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Abstract. This study, develops a way for representation of canal surfaces in 4-

dimensional Euclidean space 4 . It examines the fundamental forms, Gaussian and mean 

curvature for a special type canal surface. Moreover, the conditions of both Weingarten and 

linear Weingarten canal surfaces are given for this new special type. Finally, the graphs of 

the projections of the canal surfaces using different radius functions in 4  are presented. 

Keywords: canal surface; tube surface; Weingarten surface; Gaussian curvature; 

mean curvature. 
 

 

1. INTRODUCTION  
 

 

The envelope of a one-parameter set of spheres, centred at the spine curve (centre 

curve) ( )u  with a radius function ( )r u  is called a canal surface. If the radius function ( )r u  

is constant, the canal surface is called tube (pipe) surface. Canal surfaces have extensive 

applications in computer aided geometric design [1, 2]. There are many studies in the 

literature, related to canal and tube surfaces [3-15]. 

The tube surface with variable radii u  constructed by a unit speed spine curve (centre 

curve)  1 2( ) ( ), ( ),0u u u    is defined by the following parametrization: 

 

 ( , ) ( ) ( ) cos ( ) sin ( ) ,X u v u r u v u v u  n b  

 

where  ( ), ( ), ( )u u ut n b  is the Frenet frame of ( )u  in 3-dimensional Euclidean space 3 . It 

is a surface generated by a family of spheres of arbitrary radii ( )r u  [16]. The geometrical 

properties of this type of surfaces are examined in [17]. In [18, 19], the concept of generalised 

tubes (tube surface with variable radii v ) in 3  are examined and given by the following 

parametrisation 
 

 ( , ) ( ) ( ) cos ( ) sin ( ) ,  0 2X u v u r v v u v u v     n b . 

 

Moreover, in [20], the canal surface with  1 2 3( ) ( ), ( ), ( )u u u u     in 3  is 

parameterised by: 
 

 2( , ) ( ) ( ) ( ) ( ) ( ) 1 ( ) cos ( ) sin ( )X u v u r u r u u r u r u v u v u      t n b . 
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If the radius function ( )r u  is constant, then  ( , ) ( ) cos ( ) sin ( )X u v u r v u v u  n b  is 

the parametrization of tube surface [20]. 

In 4-dimensional Euclidean space 4 , tube surface with variable radii u  constructed 

by spine curve  1 2 3( ) ( ), ( ), ( ),0u u u u     with arc-length parameterisation is given by 

[16]: 

 

 1 2( , ) ( ) ( ) cos ( ) sin ( ) ,X u v u r u vB u vB u    

 

where  1 2( ), ( ), ( ), ( )T u N u B u B u  is the Frenet frame of ( )u . The investigation of the 

curvature properties of these surfaces are examined in [21]. Also in [22], loxodromes on tube 

surface with variable radii u  are studied. By considering the curve  

 1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u      and the equivalent parametrization, tube surfaces with 

variable radii u  with respect to the Bishop frame in 4  are examined in [23].  

This paper is dedicated to construct canal surfaces in 4  with the help of the method 

given in [20]. Two types of canal surfaces are obtained by taking the radius function ( )r r u  

and ( )r r v  for the spine curve  1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u     . By considering special 

conditions, the coefficients of the fundamental forms, Gaussian curvature, mean curvature 

vector and mean curvature of this special canal surface are investigated. Also, the conditions 

both the Weingarten and linear Weingarten canal surface are examined by using this 

approach. Finally, by taking different radius functions, the projections of canal surfaces in 4  

are illustrated. 
 

 

2. PRELIMINARIES 

 

 

In this section, the basic concepts related to curves and surfaces in 4  are given. 
 

