ORIGINAL PAPER

BI-PERIODIC BALANCING NUMBERS

DURSUN TASCI ${ }^{1}$, EMRE SEVGI ${ }^{1}$

Manuscript received: 23.08.2019; Accepted paper: 02.12.2019;
Published online: 30.03.2020.

Abstract. In this paper, we introduce a new generalization of the balancing numbers which we call bi-periodic balancing numbers as

$$
b_{n}=\left\{\begin{array}{l}
6 c b_{n-1}-b_{n-2}, \text { if } n \text { is even } \\
6 d b_{n-1}-b_{n-2}, \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial conditions $b_{0}=0, b_{1}=1$. We find the generating function for this sequence and produce a Binet's formula.

Keywords: Balancing numbers, k-balancing numbers, Bi-periodic balancing numbers, Binet formula, Generating function, Cassini identity, Catalan identity

1. INTRODUCTION

There are many studies on integer sequences such as Fibonacci, Lucas, Jacobsthal and their applications [1-4]. Another well-known sequence is balancing numbers which satisfies the recurrence relation

$$
b_{n}=6 b_{n-1}-b_{n-2}, \quad n \geq 2
$$

with initial conditions $b_{0}=0, b_{1}=1$. Balancing numbers was firstly mentioned by Behera and Panda in [5]. Moreover, many researchers worked on balancing numbers and its applications [6-8].

In many studies, authors worked on the generalizations of integer sequences in different ways. Among these studies, the most interesting generalization is bi-periodic Fibonacci sequence which was produced by Edson and Yayenie [9]. The bi-periodic Fibonacci sequence was defined as

$$
q_{n}=\left\{\begin{array}{cc}
a q_{n-1}-q_{n-2}, & \text { if } n \text { is even } \\
b q_{n-1}-q_{n-2}, & \text { if } n \text { is odd }
\end{array}, n \geq 2\right.
$$

with initial conditions $q_{0}=0, q_{1}=1$. Then, the generating function for the bi-periodic Fibonacci sequence was obtained as

$$
F(x)=\frac{x\left(1+a x-x^{2}\right)}{1-(\mathrm{ab}+2) x^{2}+x^{4}} .
$$

[^0]Moreover, the authors gave the Binet formula for the bi-periodic Fibonacci sequence as

$$
q_{m}=\left(\frac{a^{1-\xi(m)}}{(a b)^{\left\lfloor\frac{m}{2}\right\rfloor}}\right)\left(\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)
$$

where $\lfloor a\rfloor$ is the floor function of a and $\xi(m)=m-2\left\lfloor\frac{m}{2}\right\rfloor$ is the parity function and α and β are the roots of quadratic equation

$$
x^{2}-a b x-a b=0
$$

In view of this generalization, Yayenie [10] made some studies on bi-periodic fibonacci sequence and Bilgici [11] defined the bi-periodic Lucas sequence and obtained some identities using the Binet formula of the bi-periodic Lucas sequence. Also, Tasci and Kizilirmak worked on the periods of bi-periodic Fibonacci and bi-periodic Lucas numbers in [12]. Lastly, Uygun and Owusu defined the bi-periodic Jacobsthal sequence with the similar way [13].

2. MAIN RESULTS

Definition 2.1. For any two non-zero real numbers c and d, the bi-periodic balancing numbers $\left\{b_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
b_{0}=0, b_{1}=1, b_{n}=\left\{\begin{array}{l}
6 c b_{n-1}-b_{n-2}, \text { if } n \text { is even } \\
6 d b_{n-1}-b_{n-2}, \text { if } n \text { is odd }
\end{array}, n \geq 2 .\right.
$$

When $c=d=1$, we have the classic balancing numbers. If we set $=d=k$, for any positive number, we get the k-balancing numbers. The first five elements of the biperiodic balancing numbers are

$$
b_{0}=0, b_{1}=1, b_{2}=6 c, b_{3}=36 c d-1, b_{4}=216 c^{2} d-12 c .
$$

The quadratic equation for the bi-periodic balancing numbers is defined as

$$
x^{2}-36 c d x+36 c d=0
$$

with the roots

$$
\begin{equation*}
\alpha=18 c d+6 \sqrt{9 c^{2} d^{2}-c d} \text { and } \beta=18 c d-6 \sqrt{9 c^{2} d^{2}-c d} \tag{2.1}
\end{equation*}
$$

