame is a fundamental and controversial 

problem in astronomy [1]: one needs a ”center” and several ”fixed” directions. In a general 

relativistic setting, if g  is freely falling, its restspaces are transported through Levi-Civita 

parallelism, so a fix spacelike direction has, by definition, a null covariant derivative [2, 3]. If 

g is not freely falling i.e. for accelerated observes, the restspace are not transported by the 

Levi-Civita parallelism, anymore. In this case, in order to define ”constant” directions, 

another parallelism is used: the Fermi-Walker transport which is an isometry between the 

tangent space along g  [4-8]. Fermi-Walker transport is a process used to define a coordinate 

system or reference frame in general relativity. All the curvatures in the reference frame in 

due to the presence of mass-energy density. These curvatures are not arbitrary spin or rotation 

of the frame. 

There are various transport laws. Along a given curve, parallel transport of a tensor is 

defined as that its covariant derivative is zero. In a similar way, Fermi-Walker transport of a 

tensor along a curve is defined as that its Fermi derivative is zero [9]. If the given curve is 

geodesic, parallel and Fermi-Walker transport coincide. In general, this is not the case, i.e. 

these transports don't coincide [10]. 
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As stated in [11] ”A Fermi-Walker transported set of tetrad fields is the best 

approximation to a non-rotating reference frame in the sense of Newtonian mechanics”, 

important phenomena like the gyroscopic precession [11] can be characterized by the relative 

rotational acceleration of a Frenet-Serret frame with respect to a Fermi-Walker transported 

frame. 

Parallel vector fields have important applications in differential geometry, physics and 

especially in robotic kinematics. The tangent vector of the curve is parallel along the curve if 

and only if Ñ
T
T = 0 in Euclidean space. In this case, the curve is a geodesic in Euclidean 

space . Similarly, the curve which is on the surface is a geodesic if and only if Ñ
T
T = 0. 

Namely, the tangent vector is parallel along the curve on the surface. All the straight lines are 

geodesic curves in Euclidean space. I wonder if all the curves will be geodesic in Euclidean 

space? The answer to this is hidden in the connection which is obtained by using Fermi-

Walker derivative. Indeed, the solution of , is provided for all curves in . 

Accordingly, the curves and the lines are the same. That is, the curves behave like the lines 

with respect to Fermi-Walker connection which is a affine connection.  

In [12, 13], Fermi-Walker derivative along any space curve was identified and was 

given physical properties in . In [14], Fermi-Walker derivative, Fermi-Walker transport 

and non-rotating frame are analyzed for Bishop, Darboux and Frenet frames along the curve 

in Euclidean space. In [15, 16], we have shown Fermi-Walker and modified Fermi-Walker 

derivative, and non-rotating frame are being conditions are analyzed in Minkowski space .  

In [10], Fermi-Walker derivative is redefined in dual space . Fermi-Walker 

transport and non-rotating frame being conditions are analyzed along the dual curves in dual 

space .The notion of Fermi-Walker derivative, it shows us one method, which is used for 

defining ”constant” direction, that may contain lots of condition to have Fermi-Walker 

transport or non-rotating frame. The condition of Fermi-Walker transport depends on a 

solution that contains differential equation system which is not always easy to find the 

answer. Therefore, it is important to analyze this concept. In this paper, Fermi-Walker 

derivative, Fermi-Walker transport and non-rotating frame concepts are defined along any 

curve and the notions have been analyzed for both isotropic and non-isotropic vector fields. 

We have investigated Fermi-Walker derivative and geometric applications in various 

spaces like Euclidean, Lorentz and Dual space up to now [10, 14, 15]. The Fermi-Walker 

derivative which is defined in  is different from them so far since it is examined for both 

isotropic and non-isotropic vector fields. 

Firstly, Fermi-Walker derivative is redefined for any isotropic vector fields along a 

curve which is in Galilean space. We have proved Fermi-Walker derivative that is defined for 

the isotropic vector fields coincides with Fermi derivative which is defined in any surface. We 

have shown Fermi-Walker derivative which is defined for any non-isotropic vector fields is 

not coincides with derivative of the vector fields. Being Fermi-Walker transport conditions 

are examined for any isotropic and non-isotropic vector fields. We have shown that if the 

curve is a line or a planar curve which is not a line then the non-zero isotropic vector field is 

Fermi-Walker transported. We have obtained that Frenet frame is not a non-rotating frame if 

the curve is not a line.  