Definition 2.1 Let 
4

1

i i

i

x x e


 , 
4

1

i i

i

y y e


  and 
4

1

i i

i

z z e


  be vectors in 4 , where 

 1 2 3 4, , ,e e e e  is the standard basis of 4 . The standard inner product is given by: 

 

1 1 2 2 3 3 4 4, .x y x y x y x y x y       

 

The ternary product (or vector product) of the vectors ,x y  and z  is defined by [24-

26]: 
 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

.

e e e e

x x x x
x y z

y y y y

z z z z

    (2.1) 

 

Let 4: I   be a curve with arc-length parameterisation. Then, the Frenet vectors 

and the curvatures of   are given by: 
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1 2 2

(4)

1 2

,      ,     ,     ,

, ,
                     ,      ,    .

T N B B T N B

B B
k

k k

   


   

 
  



    
      

    

   
  

 (2.2) 

 

Moreover, the Frenet formulae of the arc-length curve 4: I   with Frenet frame 

 1 2, , ,T N B B  are given by [27]: 

 

1 1 2 2 1,    ,   ,   .T kN N kT B B N B B B               (2.3) 

 

On the other hand, let ( , )X u v  represents the parametrisation of a regular surface M  

in 4 . Let uX  and vX  be the basis vectors of the tangent space of M  at an arbitrary point 

( , )p X u v , namely,  ( ) ,p u vT M sp X X . Then, the coefficients of the first fundamental 

form can be given by: 
 

, , , , , .u u u v v vE X X F X X G X X       (2.4) 

 

The surface patch is regular if and only if 2 0EG F  . For an arbitrary point p M , 
4( ) ( ) ( )p p pT T M T M  , where ( )pT M

 is the orthogonal component of  ( )pT M  with the 

Reimannian connection D  in 4 . For any vector fields iX  and 
jX  on M , the induced 

Reimannian connection D  on M  can be given by 
 

  ,
i i

t

X j X jD X D X  (2.5) 

 

where 
2

1

, 1 , 2k

X ij k

k

D Y X i j


    . In the equation (2.5), the superscript t  represents the 

tangential part and 
k

ij  are known as Christoffel symbols calculated by the following formulae 

[20]: 
 

1 2

11 112 2

1 2

12 122 2

1 2

22 222 2

2 2
,          ,

2( ) 2( )

,                    ,
2( ) 2( )

2 2
,         .

2( ) 2( )

u u v u v u

v u u v

v u v v v u

GE FF FE EF EE FE

EG F EG F

GE FG EG FE

EG F EG F

GF GG FG EG FF FG

EG F EG F

   
   

 

 
   

 

   
   

 

 (2.6) 

 

It is well known that 1 1 2 2

21 12 21 12,      . By considering the space of the tangent 

vector field ( )M  and normal vector field ( )M  of M , the well-defined, symmetric and 

bilinear map (which is called second fundamental form map) can be written as follows: 
 

: ( ) ( ) ( )

             ( , ) ( , ) ,
i ii j i j X j X j

h M M M

X X h X X D X D X

    

  
 (2.7) 
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where 1 , 2i j  . The equation (2.7) is known as Gauss equation, [28]. Also ( , )i jh X X  can 

be written such that 
 

2

1

( , ) , 1 , 2,k

i j ij k

k

h X X c N i j


    

 

where 
k

ijc  are called the coefficients of the second fundamental form. By taking the 

orthonormal frame field 1 2{ , }N N  of M , the shape operator is defined as follows: 

 

: ( ) ( )

            ( ) ,1 , 2.
i i

k

t

i k i X k X k

S M M

X S X D N D N i k

 

     
 

 

So, the following equality can be written: 
 

, ( , ), .k

k i i j k ijS X h X X N c       

 

Also, for uX  and vX  the following equations hold [20]: 

 

( , ),

( , ),

( , ).

u u

u u

v v

X u uu X u u u

X v uv X v u v

X v vv X v v v

D X X D X h X X

D X X D X h X X

D X X D X h X X

   


  


  

 (2.8) 

 

Moreover, the Gaussian curvature and the mean curvature vector are given by: 
 

2

2

1
( , ), ( , ) ( , ) ,u u v v u vK h X X h X X h X X

EG F
   


 (2.9) 

 

 2 2

1
( , ) 2 ( , ) ( , ) .

2( )
u u u v v vH h X X G h X X F h X X E

EG F
  


 (2.10) 

 

If the mean curvature vanishes: 0H H  , then M  is said to be minimal, [28]. 

