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Abstract. This study, develops a way for representation of canal surfaces in 4-
dimensional Euclidean space E*. It examines the fundamental forms, Gaussian and mean
curvature for a special type canal surface. Moreover, the conditions of both Weingarten and
linear Weingarten canal surfaces are given for this new special type. Finally, the graphs of
the projections of the canal surfaces using different radius functions in E* are presented.
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1. INTRODUCTION

The envelope of a one-parameter set of spheres, centred at the spine curve (centre
curve) a(u) with a radius function r(u) is called a canal surface. If the radius function r(u)

is constant, the canal surface is called tube (pipe) surface. Canal surfaces have extensive
applications in computer aided geometric design [1, 2]. There are many studies in the
literature, related to canal and tube surfaces [3-15].

The tube surface with variable radii u constructed by a unit speed spine curve (centre

curve) a(u) = (ozl(u),oz2 (u),O) is defined by the following parametrization:
X (u,v) = a(u) +r(u)(cosvn(u) +sin vb(u)),

where {t(u),n(u),b(u)} is the Frenet frame of «(u) in 3-dimensional Euclidean space E°. It

is a surface generated by a family of spheres of arbitrary radii r(u) [16]. The geometrical
properties of this type of surfaces are examined in [17]. In [18, 19], the concept of generalised

tubes (tube surface with variable radii v) in E® are examined and given by the following
parametrisation

X (u,v) = a(u)+r(v)(cosvn(u)+sinvb(u)), 0<v<27z.

Moreover, in [20], the canal surface with a(u)=(e(u),a,(U), o)) in E° is
parameterised by:

X (u,v) = a(u) —ru)r'u)t{u)+ r(u),\/l— r'(u)? (cosvn(u) +sinvb(u)).
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If the radius function r(u) is constant, then X (u,v) = e(u) = r (cosvn(u) +sinvb(u)) is
the parametrization of tube surface [20].

In 4-dimensional Euclidean space E*, tube surface with variable radii u constructed
by spine curve a(u):(al(u),az(u),aS(u),O) with arc-length parameterisation is given by
[16]:

X(u,v) =a(u)+r(u) (coszl(u) +sinvB, (u)),

where {T(u),N(u),B,(u),B,(u)} is the Frenet frame of «(u). The investigation of the

curvature properties of these surfaces are examined in [21]. Also in [22], loxodromes on tube
surface with variable radii u are studied. By considering the curve

a(u) =(ey(u), o, (u), 5 (u), 2, (u)) and the equivalent parametrization, tube surfaces with

variable radii u with respect to the Bishop frame in E* are examined in [23].
This paper is dedicated to construct canal surfaces in E* with the help of the method
given in [20]. Two types of canal surfaces are obtained by taking the radius function r =r(u)

and r=r(v) for the spine curve a(u)=(a,(u), e, (u), o, (u), e, (u)). By considering special

conditions, the coefficients of the fundamental forms, Gaussian curvature, mean curvature
vector and mean curvature of this special canal surface are investigated. Also, the conditions
both the Weingarten and linear Weingarten canal surface are examined by using this

approach. Finally, by taking different radius functions, the projections of canal surfaces in E*
are illustrated.

2. PRELIMINARIES

In this section, the basic concepts related to curves and surfaces in E* are given.

4 4 4

Definition 2.1 Let x=) xe, y=> Y& and z=) ze be vectors in E*, where
i=1 i=1 i=1

{el,ez,e3,e4} is the standard basis of E*. The standard inner product is given by:

YY) =X Y, + XY, + XY+ X, Y,

The ternary product (or vector product) of the vectors x,y and z is defined by [24-
26]:

XQYy®z= (2.1)
z 1, 1, 1,

Let «:1 —E* be a curve with arc-length parameterisation. Then, the Frenet vectors
and the curvatures of « are given by:
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T:a’: N:a_n’ Bl:BZ®T®N’ BZZ_ ar®an®am !
|a ||a Ra"®a
< B m> < B (4) > (22)
k=le], r=2EL p=2E L
k kz

Moreover, the Frenet formulae of the arc-length curve o :1 —E* with Frenet frame
{T,N,B,,B,} are given by [27]:

T'=kN, N'=—KkT+7B, B =—zN+pB,, B, =—pB.. (2.3)

