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Abstract. In this paper, we study a harmonic evolute surface of quasi normal surface 

associated with quasi frame. We construct quasi normal surface with first and second 

fundamental forms. Moreover, we determine harmonic evolute surface of quasi normal 

surface by using these fundamental forms. Finally, we obtain some new results about these 

new surfaces. 

Keywords: Bonnet Surfaces, Curvatures, Fundamental Forms, Normal Spherical 

Image. 

 

 

1. INTRODUCTION  

 

 

The application of surfaces, which is a subject of differential geometry, to physics, and 

engineering is endless. It has been an area of impressive information whereby ruled surfaces 

which are generated by the motion of a straight line along a curve has been studied 

extensively by many researchers in both Euclidean and Minkowski spaces [1-4] after it was 

initially discovered by Gaspard Mongea. Besides ruled surfaces, many researchers have 

studied the harmonic evolute of various surfaces in detail for many years, which are ruled 

surfaces, timelike ruled surfaces, quasi tangent ruled surfaces, helicoid surfaces, B-scrolls 

with constant mean curvature to name a few [5-8]. As a follow up to these existing studies, we 

have explored harmonic evolute surfaces of the ruled surfaces generated by quasi normal 

vector. 

 

This paper consists of three sections. Imperative knowledge on the differential 

geometric construction of the frames in the 3-dimensional Euclidean space that is, Serret 

Frenet frame, quasi frame and the relation between these frames are examined within the first 

section. In order to obtain harmonic evolute of ruled surfaces, the mean curvature of the 

surfaces is given by calculating the first and the second fundamental forms. In the following 

section, we identify the harmonic evolute surface of quasi normal surface associated with 

quasi frame. The necessary and sufficient conditions of how the quasi normal surface and its 

harmonic evolute surface can or can not be a Bonnet surface are given. Furthermore, the quasi 

normal surface of a helix and a harmonic evolute of the quasi normal surface are depicted. 
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2. MATERIALS AND METHODS 

 

 

By the way of design and style, this model is kind of a moving frame with regards to a 

particle. In the quick stages of regular differential geometry, the Frenet-Serret frame was 

applied to create a curve in location. After that, Frenet-Serret frame is established by way of 

subsequent equations for a presented framework [9] 
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where t=  and   are the curvature and torsion of  , respectively. 

After Bishop in 1975 showed that there is more than one way to frame a curve in [10], 

Yilmaz and Turgut introduced second type of Bishop frame in [14]. Besides them, Dede et. al. 

in defined quasi frame in [11]. The quasi frame of a regular curve   is given by 
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where k  is the projection vector. 

For simplicity, we have chosen the projection vector (0,0,1)=k  in this paper. 

However, the q-frame is singular in all cases where t  and k  are parallel. Thus, in those cases 

where t  and k  are parallel, the projection vector k  can be chosen as (0,1,0)=k  or 

(1,0,0).=k  

If the angle between the quasi normal vector 
qn  and the normal vector n  is chosen as 

,  then the following relation is obtained between the quasi and FS frame. 

 

 

.cossin=

,sincos=

=

bnb

bnn

t,t

q

q

q







   

 

Therefore, by using the equations  31  the variation of parallel adapted quasi frame 

is obtained by 
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where  

 

 ,=,sin=,cos= 321   '  

 

and the vector products of the quasi vectors are given by 
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 .=,=,= qqqqqqqqq ntbtbnbnt   

 

Let n  be the standard unit normal vector field on a surface   defined by 

 

 ,=
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where ,/=,/= ts ts   respectively. Then, the first fundamental form I  and the second 

fundamental form II  of a surface   are defined by 
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respectively [12,13]. 

The mean curvature H is defined as: 

 

     
         

        
. 

 

Theorem 2.1. The surface is minimal if and only if it has vanishing mean curvature 

[9,13]. 

  

 

3. HARMONIC EVOLUTE SURFACES OF QUASI NORMAL SURFACES 

 

 

In this section, we aim to explore harmonic evolute surface of quasi normal surface 

associated with quasi frame when the mean curvature does not vanish. 

Firstly, we construct quasi normal surface of a quasi curve as  

 

 .=),( q

q
n
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Definition 3.1. If G=E , 0=F , c=f 0 (c = const.) are satisfied then the surface is 

called A-net on a surface [9]. 

 

Theorem 3.2. A surface to be a Bonnet surface if and only if surface has an A-net, 

[9]. 

 

Theorem 3.3. Let q
n

  be a quasi normal surface of a quasi curve in space. q
n

  is 

minimal iff  
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Proof. From the definition of quasi normal surface, we have 
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By using this field, the coefficients of the first fundamental form are given  
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The second partial derivatives of q
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  are expressed as follows: 
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So, an algebraic calculus shows that 
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Moreover, by the definition of the unit normal vector, we have 
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Therefore, the coefficients of the second fundamental form are given 
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The mean curvature of q
n

  is presented 
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This completes the proof. 
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Theorem 3.4. Let q
n

  be a quasi normal surface of a quasi curve in space .  q
n

  is not 

a Bonnet surface. 

 

Assume that, q
n

  is not minimal. Then, a harmonic evolute surface of the quasi 

normal surface is given by  
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Theorem 3.5. A harmonic evolute surface of q
n

  is given by 
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Theorem 3.6. A harmonic evolute surface of q
n

  is a Bonnet surface if and only if 
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where   is constant. 

 

Proof. Now, we obtain the derivative formulas 
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Then, it is easy to see that 
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Consequently, using the definition of a Bonnet surface, we have proved the theorem. 
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Application to helix 
 

 
Figure 1. The quasi normal surface of a helix. 

 

Figure 2. A harmonic evolute surface of 
q

n

 . 

 

 

4. CONCLUSION 
 

 

In conclusion, a harmonic evolute surface of quasi normal surface associated with 

quasi frame was studied throughout this paper. Initially, quasi normal surface was 

constructed. We then established harmonic evolute surface of quasi normal surface by using 

quasi frame and mean curvature. Finally, our studies have enabled us to gain new results 

about these surfaces. 
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Figure 1. The quasi tangent surface of a helix
Figure 2. A harmonic evolute surface of nq