Lemma 2.2. The bi-periodic balancing numbers $\left\{b_{n}\right\}_{n=0}^{\infty}$ satisfies the following properties:

$$
b_{2 n}=(36 c d-2) b_{2 n-2}-b_{2 n-4}
$$

$$
b_{2 n+1}=(36 c d-2) b_{2 n-1}-b_{2 n-3}
$$

Proof. Using the recurrence relation for the bi-periodic balancing numbers we can obtain

$$
\begin{aligned}
b_{2 n} & =6 c b_{2 n-1}-b_{2 n-2} \\
& =6 c\left(6 d b_{2 n-2}-b_{2 n-3}\right)-b_{2 n-2} \\
& =(36 c d-1) b_{2 n-2}-6 c b_{2 n-3} \\
& =(36 c d-1) b_{2 n-2}-\left(b_{2 n-2}+b_{2 n-4}\right) \\
& =(36 c d-2) b_{2 n-2}-b_{2 n-4} \\
b_{2 n+1} & =6 d b_{2 n}-b_{2 n-1} \\
& =6 d\left(6 c b_{2 n-1}-b_{2 n-2}\right)-b_{2 n-1} \\
& =(36 c d-1) b_{2 n-1}-6 d b_{2 n-2} \\
& =(36 c d-1) b_{2 n-2}-\left(b_{2 n-1}+b_{2 n-3}\right) \\
& =(36 c d-2) b_{2 n-1}-b_{2 n-3} .
\end{aligned}
$$

Lemma 2.3. The roots α and β defined in (2.1) satisfies the following properties:

$$
\begin{array}{cc}
(\alpha-1)(\beta-1)=1 \\
\alpha \beta=36 c d & \alpha+\beta=36 c d \\
\alpha-1=\frac{\alpha^{2}}{36 c d} & 6 \beta-1=\frac{\beta^{2}}{36 c d} \\
(\alpha-1) \beta=\alpha & (\beta-1) \alpha=\beta
\end{array}
$$

Proof. By using the definitions of α and β defined in (2.1), the properties can easily be proved.

Theorem 2.4. The generating function for the bi-periodic balancing numbers $\left\{b_{n}\right\}_{n=0}^{\infty}$ is

$$
B(x)=\frac{x\left(1+6 c x+x^{2}\right)}{1-(36 c d-2) x^{2}+x^{4}} .
$$

Proof. The formal power series representation of the generating function for $\left\{b_{n}\right\}_{n=0}^{\infty}$ is

$$
B(x)=\mathrm{b}_{0}+\mathrm{b}_{1} x+\mathrm{b}_{2} x^{2}+\cdots+\mathrm{b}_{r} x^{r}+\cdots=\sum_{m=0}^{\infty} b_{m} x^{m}
$$

By multiplying this series by 6 dx and x^{2} respectively, we can get the following series;
$6 \mathrm{dx} B(x)=6 \mathrm{db}_{0} x+6 \mathrm{db}_{1} x^{2}+6 d \mathrm{~b}_{2} x^{3}+\cdots+6 \mathrm{db}_{r} x^{r+1}+\cdots=\sum_{m=1}^{\infty} 6 d b_{m-1} x^{m}$
and
$x^{2} B(x)=\mathrm{b}_{0} x^{2}+\mathrm{b}_{1} x^{3}+\mathrm{b}_{2} x^{4}+\cdots+\mathrm{b}_{r} x^{r+2}+\cdots=\sum_{m=2}^{\infty} b_{m-2} x^{m}$.
Therefore, we can write
$\left(1-6 \mathrm{dx}+x^{2}\right) B(x)=\mathrm{b}_{0}+\mathrm{b}_{1} x-6 d \mathrm{~b}_{0} x+\sum_{m=2}^{\infty}\left(b_{m}-6 d \mathrm{~b}_{m-1}+b_{m-2}\right) x^{m}$.
Since $b_{2 m+1}=6 d b_{2 m}-b_{2 m-1}$ and $b_{0}=0, b_{1}=1$ equation (2.2) reduces to
$\left(1-6 \mathrm{dx}+x^{2}\right) B(x)=x+\sum_{m=1}^{\infty}\left(b_{2 m}-6 d \mathrm{~b}_{2 m-1}+b_{2 m-2}\right) x^{2 m}$.
Since $b_{2 m}=6 c b_{2 m-1}-b_{2 m-2}$, we get