On the other hand, let X (u,v) represents the parametrisation of a regular surface M
in E*. Let X, and X, be the basis vectors of the tangent space of M at an arbitrary point

p = X(u,v), namely, Tp(M):sp{Xu, XV}. Then, the coefficients of the first fundamental
form can be given by:

E=<X,X,>F=<X,,X,>G=<X,,X, >. (2.4)

The surface patch is regular if and only if EG—F? = 0. For an arbitrary point pe M,
T (E*) =T, (M)®T, (M), where T, (M) is the orthogonal component of T (M) with the
Reimannian connection D in E*. For any vector fields X, and X; on M, the induced
Reimannian connection D on M can be given by

D, X; =(Dy X;) . (2.5)

2
where D,Y =Zl“iijk,1si,js2. In the equation (2.5), the superscript t represents the
k=1

tangential part and FE are known as Christoffel symbols calculated by the following formulae
[20]:

. GE,-2FF, +FE, , 2EF,—EE,—FE,
" 2(EG-F?) " 2(EG-F?)

. _ GE,—FG, , EG,—-FE,

2= 2EG_F?)’ 2= 2(EG_F?)’ (2.6)
. _2GF, -GG, -FG, , _EG,—2FF,+FG,

Z 2(EG-F?) ' 2 2(EG-F?)

It is well known that T3, =T}, I'; =I7,. By considering the space of the tangent

vector field (M) and normal vector field (M) of M, the well-defined, symmetric and
bilinear map (which is called second fundamental form map) can be written as follows:

h: x(M)x (M) = 7" (M)

< (2.7)
(X X;) > h(X;, X ;) =Dy X, Dy X,
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where 1<i, j <2. The equation (2.7) is known as Gauss equation, [28]. Also h(X;, X;) can
be written such that

2
h(X;, X;) =D ¢N,, 1<i, j<2,
k=1
where ci‘} are called the coefficients of the second fundamental form. By taking the
orthonormal frame field {N,,N,} of M, the shape operator is defined as follows:

S i x(M) = (M)
X; =S (X)) =-D N/ =-D, N, , 1<ik<2.

So, the following equality can be written:
(S X :<h(xi’ Xj)’ N, :Cil;-

Also, for X, and X, the following equations hold [20]:

Dy X, = X,, =Dy X, +h(X,,X,),
~Xu Xv = Xuv = DXu Xv + h(xw Xv)i (28)
D, X, =X, =Dy X, +h(X,,X,).

Moreover, the Gaussian curvature and the mean curvature vector are given by:

1

= EG _ F2 <h()(u' Xu)’ h(xvi Xv)> —”h(Xu, Xv)” , (29)

1

He—— -
2(EG - F?)?

(h(X,,X,)G—2h(X,, X,)F +h(X,, X,)E). (2.10)

If the mean curvature vanishes: H :HI:IH =0, then M is said to be minimal, [28].
3.STUDY ON CANAL SURFACES IN E*

In this section, subsection 3.1 concerns the new definitions of the canal surfaces in E*
with the help of the method given in [20]. Two types of canal surface are obtained by taking
the  radius  function r=r(u) and r=r(v) for the spine  curve
a(u) =(a1(u), a,(u), as(u),a4(u)) in Theorem 3.1 and Theorem 3.2, respectively.

In subsection 3.2, canal surface with special parametrisation (with b(u,v) =0) is given
and differential geometric properties of this special canal surface are investigated for the spine
a(u) = (e (u), o, (u),(u),0) under this special parametrization. Further, the conditions of
Weingarten and linear Weingarten canal surfaces are examined by this approach.
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3.1. DETERMINING CANAL SURFACES IN E*

Theorem 3.1 Let «:1 > E* be a curve with arc-length parameterisation. Then, the canal
surface constructed by the spine curve a(u) = (o, (u), &, (u), a5(u), ,(u) ) is parameterized by:

X (u,v)=a(u)—r)r'(u)T(u)+b(u,v)N(u)
+ Jr(u)z(l— r'(u)?)—b(u,v)* (cosvB,(u) +sinvB,(u)),

(3.1)

where {T (u), N(u), B,(u), B,(u)} is the Frenet frame of a(u).