 

 

3. STUDY ON CANAL SURFACES IN 4  

 

 

In this section, subsection 3.1 concerns the new definitions of the canal surfaces in 4  

with the help of the method given in [20]. Two types of canal surface are obtained by taking 

the radius function ( )r r u  and ( )r r v  for the spine curve 

 1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u      in Theorem 3.1 and Theorem 3.2, respectively. 

In subsection 3.2, canal surface with special parametrisation (with ( , ) 0b u v  ) is given 

and differential geometric properties of this special canal surface are investigated for the spine 

1 2 3( ) ( ( ), ( ), ( ),0)u u u u     under this special parametrization. Further, the conditions of 

Weingarten and linear Weingarten canal surfaces are examined by this approach. 
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3.1. DETERMINING CANAL SURFACES IN 4    
 

 

Theorem 3.1 Let 4: I   be a curve with arc-length parameterisation. Then, the canal 

surface constructed by the spine curve  1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u      is parameterized by: 

 

 2 2 2

1 2

( , ) ( ) ( ) ( ) ( ) ( , ) ( )

               ( ) (1 ( ) ) ( , ) cos ( ) sin ( ) ,

X u v u r u r u T u b u v N u

r u r u b u v vB u vB u

   

   
 (3.1) 

 

where  1 2( ), ( ), ( ), ( )T u N u B u B u  is the Frenet frame of ( )u . 

 

Proof: Let X  be a parametrisation of the envelope of spheres which define the canal surface 

and ( )u  be a unit speed centre curve of canal surface with non-zero curvatures. Then, we 

have: 
 

1 2( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ),X u v u a u v T u b u v N u c u v B u d u v B u      (3.2) 

 

where ( , ),  ( , ),  ( , )a u v b u v c u v  and ( , )d u v  are differentiable on the interval at which   is 

defined. Since ( , )X u v  lies on the a sphere of radius ( )r u  centred at ( )u , then the following 

equation holds: 
 

2 2( , ) ( ) ( ) .X u v u r u   (3.3) 

 

Because of the fact that ( , ) ( )X u v u  is normal to the canal surface, the following 

equations can be written: 
 

( , ) ( ), ( , ) 0

( , ) ( ), ( , ) 0.

u

v

X u v u X u v

X u v u X u v





   

   

 (3.4) 

 

From the equation (3.3) we have: 
 

2 2 2 2 2       ( ) ,

( ) ( ),

 0,

u u u u

v v v v

a b c d r u

aa bb cc dd r u r u

aa bb cc dd

    


   
    

 (3.5) 

 

where ( , ),  ( , ),  ( , )a a u v b b u v c c u v    and ( , )d d u v . By deriving the equation (3.2) and 

using the Frenet formulae given in the equation (2.3), the following equation can be given: 
 

       1 21 .u u u u uX a bk T b ak c N c b d B d c B               (3.6) 

 

Then, by using the equations (3.2), (3.4), (3.5), (3.6): 
 

2 2 2 2 2

                ( ) ( ),

( ) (1 ( ) ).

a r u r u

b c d r u r u
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By taking the parametrisation: 
 

2 2 2

2 2 2

        ( , ),

( , ) ( ) (1 ( ) ) ( , ) cos ,

( , ) ( ) (1 ( ) ) ( , ) sin ,

b b u v

c u v r u r u b u v v

d u v r u r u b u v v




   


   

 (3.7) 

 

the representation of canal surface given in the equation (3.1) is obtained. 

Further if ( )r r u  is constant, then the parametrization of tube surface can be given 

by  
 

 2 2

1 2( , ) ( ) ( , ) ( ) ( , ) cos ( ) sin ( )X u v u b u v N u r b u v vB u vB u      (3.8) 

 

Note 3.1 The special type tube surface  1 2( , ) ( ) cos ( ) sin ( )X u v u r vB u vB u    is 

determined under the condition ( , ) 0b u v   in the equation (3.8) for 

 1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u     .  In [16], tube surface with variable radii u  is defined as 

 1 2( , ) ( ) ( ) cos ( ) sin ( )X u v u r u vB u vB u    in 4  for  1 2 3( ) ( ), ( ), ( ),0u u u u    . In 

[21], the geometric properties of these type of surfaces are examined. Also, equivalent 

parametrization is studied with respect to the Bishop frame in 4  considering  

 1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u      in [23]. 