Then, similar investigations have been made for any isotropic and non-isotropic vector 

fields with respect to the Darboux frame in Galilean space. We have proved while the curve is 

a line the Darboux frame is a non-rotating frame. 
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2. PRELIMINARIES  

 

 

In non-homogeneous coordinates the group of motion of 3-dimensional Galilean 

Geometry (i.e. the group of isometries of ) has the form define:  

 

 

x = a
1
+ x,

y = a
2
+ a

3
x + ycosj + z sinj,

z = a
4
+ a

5
x - ysinj + zcosj,

  (1) 

 

where a
1
,a

2
,a

3
,a

4
,a

5
, and j  are real numbers [17]. 

If the first component of a vector is not zero, then the vector is called as non-isotropic, 

otherwise it is called isotropic vector [17]. 

The scalar product of two vectors v = (v
1
,v

2
,v

3
)  and w = (w

1
,w

2
,w

3
)  in  is defined 

by 

 áv,wñ =
v

1
w

1
, if v

1
¹ 0 or w

1
¹ 0

v
2
w

2
+ v

3
w

3
, if v

1
= 0 and w

1
= 0.

ì

í
ï

îï

  (2) 

 

If  áv,wñ = 0 , then v  and w  are perpendicular. 

The norm of w  is defined by  Also, the Galilean cross product of 

two vectors defined by 

 

 v ´
G
w =

0 e
2
e
3

v
1
v

2
v

3

w
1
w

2
w

3

   (3) 

 

for v = v
1
,v

2
,v

3( )  and w = w
1
,w

2
,w

3( )  [18].  

Let   be a curve parameterized by arc length (we abbreviate as p.b.a.l) 

with curvature k > 0 and torsion t . If a  is a unit speed curve, 

 

 a x( ) = x, y x( ),z x( )( ), 
 

then the Frenet frame fields are given by 

 

   (4) 
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where k x( ) and t x( )  are defined by 

 

 

 

The vectors T , N  and B  are called the vectors of the tangent, the principal normal 

and the binormal vector field, respectively [18]. Therefore, the Frenet-Serret formulae can be 

written as 

 

 

T

N

B

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¢

=

0 k 0

0 0 t

0 -t 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

T

N

B

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.  (5) 

 

Theorem 2.1. For any curve , we call D x( ) = t x( )T x( )+k x( )B x( ) a 

Darboux vector of a  [19]. By using the Darboux vector, Frenet-Serret formulas can be 

rewritten as follows: 

 

 

¢T x( ) = D x( )´
G
T x( )

¢N x( ) = D x( )´
G
N x( )

¢B x( ) = D x( )´
G
B x( ).

  (6) 

 

 We define a vector  and we call it a modified Darboux 

vector along a  [19]. For more on Galilean Geometry, one can refer to [17, 18, 20, 21] and 

references there in. 

 

Definition 2.2. X  is any vector field and a  is unit-speed any curve in Galile space, then 

 

   (7) 

 

defined as  derivative is called Fermi-Walker derivative in Galilean space . Here T  

is the tangent vector field of a  and A=Ñ
T
T . 

 

Definition 2.3. In Galilean space , let  be a curve and X  be any vector 

field along the curve a . If the Fermi-Walker derivative of the vector field X  vanishes, i.e., if 

, then X  is called the Fermi-Walker transported vector field along the curve. 

 

Definition 2.4. Let a unit speed curve  together with orthonormal vector field 

U ,V ,W  along a  be given. If the Fermi-Walker derivative of the vector field vanish, then 

U ,V ,W{ }  is called non-rotating frame. 