Proof: Let X be a parametrisation of the envelope of spheres which define the canal surface
and «(u) be a unit speed centre curve of canal surface with non-zero curvatures. Then, we

have:
X(u,v)—a(u) =a(u,v)T (u) +b(u,v)N(u) +c(u,v)B,(u) +d(u,v) B, (u), (3.2)

where a(u,v), b(u,v), c(u,v) and d(u,v) are differentiable on the interval at which « is
defined. Since X (u,v) lies on the a sphere of radius r(u) centred at «(u), then the following
equation holds:

X (u,v) = )| = ru?. (3.3)

Because of the fact that X (u,v) —«(u) is normal to the canal surface, the following
equations can be written:

{(X(U,V)—a(u). X, (u,v)) =0 (3.4)

(X (u,v)—a(u), X, (u,v))=0.
From the equation (3.3) we have:

a’+b®+c’+d® =r(u)’,
aa, +bb, +cc, +dd, =r(u)r'(u), (3.5)
aa, +bb, +cc, +dd, =0,

where a=a(u,v), b=b(u,v), c=c(u,v) and d =d(u,v). By deriving the equation (3.2) and
using the Frenet formulae given in the equation (2.3), the following equation can be given:

X, =(1+a, —bk)T +(b, +ak —ct)N +(c, +br—d p) B, +(d, +cp)B,. (3.6)
Then, by using the equations (3.2), (3.4), (3.5), (3.6):

a=—r(u)r'(u),
{bz +C+d® =ru)*(L—r'(u)?).
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By taking the parametrisation:
b =b(u,v),

c(U,V) = +£4/r(u)? (L—r'(u)?) —b(u,v)? cosV, (3.7)
d(u,Vv) = +r(u)*(L-r'(u)®) —b(u,v)? sinv,

the representation of canal surface given in the equation (3.1) is obtained.
Further if r=r(u) is constant, then the parametrization of tube surface can be given

by
X (u,v) = ar(u) +b(u, V)N (u) £/r* —b(u,v)? (cosvB, (u) +sin VB, (u) ) (3.8)

Note 3.1 The special type tube surface X(u,v)=a(u)ir(coszl(u)+sianz(u)) is
determined under the condition b(u,v)=0 in the equation (3.8) for
a(u) =(ey(u), o, (u), 5 (u), @, (u)). In [16], tube surface with variable radii u is defined as
X (u,v) = a(u)+r(u)(cosvB,(u)+sinvB,(u)) in E* for a(u)=(e(u),a,(u),a(u),0). In

[21], the geometric properties of these type of surfaces are examined. Also, equivalent
parametrization is studied with respect to the Bishop frame in E* considering

a(u) =(a1(u),az(u),aS(u),a4(u)) in [23].

Theorem 3.2 Let «:1 —>E* be a curve with arc-length parameterisation and
{T(u), N(u), B,(u), Bz(u)} be the Frenet frame of «(u). Then, the canal surface constructed

by the spine curve a(u) = (o (u), @, (u), o (u), &, (u)) is parameterized by:

X (u,v) = a(u) +b(u,v)N(u) + \/r(v)z —b(u,v)* (cosvB, (u) +sinvB, (u)). (3.9)
Proof: As in the proof of Theorem 3.1, the following equations can be written:

X(u,v)—ea(u) =a(u,v)T (u) +b(u,v)N () +c(u,v)B,(u) +d(u,v)B,(u),

X (u,v)—a)| =rv)?,

and
(X(u,v)—a(u),X,) =0,
(X(u,v)—a(u), X,) =0.
Besides,
a’+b’+c?+d? =r(v)?,
aa, +bb, +cc, +dd, =0,
aa, +bb, +cc, +dd, =r(v)r'(v),
and

X, =(1+a,—bk)T +(b, +ak—cz)N +(c, +br—dp) B, +(d, +cp)B,.
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An easy computation shows that:

a=0,
b?+c?+d* =r(v)*.
By taking the parametrisation

b=Db(u,v),

c(u,v) = i,/r(v)2 —b(u,Vv)? cosv,
d(u,v) = £4/r(v)> —b(u,v)? sinv,

the canal surface given in the equation (3.9) can be obtained.
Moreover if r =r(v) is constant, then the parametrization of tube surface can be given

by

X (u,v) = a(u)+b(u, V)N (u) £/r> —b(u, v)? (cosvB, (u) +sinvB, (u)). (3.10)
3.2. GEOMETRIC PROPERTIES OF NEW TYPE CANAL SURFACES IN E*

In this subsection, the special parametrization is addressed. By taking b =b(u,v) =0
in the parametrisation (3.9), we have the following canal surface:

X (u,v) = ar(u) +r(v) (cosvB, (u) +sinvB, (u)). (3.11)

For the sake of clarity, after this phase, the calculations are given for the curve
a:l 5B au)=(a ), a,(u),a(u),0) with arc-length parameterisation.

