A SHORT NOTE ON AVI CIRCLE

DASARI NAGA VIJAY KRISHNA ${ }^{1}$

Manuscript received: 21.11.2019; Accepted paper: 13.02.2020;
Published online: 30.03.2020.

Abstract. In this note we study about a circle (refered as avi circle) which passes through the six notable touch points and having center at centroid (G) of triangle $A B C$ and radius as $\sqrt{\frac{S_{A}+S_{B}+S_{C}}{9}}$.

Keywords: centroid, power of point, avi circle, Stewart's theorem.

1. INTRODUCTION

Let $\triangle A B C$ be a reference triangle, Suppose B_{A}, C_{A} are the points where the tangents drawn from vertex A touches the semicircle which is constructed on $B C$ taking $B C$ as diameter, similarly define the points C_{B}, A_{B}, A_{C} and B_{C}. All the six points $B_{A}, C_{A}, C_{B}, A_{B}$, A_{C} and B_{C} are concyclic (Fig. 1). For recognisitaion sake let us call the circle which passes through all the six points $B_{A}, C_{A}, C_{B}, A_{B}, A_{C}$ and B_{C} as avi circle. In this short note we study about this circle.

Figure 1. Avi's circle.

[^0]Before proving our main theorem, let us prove some related lemmas.
Lemma 1. Let the points P and D are the foot of perpendicular and median drawn from the vertex A to the side $B C$ respectively then the five points A, B_{A}, P, D and C_{A} are concyclic (refer Fig. 2).

Proof: It is clear that D is the mid point of BC as well as center of semicircle constructed on BC taking BC as diameter, and since the lines $A B_{A}, A C_{A}$ are tangents from A to the semicircle constructed on BC taking BC as diameter.

So $A B_{A} \perp B_{A} D$ and $A C_{A} \perp C_{A} D$
Hence the four points A, B_{A}, D, C_{A} are concyclic.
Now since $A P \perp B C$ it implies $\angle A B_{A} D=\angle A P D=90^{\circ}$
It proves that the point P is concylic with the circle which passes through the points A, B_{A}, D, C_{A}.

Hence all the five points A, B_{A}, P, D and C_{A} are concyclic.

Figure 2. The five points $\mathbf{A}, B_{A}, \mathbf{P}, \mathbf{D}$ and C_{A} are concyclic
Lemma 2. The lines $B_{A} C_{A}$ and AP intersects at orthocenter (H) of the triangle $A B C$ and also

$$
A H \cdot H P=B_{A} H \cdot H C_{A}=\frac{S_{A} S_{B} S_{C}}{4 \Delta^{2}}
$$

where
$2 S_{A}=b^{2}+c^{2}-a^{2}=2 b c \cos A, 2 S_{B}=c^{2}+a^{2}-b^{2}=2 c a \cos B 2 S_{c}=a^{2}+b^{2}-c^{2}=2 a b \cos C$ using conway notation[1] (refer Fig. 3).

Figure 3. The lines $B_{A} C_{A}$ and AP intersects at orthocenter (H)
Proof: For proving Lemma 2, we will make use of Homogeneous barycentric coordinates.
If a triangle ABC has side lengths $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$ then $\mathrm{A}=(1: 0: 0)$, $\mathrm{B}=(0: 1: 0), \mathrm{C}=(0: 0: 1), \mathrm{D}=(0: 1: 1)$ in homogeneous barycentric coordinates with reference to ABC [1]. The coordinates of $\mathrm{P}=(0: \mathrm{b} \operatorname{cosC}: \operatorname{cosB})=\left(0: S_{C}: S_{B}\right)$ and $\mathrm{H}=(\tan \mathrm{A}: \tan \mathrm{B}: \tan \mathrm{C})=\left(S_{B} S_{C}: S_{C} S_{A}: S_{A} S_{B}\right)$ [using conway's notation].

Now the equation of the circle which contains the five points A, B_{A}, P, D and C_{A} in homogeneous barycentric coordinates is given by

$$
\begin{equation*}
2 a^{2} y z+2 b^{2} z x+2 c^{2} x y-(x+y+z)\left(S_{B} y+S_{C} z\right)=0 \tag{1}
\end{equation*}
$$

and the equation of the circle which is constructed on BC taking BC as diameter in homogeneous barycentric coordinates is given by

$$
\begin{equation*}
a^{2} y z+b^{2} z x+c^{2} x y-S_{A} x(x+y+z)=0 \tag{2}
\end{equation*}
$$

Now it is clear that the radical axis of (1) and (2) is the line $B_{A} C_{A}$
So the equation of the line $B_{A} C_{A}$ is given by

$$
\begin{equation*}
2 S_{A} x-S_{B} y-S_{C} z=0 \tag{3}
\end{equation*}
$$

Now it is easy to verify that the point H (orthocenter) lies on the line (3).
Hence the lines $B_{A} C_{A}$ and AP intersects at H orthocenter of the triangle ABC and since the points A, B_{A}, P, C_{A} are concyclic(using lemma-1), the lines $B_{A} C_{A}$ and AP intersects at H . So using chords property $A H \cdot H P=B_{A} H \cdot H C_{A}$.

