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Abstract. This article is pedestal for the (p,q)-calculus connecting two concepts of 

(p,q)-derivatives and (p,q)-integrals. The purpose of this paper is to establish different type of 

identities for (p,q)-calculus. Some special cases of the (p,q)-midpoint, Simpson, Averaged 

midpoint trapezoid, and trapezoid type integral identities are also derived. 
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1. INTRODUCTION  

 

 

In mathematics, the investigation of calculus with no limits is known in the literature 

as quantum calculus (also called q-calculus). The famous mathematician Euler instituted the 

study of q-calculus in the eighteenth century by proposing the parameter q in Newton's work 

of infinite series. In early twentieth century, Jackson [1] has started a symmetric study of q-

calculus and developed q-definite integrals.  Quantum calculus has huge applications in many 

mathematical areas. These new quantum assessments for Hermite Hadamard type inequalities 

have potential applications in the fields of integral inequalities, approximation theory, special 

means theory, optimization theory, information theory, number theory, orthogonal theory of 

relativity and numerical analysis.  

Quantum calculus has received exceptional interest by many researchers and hence it 

appears as a connection   between mathematics and physics. Interested readers are referred to 

[2-4] for some current advances in the theory of quantum calculus and theory of inequalities. 

Recently, Tunç and Göv [5-7] studied the concept of the (p,q)-calculus over the intervals of 

[a, b] ⊂ ℝ. The the (p,q) derivative and the (p,q) integral were explain and some basic 

properties are given. Furthermore, they obtained some new result for the the (p,q)-calculus of 

several important integral inequalities. Currently, the (p,q)-calculus is being investigated 

extensively by many researchers, and a variety of new results can be found in the literature [8-

13] and the references cited therein.  

In 1893, Hadamard [14] explored one of the fundamental inequalities as: 
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In 2014, Tariboon and Ntouyas [15] investigated the extension to q-calculus on the 

finite interval of (1), which is called the q-Hermite–Hadamard inequality, and some important 

inequalities: 

 

  
    

   
  

 

   
        

          

   

 

 

 

 

In 2018, Alp et al [16] proved the       Hermite –Hadamard inequality, 

 

  
     

   
  

 

      
        

           

   

         

 

 

 

 

 

2. PRELIMINARIES AND AUXILIARY RESULTS  

 

 

In this section, we recall some previously known concepts and basic results. 

Throughout this section, we soppose    = [a, b] ⊂ ℝ be an interval and q be a constant with, 

       . The definations for      - derivative and      - integral were given in [5-6]. 

 

Definition 2.1.  Let            ℝ  be a   continuous function, and let         . Then, the 

     -derivative of   on       at   is is characterized by the expression 

 

                                              
                         

          
     .                        (2.1) 

 

                                                       .   

 

Obviously, a   function   is said to be      --differentiable on      , if            
exists for all        . 

If      in (2.1), then                    is familiar       derivative of   at t 

 [a,b] defined by the expression 

 

                                 
           

      
                                                            (2.2) 

 

Furthermore, if       in (2.2),   then it reduces to Dq   (x), which is the   -derivative 

of the function  

 

                                 
          

      
  ,          t≠0                                                    (2.3) 

 

Definition 2.2. Let             ℝ  be a continuous function. The definite       integral on 

      is defined as: 
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for t   [a, b]. If c  (a, t), then the      - definite integral on [c, t] is expressed as: 
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If       in (2.4), then one can get the classical q-definite integral on        defined 

by  

 

       
 

 
                                    

                   (2.6.) 

 

If a = 0 in (2.4), then one can get the classical      -definite integral defined by  
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The proofs of the following lemmas were given in [17]. 

 

Lemma 2.1    Let      ℝ  be a continous and q-differentiable function on    with     
 .  Thus the identity 

 

                                       
 

   
        

 

 

   

                     

 

 

                  

               

 

 

                    

 

holds for all                     is integrable on   . 
 