 



Parallel transports with …                                                                                                         Tevfik Sahin et al. 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

17 

3. FRENET FRAME AND FERMI-WALKER DERIVATIVE 

 

 

 In this section, Fermi-Walker derivative, Fermi-Walker transport and non-rotating 

frame concepts have been investigated along any curve which is in Galilean space. Fermi-

Walker derivative has been redefined along a curve for both isotropic and non-isotropic vector 

fields. The vector fields which are Fermi-Walker transported are analyzed along any curve in 

. Then; we show that the Frenet frame whether it is a non-rotating frame or not. 

 

Lemma 3.1. Let  be a curve in Galilean space  and X  is any vector field 

along the curve a(x) , Fermi-Walker derivative can be expressed as  

i) If X  is an isotropic vector field along the a(x) , then Fermi-Walker derivative of X  is 

given by  

 

 

ii) If X  is a non-isotropic vector field along the a(x) , then Fermi-Walker derivative of X  is 

given by  

 

 

Proof. Using definition 2.2 and the equation 2, the above equations are obtained. 

 

Corollary 3.2. Let X  be an isotropic vector field along the curve a . Then, the Fermi-Walker 

derivative coincides with Fermi derivative. 

 

Corollary 3.3. Let X  be a non-zero isotropic vector field along the curve a(x)  which is not 

a line. Fermi-Walker derivative coincides with derivative of X  if and only if the vector field 

X  is linearly dependent with the binormal vector field B. 
 

Proof. Using lemma 3.1(i), X = mN + lB  and  is obtained. Therefore, 

 iff m = 0. 

 

Corollary 3.4. Let X  be a non-isotropic vector field along the curve a(x) . Then, Fermi-

Walker derivative is not coincide with derivative of X . 
 

Theorem 3.5. Let a  be a curve in  be any non-isotropic vector field 

along a . The vector field X  is Fermi-Walker transported along the curve a  if and only if 

 

l
1
(x) = const.,

l
2
(x) = c

1
cos( t

1

x

ò (t)dt)+ c
2
sin( t

1

x

ò (t)dt)

l
3
(x) = c

2
cos( t

1

x

ò (t)dt)- c
1
sin( t

1

x

ò (t)dt)
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where c
1
, c

2
 are constants of integration and l

1
, l

2
, l

3
 are continuously differentiable 

functions of arc length parameter x . 

 

Proof.  By the lemma 3.1. ii),  

 

 

 

is obtained. X  is Fermi-Walker transported along the curve iff  

 

dl
1

dx
= 0,

dl
2

dx
-tl

3
= 0,

dl
3

dx
+tl

2
= 0.

 

 

From the solution of the equation system,  

 

l
1

= const.,

l
2

= c
1
cos( t

1

x

ò (t)dt)+ c
2
sin( t

1

x

ò (t)dt),

l
3

= c
2
cos( t

1

x

ò (t)dt)- c
1
sin( t

1

x

ò (t)dt).

 

 

 The rest is obvious. 

 

Corollary 3.6 Let X = l
1
T + l

2
N + l

3
B be any non-isotropic vector field along a  and the 

parameters l
i
 are constants. The vector field X  is Fermi-Walker transported if and only if 

the curve a  is the planar curve or l
2

= l
3
= 0. 

 

Proof.  Using  Theorem 3.5 and "l
i
= const., 

 

 

 

is obtained. Therefore, the proof is clear. 

 

Theorem 3.7. Let a  be a curve in  and X = l
2
N + l

3
B be any non-zero isotropic vector 

field along a . The vector field X  is Fermi-Walker transported along the curve a  if and only 

if 
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l
2
k = 0

l
2

= c
1
cos( t

1

x

ò (t)dt)+ c
2
sin( t

1

x

ò (t)dt)

l
3

= c
2
cos( t

1

x

ò (t)dt)- c
1
sin( t

1

x

ò (t)dt)

 

 

where c
1
, c

2
 are constants of integration and l

2
, l

3
 are continuously differentiable functions 

of arc length parameter x . 

 

Proof. By the lemma 3.1. i),  

 

 

 

is obtained. X  is Fermi-Walker transported along the curve iff  

 

l
2
k = 0,

dl
2

dx
-tl

3
= 0,

dl
3

dx
+tl

2
= 0.