$$
\begin{aligned}
\left(1-6 \mathrm{dx}+x^{2}\right) B(x) & =x+\sum_{m=1}^{\infty} 6(c-d) \mathrm{b}_{2 m-1} x^{2 m} \\
& =x+6(c-d) x \sum_{m=1}^{\infty} \mathrm{b}_{2 m-1} x^{2 m-1}
\end{aligned}
$$

Now we define $b(x)$ as

$$
b(x)=\sum_{m=1}^{\infty} b_{2 m-1} t^{2 m-1}
$$

By applying the same way as above, we get

$$
\begin{aligned}
& \left(1-(36 \mathrm{~cd}-2) \mathrm{x}^{2}+x^{4}\right) b(x) \\
& \qquad \begin{array}{l}
=\sum_{m=1}^{\infty} b_{2 m-1} x^{2 m-1}-(36 \mathrm{~cd}-2) \sum_{m=2}^{\infty} b_{2 m-3} x^{2 m-1}+\sum_{m=3}^{\infty} b_{2 m-5} x^{2 m-1} \\
=\mathrm{b}_{1} x+\mathrm{b}_{3} x^{3}-(36 \mathrm{~cd}-2) \mathrm{b}_{1} x^{3} \\
\\
\quad+\sum_{m=3}^{\infty}\left(b_{2 m-1}-(36 \mathrm{~cd}-2) b_{2 m-3}+b_{2 m-5}\right) x^{2 m-1} .
\end{array}
\end{aligned}
$$

Lemma (2.2) implies that $b_{2 m-1}-(36 \mathrm{~cd}-2) b_{2 m-3}+b_{2 m-5}=0$, so replacing this in the above expansion gives

$$
\left(1-(36 c d-2) x^{2}+x^{4}\right) b(x)=x+x^{3}+0
$$

Therefore we hold

$$
b(x)=\frac{x+x^{3}}{\left(1-(36 \mathrm{~cd}-2) \mathrm{x}^{2}+x^{4}\right)} .
$$

Substituting $b(x)$ in $B(x)$ we obtain

$$
\left(1-6 \mathrm{dx}+x^{2}\right) B(x)=x+6(c-d) x\left(\frac{x+x^{3}}{\left(1-(36 \mathrm{~cd}-2) \mathrm{x}^{2}+x^{4}\right)}\right)
$$

Simplifying this, we have the generating function for the bi-periodic balancing numbers as

$$
B(x)=\frac{x\left(1+6 c x+x^{2}\right)}{1-(36 \mathrm{~cd}-2) x^{2}+x^{4}} .
$$

Theorem 2.3. We can express the terms of the bi-periodic balancing numbers $\left\{b_{n}\right\}_{n=0}^{\infty}$ by using the Binet formula:

$$
b_{m}=\frac{(6 c)^{1-\xi(m)}}{(36 c d)^{\left\lfloor\frac{m}{2}\right\rfloor}}\left(\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)
$$

where $\lfloor c\rfloor$ is the floor function of c and $\xi(m)=m-2\left\lfloor\frac{m}{2}\right\rfloor$ is the parity function.

Proof. We know that the generating function for the bi-periodic balancing numbers $\left\{b_{n}\right\}_{n=0}^{\infty}$ is given by

$$
B(x)=\frac{x\left(1+6 c x+x^{2}\right)}{1-(36 \mathrm{~cd}-2) x^{2}+x^{4}} .
$$

Using the partial fraction decomposition, $B(x)$ can be written as

$$
B(x)=\frac{1}{\alpha-\beta}\left[\frac{6 c(\alpha-1)+\alpha x}{x^{2}-(\alpha-1)}-\frac{6 c(\beta-1)+\beta x}{x^{2}-(\beta-1)}\right]
$$

