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Abstract. In this study, a complete analytical method of the evaluation and 

temperature behavior of the Lorenz number for non-degenerate and degenerate 

semiconductors has been proposed. Based on the quantum theory of kinetic effects, the Lorenz 

number formula of semiconductors in terms of two parameter Fermi functions has been 

formulated analytically. In spite of the long history of thermoelectric effect and its significant 

role in semiconductor phenomena, the analytical studies of two parameter Fermi function are 

very limited in the literature. By using an efficient algorithm for the calculation of two 

parameters Fermi function, the temperature dependence of Lorenz number has been 

evaluated analytically. The suggested method is useful for determination of Wiedemann-

Franz law that provides connection between the thermal and electrical conductivity which is 

important for thermoelectric materials. 

Keywords: Nondegenerated semiconductor, Wiedemann-Franz law, Lorenz number; 

thermal conductivity, electric conductivity 

 

 

1. INTRODUCTION  

 

 

Thermoelectric properties of materials have played a crucial role in development of 

the electric and electronic industry since their conductivities are closely related to the 

temperature [1-10]. The sequential theory of kinetic effects in semiconductors with 

nonstandard zone was constructed in the works [10-13]. The theoretical assessment of Lorenz 

number, occurring in the Wiedemann-Franz law, is an important parameter to characterize the 

thermoelectric matters and the experimental evaluation of the lattice thermal conductivity [14-

29]. The fact that the temperature and pressure dependences of Lorenz number are still the 

subject of current researches and many studies carried out to date [26]. In the study [27], the 

authors have proposed a new algorithm for providing an effective solution for determination 

of discrepancies of the Lorenz number from the observed nondegenerate, degenerate 

semiconductors and metals. The authors in work [28] have been proposed the remarkable 

review about recent progress of assessment thermoelectric properties of semiconductors and 

materials.  In [29], an efficient approach has been developed for predicting the lattice thermal 

conductivity  through a new Lorenz number equation. Besides, this study also leads to the 

defination of Lorenz number with Seedbeck coefficient.  

An efficient expression for the Lorenz numbers is of great significance for the 

evaluation of thermoelectric properties of semiconductors and materials. In this paper, a new 

analytical algorithm of computing the Lorenz number for semiconductors and materials is 
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presented. The efficiancy of the proposed algorithm for calculation Lorenz number is 

analyzed. 

 

 

2. DEFINITION AND GENERAL ANALYTICAL EXPRESSIONS 

 

 

The Wiedemann-Franz law for  semiconductors in the absence of an external magnetic 

field is generally determined by the formula [10]: 
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where ( , , )L r    is Lorenz number,   is thermal conductivity,   is electric conductivity, Bk  

is Boltzmann coefficient, e  is charge electron, T  is absolute temperature and the quantity 

( , , )A r    is defined as: 
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From Eq. (1), the Lorenz number satisfies the general equation: 
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Note that in the case of scattering of acoustic phonons 0r   and in the case of 

scattering on optical phonons at high temperatures 1r  . In Eq.(2) the quantity , ( , )m

n kI    is 

two-parameter Fermi integral defined as [10, 30]: 
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where 
Bk T


   is the reduced chemical potential, the quantity B

g

k T
 

  characterizes the band 

nonparabolicity and 
g is energy gap. In Eq. (3), for the strong degenerate semiconductors, 

the quantity ( , , )A r    equals to
2

3


. Note that, in the parabolic and nonparabolic zones the 

Lorenz number does not depend on the scattering mechanism r  [10]. Then, in the special case 

of strong degenerate semiconductors and most metals, the Lorenz number formula (Eq.(3)) 

takes the following basic form: 
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In the recent papers [31, 32], the authors have presented an analytical method for the 

two parameter Fermi integrals that it is suitable for applications of the thermoelectric effects 

of semiconductors. The series analytical relation for the two parameter Fermi integrals of the 

paper [32] is as follows: 

  

for 0, 0, 0n k m    
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for 0, 0, 0n k m    
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where N is upper limit of  summations, ( ) , ( , )x and ( , )x   are the incomplete 

Gamma functions defined by [33] 
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1

0

( , )

x

tx t e dt     .                                                  (13) 

 

See Ref. [31] for the exact definition of the auxiliary functions ( , )nP p q , ( , )nQ p q and 

( )nL p occurring in the Eqs. (6)-(11). Note that a new approximation has been developed for 

the calculation of incomplete Gamma functions [34]. 
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Figure 1. The temperature dependence of Lorenz number of Si 

(Solid red line- Mathematica numerical results; Blue dashed line- results of this study). 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 

 

A convenient analytical method has been proposed for calculation of the Lorenz 

number of non-degenerate and degenerate semiconductors through suitable expression of two 

parameter Fermi functions. It is well known that analytical approximations for the two 

parameter Fermi functions are important in the study of thermoelectric effects of 

semiconductors and materials. Unfortunately, the studies on analytical evaluation formulas of 

the two-parameter Fermi function are very limited in the literature. To show the effectiveness 

of this method, a computer program based on Mathematica 10.0 compiler is applied to the 

calculation of Lorenz number for Si  semiconductor. It is clear that determining the variation 

of Lorenz number with respect to the temperature is very important for the exact calculation 

of thermoelectric properties of metals. With this purpose, we have obtained calculation results 

with respect to the wide temperature ranges. As seen from Figure 1, the results for the Lorenz 

number of Si  have been successfully compared with Mathematica 10.0 numerical simulation 

software over a wide temperature range.  The results show that the Lorenz number decreases 

with increasing temperature. All calculations have been performed for Si  semiconductor with 

the following characteristics: 1.12 , 1,g eV r   10.56 , 1.3806504 23F eV k E JK    and 

1.6021766e C . The advance of this work is to suggest a consistent approach for the 

evaluations of Lorenz number and related thermoelectric quantities according to the variation 

of temperature.  

 

 

4. CONCLUSION 

 

 

In this research we presented an analytical method to evaluate the Lorenz number of 

non-degenerate and degenerate semiconductors. Can be concluded that the analytical 

approach is general and it can be used to analyze all the kinetic effects of semiconductors and 

materials. All calculations have been done in SI unit systems. 
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