 

 

This is equivalent to  

 

l
2
k = 0,

l
2

= c
1
cos( t

1

x

ò (t)dt)+ c
2
sin( t

1

x

ò (t)dt),

l
3

= c
2
cos( t

1

t

ò (t)dt)- c
1
sin( t

1

x

ò (t)dt).

 

 

The rest is obvious. 

 

Corollary 3.8. Let a  be a curve in  and X = l
2
N + l

3
B be any non-zero isotropic vector 

field along a .  
 

i) If a  is a line in Galilean space, then the vector field X  is Fermi-Walker transported. 

  

ii) If a  is a planar curve which is not a line, and l
2

= 0  then the vector field X  is Fermi-

Walker transported. 
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Corollary 3.9. Let {T ,N ,B} be the Frenet frame of a . The {T ,N ,B} is a non-rotating frame 

along the curve if and only if the curve is a line. Otherwise, the Frenet frame is not a non-

rotating frame along the curve in Galilean space. 

 

 

4. DARBOUX FRAME AND FERMI-WALKER DERIVATIVE IN  
 

 

Frame fields constitute a very useful tool for studying curves and surfaces. However, 

the Frenet frame T ,N ,B of a  is not useful to describe the geometry of surface M . Since N  

and B  in general will be neither tangent nor perpendicular to M. Therefore, we require 

another frame of a  for study the relation between the geometry of a  and M . There is such 

a frame field that is called Darboux frame field of a  with respect to M . The Darboux frame 

field consists of the triple of vector fields T ,Q,n. The first and last vector fields of this frame 

T  and n  are a unit tangent vector field of a  and unit normal vector field of M  at the point 

a(x)  of a . Let Q = n´
G
T  be the tangential-normal.  

 

Theorem 4.1. Let   be a unit-speed curve, and let {T, Q, n} be the 

Darboux frame field of a  with respect to M. Then 

 

 

T

Q

n

é

ë

ê
ê
ê

ù

û

ú
ú
ú

¢

=

0 k
g

k
n

0 0 t
g

0 -t
g

0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

T

Q

n

é

ë

ê
ê
ê

ù

û

ú
ú
ú

.  (8) 

 

where k
g
 and k

n
 give the tangential and normal component of the curvature vector, and these 

functions are called the geodesic and the normal curvature, respectively [22]. 

 

Proof.  We have  

 

¢T = ( ¢T ×
G
Q)Q + ( ¢T ×

G
n)n

= ( ¢¢a ×
G
Q)Q + ( ¢¢a ×

G
n)n

=k
g
Q +k

n
n.

  (9) 

 

The other formulae are proved in a similar fashion. Also, equation (5) implies the 

important relations 

k 2(x) =k
g

2(x) +k
n

2(x), tau(x) = -t
g
(x) +

¢k
g
(x)k

n
(x) -k

g
(x) ¢k

n
(x)

k
g

2(x) +k
n

2(x)
 

 

where k 2(x)  and t (x) are the square curvature and the torsion of a , respectively. 

 

Lemma 4.2. Let  be a curve in  and X  is any vector field along the curve, 

Fermi-Walker derivative with respect to the Darboux frame can be expressed as 
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i) If X  is an isotropic vector field along a , then Fermi-Walker derivative with 

respect to the Darboux frame of X  is given by  

 

 

 

ii) If X  is a non-isotropic vector field along a  in , then Fermi-Walker derivative 

with respect to the Darboux frame of X  is given by  

   

 

 

Proof. Using definition 2.2 and the equation (2), the above equations are obtained. 

 

Corollary 4.3. Let X = l
2
Q+ l

3
n be an isotropic vector field along the curve a . The Fermi-

Walker derivative coincides with derivative of X  iff l
2
k
g

+ l
3
k
n

= 0 . 

 

Corollary 4.4. Let X  be a non-isotropic vector field along the curve a . The Fermi-Walker 

derivative coincides with derivative of X  iff a  is a line in . 

 

Proof. Using lemma 4.2(ii) and X = l
1
T + l

2
Q+ l

3
n,   

 

$ 

 

is obtained. Since X  is a non-isotropic, l
1
¹ 0 . Therefore,   iff k

g
Q+k

n
n = 0. 