Since the Maclaurin series expansion of the function

$$
\frac{A-B z}{z^{2}-C}
$$

is expressed as

$$
\frac{A-B z}{z^{2}-C}=\sum_{n=0}^{\infty} B C^{-n-1} z^{2 n+1}-\sum_{n=0}^{\infty} A C^{-n-1} z^{2 n}
$$

the generating function $B(x)$ can be written as

$$
\begin{aligned}
B(x)=\frac{1}{\alpha-\beta} & {\left[\sum_{m=0}^{\infty} \frac{\beta(\alpha-1)^{m+1}-\alpha(\beta-1)^{m+1}}{(\alpha-1)^{m+1}(\beta-1)^{m+1}} x^{2 m+1}\right] } \\
& +\frac{6 c}{\alpha-\beta}\left[\sum_{m=0}^{\infty} \frac{(\beta-1)(\alpha-1)^{m+1}-(\alpha-1)(\beta-1)^{m+1}}{(\alpha-1)^{m+1}(\beta-1)^{m+1}} x^{2 m}\right]
\end{aligned}
$$

By using the properties in Lemma 2.3, we get

$$
\begin{aligned}
B(x)= & \sum_{m=0}^{\infty}\left(\frac{1}{36 c d}\right)^{m+1}\left(\frac{\beta \alpha^{2 m+2}-\alpha \beta^{2 m+2}}{\alpha-\beta}\right) x^{2 m+1} \\
& +\sum_{m=0}^{\infty} 6 c\left(\frac{1}{36 c d}\right)^{m+1}\left(\frac{(\beta-1) \alpha^{2 m+2}-(\alpha-1) \beta^{2 m+2}}{\alpha-\beta}\right) x^{2 m} \\
= & \sum_{m=0}^{\infty}\left(\frac{1}{36 c d}\right)^{m}\left(\frac{\alpha^{2 m+1}-\beta^{2 m+1}}{\alpha-\beta}\right) x^{2 m+1}+\sum_{m=0}^{\infty} 6 c\left(\frac{1}{36 c d}\right)^{m}\left(\frac{\alpha^{2 m}-\beta^{2 m}}{\alpha-\beta}\right) x^{2 m} .
\end{aligned}
$$

By the help of the parity function $\xi(m)$, the above expansion is simplified as

$$
B(x)=\frac{(6 c)^{1-\xi(m)}}{(36 c d)^{\left\lfloor\frac{m}{2}\right\rfloor}}\left(\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right) x^{m}
$$

Therefore, for all $m \geq 0$, we get

$$
b_{m}=\frac{(6 c)^{1-\xi(m)}}{(36 c d)^{\left\lfloor\frac{m}{2}\right\rfloor}}\left(\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)
$$

Theorem 2.4. (Catalan's Identity) For any two nonnegative integer n and r, with $r \leq n$, we have

$$
c^{\xi(n-r)} d^{1-\xi(n-r)} b_{n-r} b_{n+r}-c^{\xi(n)} d^{1-\xi(n)} b_{n}^{2}=-c^{\xi(r)} d^{1-\xi(r)} b_{r}^{2}
$$

Proof. Using the Binet formula, we obtain

$$
\begin{aligned}
& c^{\xi(n-r)} d^{1-\xi(n-r)} b_{n-r} b_{n+r} \\
& =c^{\xi(n-r)} d^{1-\xi(n-r)}\left(\frac{(6 c)^{1-\xi(n-r)}}{(36 c d)^{\left.\frac{n-r}{2}\right]}}\right)\left(\frac{(6 c)^{1-\xi(n+r)}}{(36 c d)^{\left.\frac{n+r}{2}\right\rfloor}}\right) \frac{\alpha^{n-r}-\beta^{n-r}}{\alpha-\beta} \frac{\alpha^{n+r}-\beta^{n+r}}{\alpha-\beta} \\
& =\left(\frac{(6 c)^{2-\xi(n-r)} d^{1-\xi(n-r)}}{(36 c d)^{n-\xi(n-r)}}\right) \frac{\alpha^{n-r}-\beta^{n-r}}{\alpha-\beta} \frac{\alpha^{n+r}-\beta^{n+r}}{\alpha-\beta} \\
& =\left(\frac{c}{(36 c d)^{n-1}}\right)\left[\frac{\alpha^{2 n}-(\alpha \beta)^{n-r}\left(\alpha^{2 r}+\beta^{2 r}\right)+\beta^{2 n}}{(\alpha-\beta)^{2}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
c^{\xi(n)} d^{1-\xi(n)} b_{n}^{2} & =c^{\xi(n)} d^{1-\xi(n)}\left(\frac{(6 c)^{2-2 \xi(n)}}{(36 c d)^{2}\left\lfloor\frac{n}{2}\right\rfloor}\right)\left[\frac{\alpha^{2 n}-2(\alpha \beta)^{n}+\beta^{2 n}}{(\alpha-\beta)^{2}}\right] \\
& =\left(\frac{c}{(36 c d)^{2\left\lfloor\frac{n}{2}\right\rfloor+\xi(n)-1}}\right)\left[\frac{\alpha^{2 n}-2(\alpha \beta)^{n}+\beta^{2 n}}{(\alpha-\beta)^{2}}\right]
\end{aligned}
$$