Proposition 3.1 The canal surface parameterized by (3.11) is regular if and only if
(1+r?z% cos®v)(r® +r?) 0.

Proof: The calculation of the frame field of the tangent space of the canal surface given in
(3.11) can be calculated as follows:

X, =T —rrcosvN,
(3.12)

X, =(r'cosv—rsinv)B, +(r'sinv+rcosv)B,.

By using the equations (2.4), the coefficients of first fundamental form of X (u,v) can
be obtained such that:

E =1+r?z?cos’v,
F =0, (3.13)
G=r?+r"

ISSN: 1844 — 9581 Mathematics Section



654 Identifying canal surfaces in E* .. Nurten Gurses

Hence, X (u,v) is regular if and only if EG —F? =(1+rz% cos’v)(r® +r?) 0.

Proposition 3.2 The Christoffel symbols of the canal surface M given by (3.11) are
calculated by:

. r’rr’'cos?v

_ - rz? cosv(rsinv—r cosv)
" 1+4r’r?cos?y’ u r24r? ’
2 . ’
re? cosv(—rsinv+r cosv
12 = ( 2_2 2 ) ' 1—‘122 =0, (3.14)
1+r°z°cos’v
rir+r")
1 2
I, =0, I =

r2+r?

Proof: By using the equations (3.13), the partial derivatives of the coefficients of the first
fundamental form can be calculated by:

E, =2r’zr cos’v, E, =-2r’z*cosvsinv+2rr'z? cos’ v,
F, =0, F, =0,
G, =0, G, =2rr +2rr",

From the formulae given in the equation (2.6), the results in the equation (3.14) are
obtained.

Corollary 3.1 The second partial derivatives for parametrisation (3.11) of the canal surface
M in E*, can be calculated as follows:

X,, = krzcosvT + (k —cosvrz )N —rz? cosvB,,
X, =z(rsinv-r-cosv)N, (3.15)
X, =(=2r'sinv+(=r+r")cosv)B, +(2r cosv+(-r +r)sinv)B,.

Moreover, by using the equation (2.7), the following equations are determined:

r’zr cos’v r’z?z cos® Vj

1+r2z2cos’v 2r2?

h(Xu,Xu)z(krrcosv—
1+cos"r'r

JT +(k —COSVIT +

2 re? cosv(rsinv—r cosv)(—rsinv+r cosv)
+| —rz°cosv— PG B,
r’+r

rz? cosv(rsinv —r cosv)(r cosv+r'sinv) B
1T r2+r? 2

(3.16)

h(Xu,XV)=(

re? cosv(rsinv—cosvr) T. r(rsinv—cosvr’) N
1+r?z?cos’v 1+r?z? cos’v

h(X,, X,) :(

(rcosv+r'sinv)(r’ +2r% —rr") 8
re4r? '

—rsinv+r cosv)(r’+2r? —rr’

+ B
2 2 2"
rZ+r
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Theorem 3.3 The Gaussian curvature of the canal surface M parameterized by (3.11) in E*
is given by:

(r®+2r%—rr")(r?(-1+7% cos’v) = 2r +r(r'z* cosvsinv+r"))
K = — : (3.17)
(1+r?z% cos’v)(r? +r7?)

Proof: By substituting the equations (3.13) and (3.16) into the formula given in the equation
(2.9), the equation (3.17) can be calculated.

Corollary 3.2 The Gaussian curvature of the canal surface M generated by a planar curve «
and parameterized by (3.11) in E* is given by:

, T\ 2

(r2+2r2—rr )
, 2
(r2+r2)

Corollary 3.3 The Gaussian curvature of the tube surface M parameterized by (3.11) in E*
with r(v) =c (c is constant) is given by:

_ —1+7%cos?v

K=e——— .
1+rz?cos’v

(3.18)

Corollary 3.4 If M is a tube surface parameterized by (3.11) with r(v)=c (c is constant),
and constructed by a planar curve in E*, then K =-1.