 

Theorem 3.2 Let 4: I   be a curve with arc-length parameterisation and 

 1 2( ), ( ), ( ), ( )T u N u B u B u  be the Frenet frame of ( )u . Then, the canal surface constructed 

by the spine curve  1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u      is parameterized by: 

 

 2 2

1 2( , ) ( ) ( , ) ( ) ( ) ( , ) cos ( ) sin ( ) .X u v u b u v N u r v b u v vB u vB u      (3.9) 

 

Proof: As in the proof of Theorem 3.1, the following equations can be written: 
 

1 2( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ),X u v u a u v T u b u v N u c u v B u d u v B u      

 
2 2( , ) ( ) ( ) ,X u v u r v   

and 

( , ) ( ), 0,

( , ) ( ), 0.

u

v

X u v u X

X u v u X





   

   

 

 

Besides, 
 

2 2 2 2 2       ( ) ,  

0,  

 ( ) ( ),

u u u u

v v v v

a b c d r v

aa bb cc dd

aa bb cc dd r v r v

    


   
    

 

and 

       1 21 .u u u u uX a bk T b ak c N c b d B d c B               
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An easy computation shows that: 
 

2 2 2 2

                0,  

( ) .

a

b c d r v




  
 

 

By taking the parametrisation 
 

2 2

2 2

        ( , ),

( , ) ( ) ( , ) cos ,

( , ) ( ) ( , ) sin ,

b b u v

c u v r v b u v v

d u v r v b u v v




  


  

 

 

the canal surface given in the equation (3.9) can be obtained. 

Moreover if ( )r r v  is constant, then the parametrization of tube surface can be given 

by  
 

 2 2

1 2( , ) ( ) ( , ) ( ) ( , ) cos ( ) sin ( ) .X u v u b u v N u r b u v vB u vB u      (3.10) 

 

 

3.2. GEOMETRIC PROPERTIES OF NEW TYPE CANAL SURFACES IN 4  
 

 

In this subsection, the special parametrization is addressed. By taking ( , ) 0b b u v   

in the parametrisation (3.9), we have the following canal surface: 
 

 1 2( , ) ( ) ( ) cos ( ) sin ( ) .X u v u r v vB u vB u    (3.11) 

 

For the sake of clarity, after this phase, the calculations are given for the curve 

 4

1 2 3: ( ) ( ), ( ), ( ),, 0 I u u u u       with arc-length parameterisation. 

 

Proposition 3.1 The canal surface parameterized by (3.11) is regular if and only if 

  2 2 2 2 21 cos 0.r v r r     

 

Proof: The calculation of the frame field of the tangent space of the canal surface given in 

(3.11) can be calculated as follows: 
 

   1 2

cos ,

cos sin in c .s os

u

v

X T r vN

X r v r v B r v r v B



 

 


   

 (3.12) 

 

By using the equations (2.4), the coefficients of first fundamental form of ( , )X u v  can 

be obtained such that: 
 

2 2 2

2 2

1 cos ,

0,

.

E r v

F

G r r





  



  

 (3.13) 
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Hence, ( , )X u v  is regular if and only if   2 2 2 2 2 21 cos 0.EG F r v r r       

 

Proposition 3.2 The Christoffel symbols of the canal surface M  given by (3.11) are 

calculated by: 
 

2 2 2
1 2

11 112 2 2 2 2

2
1 2

12 122 2 2

1 2

22 22

cos cos ( sin cos )
,                         ,

1 cos

cos ( sin cos )
,    0,

1 cos

( )
0,                                              

r v r v r v r v

r v r r

r v r v r v

r v

r r r

r

 







 





 


   

 

 
   




   

2 2
.

r 

 (3.14) 

 

Proof: By using the equations (3.13), the partial derivatives of the coefficients of the first 

fundamental form can be calculated by: 
 

2 2 2 2 2 22 cos ,      2 cos sin 2 cos ,

0,                        0,

0,                       2 2 .

u v

u v

u v

E r v E r v v rr v

F F

G G rr r r

   

  

   

 

  

 

 

From the formulae given in the equation (2.6), the results in the equation (3.14) are 

obtained. 
 