$$
=\left(\frac{c}{(36 c d)^{n-1}}\right)\left[\frac{\alpha^{2 n}-2(\alpha \beta)^{n}+\beta^{2 n}}{(\alpha-\beta)^{2}}\right]
$$

Therefore,

$$
\begin{aligned}
c^{\xi(n-r)} d^{1-\xi(n-r)} & b_{n-r} b_{n+r}-c^{\xi(n)} d^{1-\xi(n)} b_{n}{ }^{2} \\
& =\left(\frac{c}{(36 c d)^{n-1}}\right)\left[\frac{2(\alpha \beta)^{n}-(\alpha \beta)^{n-r}\left(\alpha^{2 r}+\beta^{2 r}\right)}{(\alpha-\beta)^{2}}\right] \\
& =\left(\frac{-c}{(36 c d)^{n-1}}\right)(\alpha \beta)^{n-r}\left[\frac{\alpha^{2 r}-2 \alpha^{r} \beta^{r}+\beta^{2 r}}{(\alpha-\beta)^{2}}\right] \\
& =\left(\frac{-c}{(36 c d)^{n-1}}\right)(36 c d)^{n-r}\left(\frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\right)^{2} \\
& =\left(\frac{-c}{(36 c d)^{r-1}}\right) \frac{(36 c d)^{2}\left[\frac{r}{2}\right]}{(6 c)^{2-2 \xi(r)} b_{r}{ }^{2}} \\
& =-c(6 c)^{2 \xi(r)-2}(36 c d)^{1-\xi(r)} b_{r}{ }^{2} \\
& =-c^{\xi(r)} d^{1-\xi(r)} b_{r}{ }^{2} .
\end{aligned}
$$

Theorem 2.5. (Cassini's Identity) For any nonnegative integer n, we have

$$
c^{1-\xi(n)} d^{\xi(n)} b_{n-1} b_{n+1}-c^{\xi(n)} d^{1-\xi(n)} b_{n}^{2}=-c .
$$

Proof. In Catalan's identity, if we take $r=1$ we get Cassini's identity.
Theorem 2.6. For any two nonnegative integers m and n with $m \geq n$, we have

$$
c^{\xi(m n+m)} d^{\xi(m n+n)} b_{m} b_{n+1}-c^{\xi(m n+n)} d^{\xi(m n+m)} b_{m+1} b_{n}=c^{\xi(m-n)} b_{m-n} .
$$

Proof. We first note that

$$
\xi(m+1)+\xi(n)-2 \xi(m n+n)=\xi(m)+\xi(n+1)-2 \xi(m n+m)=1-\xi(m-n)
$$

and

$$
\xi(m-n)=\xi(m n+m)+\xi(m n+n)
$$

By using the Binet formula and the above equalities, we get

$$
\begin{aligned}
& c^{\xi(m n+m)} d^{\xi(m n+n)} b_{m} b_{n+1} \\
& =\left(\frac{c(c d)^{-n}}{6^{m+n-1}(c d)^{\frac{m-n-\xi(m-n)}{2}}}\right)\left[\frac{\alpha^{m+n+1}+\beta^{m+n+1}-(\alpha \beta)^{n}\left(\beta \alpha^{m-n}+\alpha \beta^{m-n}\right)}{(\alpha-\beta)^{2}}\right]
\end{aligned}
$$