Theorem 3.4 The mean curvature vector of the canal surface M parameterized by (3.11) in
E* is obtained by:

~ [ rrcosv(k +kr’z? cos®v—rz cosv) k +kr?z? cos®v—rz cosv
2(L+r?z% cos®v)*(r2 +r'?) 2(L+r’z%cos®v)* (rr +r?)

re? cosv(rcosv+r'sinv)®  (rcosv+r sinv)(r’+2r%—rr’)
2(L+r?z? cos® V) (r* +r?)? 2(L+r?z% cos® v)(r? +r?)* b

(3.19)

re? cosv(—rsinv+r cosv)(rcosv+r sinv)
2(L+r*z% cos® v)* (r* +r?)?

(rsinv—r'cosv)(r’ +2r%—rr")
2+ cos® v)(r’ +r?)® 2

and the mean curvature of M is calculated by:
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(r2 +r? )4 (k +kr’z% cos’v—rr cosv)2 (1+ r2z2 cos? v)
+(r2 + r'z)(1+ r’z? cos’ v)2 [rr2 cosv(r COSV+T’ sinv)(r2 + r'z) (3.20)

’ " 2
+(1+ r’z? cos? v)(r2 +2r%—rr )}

H = 3 3
2(1+ cos? vrzrz) (r2 + r'z)

Proof: By substituting the equations (3.12) and (3.15) in the formula given in equation (2.10),
the equations (3.19) and (3.20) can be obtained.

Corollary 3.5 The mean curvature vector and mean curvature of the canal surface M
parameterized by (3.11) in E* are given related to the spine curve as follows:
)} If M is constructed by a planar curve:

- > o
H:( k JN+[_(rcosv+rsmv)(r +2r rr)jBl

2(r* +r?) 2(r* +r?)®

(rsinv—r'cosv)(r*+2r%—rr")
T 2, 23 B,
2(r°+r°)

1
( K2(r2+r3)* +(r2 +r3)(r* +2r? - rr")z)E (3.21)
2(r? +r?)® ' |

i) If M is constructed by a straight line:

- (rcosv+r'sinv)(r’ +2r% —rr'") (rsinv—rcosv)(r’+2r?—rr")
H=|- 2, 2\3 B +| - 2, .2\3 B,,
2(re+r°) 2(r°+r°)

rrs2r?—rr’

H (3.22)

5
2(r? +r%)2

Corollary 3.6 The mean curvature vector and mean curvature of the tube surface with
r(v)=c (c is constant) M parameterized by (3.11) in E* are obtained by:

H

_ [ zcosv(k +kr?z? cos*v—rz cosv) k +kr2z? cos®v—rz cosv N
2r(1+r?z® cos®v)® 2r*(1+r’z* cos®v)®

cosVv(1+2r°z% cos® v) sinv(1+2r°z* cos®v)
T 53 2_2 zzBl+_3 2_2 2282
2r°(L+r°z° cosv) 2r°(L+r°z° cos”v)
1
(1+ 5r’z? cos’ v+4r°r® cos® v+ k? (r +r’z% cos® v)° JZ
H =

—2kr®z cosv(l+rz? cos® v) +r* cos® v(8z* cos* v+ %) (3.23)

- :
2r(1+r°r% cos’ v)2
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Corollary 3.7 The mean curvature vector and the mean curvature of the tube surface M
parameterized by (3.11) with r(v) =c (c is constant) in E* with respect to following spine
curves can be given as follows:

i) If M is constructed by a planar curve:
-k cosV sinv
H= N — B, - B,,
2r? 2 Tt o2rt 77
H :% 1+k?r?.
2r

i) If M is constructed by a straight line:

cosV sinv
3 Bl_ 3 BZ’
2r 2r

H=—_. (3.24)

H —-

Proposition 3.3 Let M be a tube surface parameterized by (3.11) in E*. Then, M is a
Weingarten surface if and only if one of the conditions hold:

e M is constructed by a planar curve, i.e, 7=0.

e M s constructed by a straight line, i.e, k=0.

e The first curvature of « is constant, i.e, k =0.