Since $\mathrm{AH}=2 \mathrm{R} \cos \mathrm{A}, \mathrm{HP}=2 \mathrm{R} \cos \mathrm{B} \cos \mathrm{C}$,

$$
B_{A} H \cdot H C_{A}=A H \cdot H P=2 R \cos A \cdot 2 R \cos B \cos C=4 R^{2} \cos A \cos B \cos C=\frac{S_{A} S_{B} S_{C}}{4 \Delta^{2}}
$$

since $a b c=4 R \Delta$
Hence proved.
Now let us prove our main theorem.
Theorem 1. The six points $B_{A}, C_{A}, C_{B}, A_{B}, A_{C}$ and B_{C} are concyclic (for reconginisation sake let us call the circle as avi circle)(Fig. 4).

Figure 4. The six points $B_{A}, C_{A}, C_{B}, A_{B}, A_{C}$ and B_{C} lie on Avi's Circle
Proof: Using lemma-3, we can prove that $B_{A} H \cdot H C_{A}=C_{B} H \cdot H A_{B}=A_{C} H \cdot H B_{C}=\frac{S_{A} S_{B} S_{C}}{4 \Delta^{2}}$.
That is the line segments $B_{A} C_{A}, C_{B} A_{B}$ and $A_{C} B_{C}$ are concurrent at H such that $B_{A} H \cdot H C_{A}=C_{B} H \cdot H A_{B}=A_{C} H \cdot H B_{C}$

Hence using chords property(power of point) we can conclude that the six points B_{A}, $C_{A}, C_{B}, A_{B}, A_{C}$ and B_{C} are concyclic.

Hence proved
Theorem 2: Avi circle has center at centroid (G) of triangle ABC and radius as $\sqrt{\frac{S_{A}+S_{B}+S_{C}}{9}}$ (refer Fig. 5).

Proof: To prove that G is the center of avi circle, it is enough to prove that

$$
G B_{A}=G C_{A}=G C_{B}=G A_{B}=G A_{C}=G B_{C}=\sqrt{\frac{S_{A}+S_{B}+S_{C}}{9}} .
$$

Figure 5. The centroid G is the center of Avi's Circle
Let us compute lengths of $A B_{A}, G B_{A}$ (refer Fig. 6)

Figure 6. Computing the lengths of $A B_{A}, G B_{A}$

Consider triangle $A B_{A} D$,
Since $\angle A B_{A} D=90^{\circ} \Rightarrow A D^{2}=A B_{A}{ }^{2}+B_{A} D^{2}$ by replacing

$$
B_{A} D=\frac{a}{2}, A D=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
$$

we get $A B_{A}{ }^{2}=\frac{b^{2}+c^{2}-a^{2}}{2}=S_{A}$ and from the triangle $A B_{A} D$, centroid(G) lies on AD such that AG:GD $=2: 1$.

So using stewarts theorem, $B_{A} G^{2}=\frac{D G \cdot A B_{A}{ }^{2}}{A D}+\frac{A G \cdot D B_{A}{ }^{2}}{A D}-A G \cdot G D$
by replacing
$B_{A} D=\frac{a}{2}, A G=\frac{2 A D}{3}, D G=\frac{A D}{3}, A D=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}, A B_{A}{ }^{2}=\frac{b^{2}+c^{2}-a^{2}}{2}=S_{A}$
we get $B_{A} G^{2}=\frac{b^{2}+c^{2}-a^{2}}{6}+\frac{a^{2}}{6}-\frac{2 b^{2}+2 c^{2}-a^{2}}{18}=\frac{a^{2}+b^{2}+c^{2}}{18}=\frac{S_{A}+S_{B}+S_{C}}{9}$
In the similar manner we can prove

$$
G B_{A}=G C_{A}=G C_{B}=G A_{B}=G A_{C}=G B_{C}=\sqrt{\frac{S_{A}+S_{B}+S_{C}}{9}} .
$$

Hence proved

Notes:

1. The equation of the avi circle in homogeneous barycentric coordinates is given by

$$
2\left(a^{2} y z+b^{2} z x+c^{2} x y\right)-\left(S_{A} x^{2}+S_{B} y^{2}+S_{C} z^{2}\right)=0
$$

or

$$
3\left(a^{2} y z+b^{2} z x+c^{2} x y\right)-(x+y+z)\left(S_{A} x+S_{B} y+S_{C} z\right)=0 .
$$

2. The avi circle is also called as "Orthoptic Circle of the Steiner Inellipse"[2]. This short note gives a new way construction of Orthoptic Circle of the Steiner Inellipse.

Acknowledgement: The author is would like to thank an anonymous referee for his/her kind comments and suggestions, which lead to a better presentation of this paper.

REFERENCES

[1] Yiu, P., Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001.
[2] http://mathworld.wolfram.com/OrthopticCircleoftheSteinerInellipse.html.

[^0]: ${ }^{1}$ Sri Chaitanya Educational Instutions, Department of Mathematics, Machilipatnam, Bengalore, India E-mail: vijay9290009015@gmail.com.