and
$c^{\xi(m n+n)} d^{\xi(m n+m)} b_{m+1} b_{n}$
$=\left(\frac{c(c d)^{-n}}{6^{m+n-1}(c d)^{\frac{m-n-\xi(m-n)}{2}}}\right)\left[\frac{\alpha^{m+n+1}+\beta^{m+n+1}-(\alpha \beta)^{n}\left(\alpha^{m-n+1}+\beta^{m-n+1}\right)}{(\alpha-\beta)^{2}}\right]$
Therefore,

$$
\begin{aligned}
& c^{\xi(m n+m)} d^{\xi(m n+n)} b_{m} b_{n+1}-c^{\xi(m n+n)} d^{\xi(m n+m)} b_{m+1} b_{n} \\
& =\left(\frac{c(c d)^{-n}}{6^{m+n-1}(c d)^{\frac{m-n-\xi(m-n)}{2}}}\right)\left[\frac{-(\alpha \beta)^{n}\left(\beta \alpha^{m-n}+\alpha \beta^{m-n}-\alpha^{m-n+1}-\beta^{m-n+1}\right)}{(\alpha-\beta)^{2}}\right] \\
& =-\left(\frac{c(c d)^{-n}}{6^{m+n-1}(c d)^{\left.\frac{m-n)}{2}\right\rfloor}}\right)(36 c d)^{n}\left[\frac{\beta \alpha^{m-n}+\alpha \beta^{m-n}-\alpha^{m-n+1}-\beta^{m-n+1}}{(\alpha-\beta)^{2}}\right] \\
& =-\left(\frac{c}{6^{m-n-1}(c d)^{\left\lfloor\frac{m-n)}{2}\right\rfloor}}\right)\left[\frac{\alpha^{m-n}(\beta-\alpha)-\beta^{m-n}(\beta-\alpha)}{(\alpha-\beta)^{2}}\right] \\
& =\left(\frac{c}{6^{m-n-1}(c d)^{\left\lfloor\frac{m-n)}{2}\right\rfloor}}\right)\left(\frac{\alpha^{m-n}-\beta^{m-n}}{\alpha-\beta}\right) \\
& =\left(\frac{c}{6^{m-n-1}(c d)^{\left\lfloor\frac{m-n)}{2}\right\rfloor}}\right)\left(\frac{(36 c d)^{\left.\frac{m-n)}{2}\right\rfloor}}{(6 c)^{1-\xi(m-n)}}\right) b_{m-n} \\
& =c^{\xi(m-n)} b_{m-n} .
\end{aligned}
$$

Teorem 2.7. (Sums Involving Binomial Coefficients) For any nonnegative integer n, we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(36 c d)^{\left\lfloor\frac{k}{2}\right\rfloor}(6 c)^{\xi(k)} b_{k}=b_{2 n}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(36 c d)^{\left[\frac{k+1}{2}\right]}(6 c)^{\xi(k+1)-1} b_{k+1}=b_{2 n+1}
$$

Proof. We first note that, for any integer k

$$
6 c \frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}=(36 c d)^{\left\lfloor\frac{k}{2}\right\rfloor}(6 c)^{\xi(k)} b_{k}
$$

Using this equality, we can get

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(36 c d)^{\left[\frac{k}{2}\right]}(6 c)^{\xi(k)} b_{k} \\
&=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} 6 c\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}\right) \\
&=\frac{6 c}{\alpha-\beta}\left[\sum_{k=0}^{n}\binom{n}{k} \alpha^{k}(-1)^{n-k}-\sum_{k=0}^{n}\binom{n}{k} \beta^{k}(-1)^{n-k}\right] \\
&=\frac{6 c}{\alpha-\beta}\left[(\alpha-1)^{n}-(\beta-1)^{n}\right] \\
&=\frac{6 c}{\alpha-\beta}\left[\left(\frac{\alpha^{2}}{36 c d}\right)^{n}-\left(\frac{\beta^{2}}{36 c d}\right)^{n}\right] \\
&=\frac{6 c}{(36 c d)^{n}}\left(\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}\right) \\
&=b_{2 n}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(36 c d)^{\left\lfloor\frac{k+1}{2}\right]}(6 c)^{\xi(k+1)-1} b_{k+1} \\
&=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}\left(\frac{\alpha^{k+1}-\beta^{k+1}}{\alpha-\beta}\right) \\
&=\frac{1}{\alpha-\beta}\left[\alpha \sum_{k=0}^{n}\binom{n}{k} \alpha^{k}(-1)^{n-k}-\beta \sum_{k=0}^{n}\binom{n}{k} \beta^{k}(-1)^{n-k}\right] \\
&=\frac{1}{\alpha-\beta}\left[\alpha(\alpha-1)^{n}-\beta(\beta-1)^{n}\right] \\
&=\frac{1}{\alpha-\beta}\left[\alpha\left(\frac{\alpha^{2}}{36 c d}\right)^{n}-\beta\left(\frac{\beta^{2}}{36 c d}\right)^{n}\right] \\
&=\frac{1}{(36 c d)^{n}}\left(\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\alpha-\beta}\right) \\
&=b_{2 n+1}
\end{aligned}
$$