Proof: By using the equations (3.18) and (3.23) :

kk'z°(L+r?)cosvsinv

K,H, —KH, = :
r(1+r?z* cos® v)3\f(1+ 2r?r? cos® v)? +k?(r® + r*z? cos®v)

Then, K,H, —K ,H, =0 for which z=0 or k=0 or k' =0.

Proposition 3.4 Let M be a tube surface parameterized by (3.11) with r(v)=c (C is

constant) in E*. Then, M is a linear Weingarten surface if and only the spine curve « is a
straight line.

Proof: Suppose that M is a tube surface with parametrisation (3.11) with r(v)=c (C is
constant) and the spine curve « is a straight line. Then, K=-1 from Corollary 3.2 and

H= % from the equation (3.24). So,
r

aK +bH :—a+L3:c_
2r

The above equation has the solution (a,2(a +¢)r®,c) for non-zero real numbers a,b and ¢ .
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4. EXAMPLES ON VISUALIZATION

In this section, the examples of canal surfaces in E* are presented. The projections of
canal surfaces in E* are plotted by using the command:

u V,V...,V

max? *? "min?

ParametricPlot3D[x, y, Zz+w,u,u

min? max]

in Wolfram Mathematica 9.

Example 4.1 Consider the curve with arc-length parameterisation:

1 , sin2u .
a(u) =—| cos u,T,smu,cosu :

2

If we use the parametrisation (3.9), then the equation of the canal surface is given
below (see Fig. 1):

X(u,v) =[icoszu—ib0032u +iqcosvsin 2u —iqsinVCOSZU,

Z 5 N 5

Lsin 2u +2bsin 2u —iqcosvcos 2u —iqsin vsin 2u,

Zf 1 V2 5 5 4.1)
—=sinu+2bsinu+—=qcosvcosu+—=qsinvsinu,

2 N N
icosu+bcosu—iqcosvsinujtiqsinvcosuj

2 V2 J5 ’

where ¢ :\I’yr(v)2 —b(u,v)z.

r(v)=v, b(u,v) =sinv r(v)=e", b(u,v) =uv r(v) =v?, b(u,v) =sinhuv
Figure 1. Canal surfaces given in equation (4.1).

Moreover, the equation of the canal surface with parametrisation (3.11) is given by the
following equation (see Fig. 2):

X(u,v) = (icos2 u +i r(v)cosvsin2u —ir(v)sinvcos 2u,

2 J2 5
isin 2u _ 1 r(v)cosvcos 2u _ 1 r(v)sinvsin2u
2\2 J2 V5 ’
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1 . 1 2 . .
—=sinu+—=r(v)cosvcosu+—=r(v)sinvsinu,

NN N3 s
icosu—ir(v)cosvsinu+ir(v)sinvcosuj o
2 2 V5 |

r(v) =sinv r(v) =coshv

r(v)=e”

Figure 2. Canal surfaces given in equation (4.2).

Example 4.2 Consider the curve with arc-length parameterisation:

a(u) = sinE, ﬁu, cosH, 0.
2 2 2

The canal surface given by the parametrisation (3.11) is as follows (see Fig. 3):

B N N

. u u 1 u . u .
X (u,v) =| sin———r(v)cosvcos—,—u+—r(v)cosv,cos—+—r(v)cosvsin—,r(v)sinv |. .
()[22() 515 U5 TW) ;T T 2()] (4.3)

v+3

r(v) =v? r(v)=e
Figure 3. Canal surfaces given in equation (4.3).

Example 4.3 Consider the straight line:

a(u) =[§u+2,%u +3,%u+4,0}

Then, the graph of the canal surface of the above straight line by taking
parametrisation (3.11) can be seen in Fig. 4 for different radius functions.

r(v) =v? r(v) =vsinv r(v) =vcosv
Figure 4. Canal surfaces of a straight line.
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4. CONCLUSION

This study deals with constructing of canal surfaces in E* by using the theory given in
[20]. By taking the radius function r=r(u) and r=r(v) for the unit speed spine curve

a(u):(al(u),az(u),aa(u),a4(u)), the parametrization of new type of canal surfaces are
obtained in the equations (3.1) and (3.9). The differential geometric properties are examined
under the condition r =r(v), b(u,v) =0 for the curve a(u) = (e, (u), a,(u), o (u),0). Finally,
graphing surfaces in examples in Section 4 makes up visuality for better understanding.
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