Hence, k
g

=k
n

= 0. That is, the curve is a line in  

 

Theorem 4.5. Let a  be a curve in  be any non-isotropic vector field 

along a . The vector field X  is Fermi-Walker transported along the curve a  if and only if 

 

l
1
(x) = const,

l
2
(x) = c

1
cos( t

g

1

x

ò (t)dt)+ c
2
sin( t

g

1

x

ò (t)dt)

l
3
(x) = c

2
cos( t

g

1

x

ò (t)dt)- c
1
sin( t

g

1

x

ò (t)dt)

 

 

where c
1
, c

2
 are constants of integration and l

1
, l

2
, l

3
 are continuously differentiable 

functions of arc length parameter x . 

 

Proof.  By the lemma 4.2(ii), the proof is obvious. 
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Corollary 4.6. Let X = l
1
T + l

2
N + l

3
B be any non-isotropic vector field along a  and the 

parameters l
i
 are constants. The vector field X  is Fermi-Walker transported iff the curve a  

is the line of curvature or l
2

= l
3
= 0. 

 

Proof. Using  lemma 4.2(ii) and "l
i
= const., 

 

 

 

is obtained. Using the above equation, the proof can be obtained. 

 

Theorem 4.7. Let a  be a curve in  be any non-zero isotropic 

vector field along a . The vector field X  is Fermi-Walker transported along the curve a  if 

and only if 

 

           

            

 

 

                

 

 

      

            

 

 

                

 

 

      

 

 

where c
1
,c

2
 are constants of integration and l

2
, l

3
 are continuously differentiable functions 

of arc length parameter x . 

 

Proof. By the lemma 4.2(i), the results are obvious. 

 

Corollary 4.8.  Let a  be a curve in  be any non-zero isotropic vector field 

along a  and the parameters l
i
 are constants. The vector field X  along the curve a  in  is 

the Fermi-Walker transported iff   

 

k
g

k
n

æ

è
ç

ö

ø
÷

¢

= 0. 

 

Corollary 4.9. Let {T ,Q,n} be the Darboux frame of the curve a . {T ,Q,n} Darboux frame 

of the curve is a non-rotating frame if and only if the curve is a line. Otherwise, the Darboux 

frame is not a non-rotating frame along the curve in Galilean space. 
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5. CONCLUSIONS 

 

 

The notion of Fermi-Walker derivative, it shows us one method, which is used for 

defining ”constant” direction, that may contain lots of condition to have Fermi-Walker 

transport or non-rotating frame. The condition of Fermi-Walker transport depends on a 

solution that contains differential equation system which is not always easy to find the 

answer. Therefore, it is important to analyze this concept. In this paper, Fermi-Walker 

derivative, Fermi-Walker transport and non-rotating frame concepts are defined along any 

curve and the notions have been analyzed or both isotropic and non-isotropic vector fields. 

We have investigated Fermi-Walker derivative and geometric applications in various 

spaces like Euclidean, Lorentz and Dual space up to now [10, 14, 15]. The Fermi-Walker 

derivative which is defined in  is different from them so far since it is examined for both 

isotropic and non-isotropic vector fields. 

Firstly, Fermi-Walker derivative is redefined for any isotropic vector fields along a 

curve which is in Galilean space. We have proved Fermi-Walker derivative that is defined for 

the isotropic vector fields coincides with Fermi derivative which is defined in any surface. We 

have shown Fermi-Walker derivative which is defined for any non-isotropic vector fields is 

not coincides with derivative of the vector fields. Being Fermi-Walker transport conditions 

are examined for any isotropic and non-isotropic vector fields. We have shown that if the 

curve is a line or a planar curve which is not a line then the non-zero isotropic vector field is 

Fermi-Walker transported. We have obtained that Frenet frame is not a non-rotating frame if 

the curve is not a line.  

Then, similar investigations have been made for any isotropic and non-isotropic vector 

fields with respect to the Darboux frame in Galilean space. We have proved while the curve is 

a line the Darboux frame is a non-rotating frame. 
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