Teorem 2.8. The nonnegative terms of the bi-periodic balancing numbers are defined in terms of the positive terms as

$$
b_{-n}=-b_{n}
$$

Proof. By using the Binet formula

$$
\begin{aligned}
b_{-n} & =\frac{(6 c)^{1-\xi(-n)}}{(36 c d)^{\left.\left\lvert\, \frac{-n}{2}\right.\right\rfloor}}\left(\frac{\alpha^{-n}-\beta^{-n}}{\alpha-\beta}\right) \\
& =\frac{(6 c)^{1-\xi(n)}}{(36 c d)^{\left\lfloor\frac{-n}{2}\right\rfloor}}\left(\frac{1 / \alpha^{n}-1 / \beta^{n}}{\alpha-\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(6 c)^{1-\xi(n)}}{(36 c d)^{\left.\frac{-n}{2}\right]}} \frac{\left(\beta^{n}-\alpha^{n}\right)}{(36 c d)^{n}(\alpha-\beta)} \\
& =\frac{(6 c)^{1-\xi(n)}}{(36 c d)^{\left.\frac{n}{2}\right]}}\left(\frac{\beta^{n}-\alpha^{n}}{\alpha-\beta}\right) \\
& =-b_{n} .
\end{aligned}
$$

REFERENCES

[1] Koshy, T. Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[2] Horadam, A. F., Amer. Math. Monthly, A generalized fibonacci sequence, 68, 455, 1961.
[3] Horadam, A. F., Fibonacci Quarterly, Jacobsthal representation numbers, 34, 40, 1996.
[4] Falcon, S., International Journal of Contemporary Mathematical Sciences, On the k lucas numbers, 6, 1039, 2011.
[5] Behera, A., Panda, G. K., Fibonacci Quarterly, On the square roots of triangular numbers, 37, 98, 1999.
[6] Panda, G. K., Fibonacci Quarterly, Sequence balancing and cobalancing numbers, 45, 265, 2007.
[7] Liptai, K., Luca, F., Pinter, A., Szalay, L., Indagationes Mathematicae, Generalized Balancing Numbers, 20, 87, 2009.
[8] Ozkoc, A., Tekcan, A., Notes on Number Theory and Discrete Mathematics, On kbalancing numbers, 23, 38, 2017.
[9] Edson, M., Yayenie, O., Integers, A new generalization of fibonacci sequence and extended Binet's formula, 9, 639, 2009.
[10] Yayenie, O., Applied Mathematics and Computation, A note on generalized fibonacci sequence, 217, 5603, 2011.
[11] Bilgici, G., Applied Mathematics and Computation, Two generalizations of Lucas sequence, 245, 526, 2014.
[12] Tasci, D., Kizilirmak, G. O., Discrete Dynamics in Nature and Society, On the periods of bi-periodic fibonacci and bi-periodic lucas numbers, 2016, Article ID 7341729, 2016.
[13] Uygun, S., Owusu, E., Journal of Mathematical Analysis, A new generalization of Jacobsthal numbers (Bi-periodic Jacobsthal sequences), 7, 28, 2016.

[^0]: ${ }^{1}$ Gazi University, Faculty of Science, Department of Mathematics, 06500, Ankara, Turkey. E-mail: dtasci@gazi.edu.tr; emresevgi@gazi.edu.tr.