Lemma 2.2.  Let μ  [0, 1] and ⥡ [0,∞) 
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Lemma 2.3.  Let  ,                                   
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Lemma 2.4.   Let  ,                                 
 

   
 

 

                 

                     

           

       
   

      

       
                                                        

                

                
 

      

      
 

           

      
                 

  

 

                     

         
                                

 
                          

               

          
                                   

 
 

  

 

 

Lemma 2.5.   Let  ,                                   
 

             
 

  

     

 
 
 

 
         

 

   

                            

      
                                      

   
 
   

                 
                               

 

  

 

 

3. RESULTS AND DISCUSSION 

 

 

In this section, we introduce some new post quantum -integral identites and post 

quantum estimates for midpoint, Simpson, averaged midpoint-trapezoid, and trapezoid -type 

integral identites. 

 

Lemma 3.1.    Let     : I ℝ  be a continuous and differentiable function on I with 

       . Then the identity 
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Holds for all  ,                                      . 
 

Proof: Using of identity transformation, we attain  
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From definition 2.1, we get 

 

                  
                                     

                  
 

=  
                             

           
 

 

Make use of the above calculation and Definiation 2.2, we have 
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Substituting (3.2), (3.3) and (3.4) into (3.1), we get the desired result. 

 

Remark 3.2: In Lemma 3.1, if we take take     , then we recapture Lemma 2.1. 

 

Remark 3.3:   Consider lemma 3.1.  
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Remark 3.4.  Consider Lemma 3.1.: 

 

(i) Putting  =0, we get 
 

             
 

   
      

         

 

            

     

 

 

                           

 

 

                        

 

Substituting   
 

   
      - midpoint –type intergral identity is obtained and 

previously proved in [16]. 
 

  
     

   
   

 

      
      

         

 

     

 

 
 
 

 
 

    

 
   

 

                            

 

 
   

                      

 
 
 

 
 

 

 

 (ii) Putting     
 

 
, we get 

 

 
                                  

 

      
      

         

 

      

            
 

 
 

 

 

    

 
 
 
                            

 

 
 

 

 

             

                

                                                                                                            

Specially taking    
 

   
 , we obtain the simpson-type integral identity. 
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(iii) Putting     
 

 
 , we get 

 

 

 
                                 

 

      
      

         

 

      

            
 

 
 

 

 

    

 
 
 
                          

 

 
 

 

 

             

                

 

Specially taking   = 
 

   
, we obtain the averaged midpoint-trapezoid-type integral 

identity. 
 

 

 
 
           

   
   

     

   
   

 

      
      

         

 

      

 

      

 
 
 

 
 

 

 

    
 

      
                        

 
   

 

      
 

      
     

 

 
   

                       

 
 

 

 

 

(iv)  Putting  =1, we get 
 

                
 

      
      

         

 

     

       

 

 

                                 

 

Specially, taking    
 

   
 , we obtain the trapezoid-type integral identity 
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To the best of our knowledge the above integral identites are fresh in the literature. 
 

Lemma 3.5. Let             ⥡                     
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Proof: When          by use of Lemma 3.5 we get 
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Considering that, 

 

                                                   ⥡    ⥡     
    

 

 
      

 

                                          =       
    

 
        

  

    
 

  

    
    

 
 
⥡

 
    

 

                                                        
    

 
  

  

    
 

  

    
    

 
 
⥡  

 

 
    

 

 
            ⥡  

 ⥡  
  
 

 
 
   

  
 

  
 
   

  
  

  
 

   

       

                                  

 
           ⥡  

 ⥡  
  

 

 ⥡    ⥡  
  

                              

 
             ⥡     ⥡    ⥡        

    

    

           ⥡     ⥡    ⥡   
 

 

                            
 

 
                

 

                          =           
 

      ⥡  
                   

 

      ⥡  
  

 

Putting the values of                       we get  
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This completes the proof. 

 

Remark 3.7.  In Lemma 3.6, If we take      , then we recapture Lemma 2.3. 

 

The given results   of Lemma 3.8 and 3.9 are described without proof. 
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4. CONCLUSION 

 

 

Utilizing post quantum derivatives and post quantum integrals, we introduce some 

new post quantum integral identites. For different values of             , we obtain      -
midpoint, Simpson, Averaged midpoint trapezoid, and trapezoid type integral identities. 

Current work has improved some results of [17] and can be reduced to the classical quantum 

identity formulas in special cases with p = 1. It is suggested that the ideas and technique may 

be applicable for (α, m) - convex functions. 
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