Corollary 3.1 The second partial derivatives for parametrisation (3.11) of the canal surface 

M  in 4 , can be calculated as follows: 
 

2

1

1 2

cos ( cos ) cos ,

( sin cos ) ,

( 2 sin ( )cos ) (2 cos ( )sin ) .

uu

uv

vv

X kr vT k vr N r vB

X r v r v N

X r v r r v B r v r r v B

  







   

   

 

        

 (3.15) 

 

Moreover, by using the equation (2.7), the following equations are determined: 
 

2 2 3 2 3

2 2 2 2 2 2

2
2

12 2

2

cos cos
( , ) cos cos

1 cos 1 cos

cos ( sin cos )( sin cos )
                  cos

cos ( sin co
                  

u u

r v r v
h X X kr v T k vr N

r v r

r v r v r v r v r v
r v B

r r

r v r v r

  
 

 






 


 





   
       

    

   
   

 


  22 2

2

2 2 2 2 2 2

2 2

12 2

s )( cos sin )
,

cos ( sin cos ) ( sin cos )
( , ) ,

1 cos 1 cos

( cos sin )( 2 )
( , )

( sin cos
                  

u v

v v

v r v r v
B

r r

r v r v vr r v vr
h X X T N

r v r v

r v r v r r rr
h X X B

r r

r v r v

 

 





 

  





 
 

 

    
    

    

   
  

 

 


2 2

22 2

)( 2 )
.

r r rr
B

r r

 






















    
  

 (3.16) 
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Theorem 3.3 The Gaussian curvature of the canal surface M  parameterized by (3.11) in 4  

is given by: 
 

  

  

2 2 2 2 2 2 2

2
2 2 2 2 2

2 ( 1 cos ) 2 ( cos sin )
.

1 cos

r r rr r v r r r v v r
K

r v r r

 



    



      


 
 (3.17) 

 

Proof: By substituting the equations (3.13) and (3.16) into the formula given in the equation 

(2.9), the equation (3.17) can be calculated. 
 

Corollary 3.2 The Gaussian curvature of the canal surface M  generated by a planar curve   

and parameterized by (3.11) in 4  is given by: 
 

 

 

2
2 2

2
2 2

2
.

r r rr
K

r r

 



 
 


 

 

Corollary 3.3 The Gaussian curvature of the tube surface M  parameterized by (3.11) in 4   

with ( )r v c  ( c  is constant) is given by: 

 
2 2

2 2 2

1 cos
.

1 cos

v
K

r v





 



 (3.18) 

 

Corollary 3.4 If M  is a tube surface parameterized by (3.11) with ( )r v c  ( c  is constant), 

and constructed by a planar curve in 4 , then 1.K    
 

Theorem 3.4 The mean curvature vector of the canal surface M  parameterized by (3.11) in 
4  is obtained by: 

 

2 2 2 2 2 2

2 2 2 3 2 2 2 2 2 3 2 2

2 2 2 2

2 2 2 2 2 2 2

cos ( cos cos ) cos cos

2(1 cos ) ( ) 2(1 cos ) ( )

cos ( cos sin ) ( cos sin )( 2 )
      

2(1 cos ) ( ) 2(1

r v k kr v r v k kr v r v
H T N

r v r r r v r r

r v r v r v r v r v r r rr

r v r r r

    

 





 

 

   



      
    

      

   
  

  
12 2 2 2 2 3

2

2 2 2 2 2 2 2

2 2

22 2 2 2 2 3

cos )( )

cos ( sin cos )( cos sin )
      

2(1 cos ) ( )

( sin cos )( 2 )
      ,

2(1 cos )( )

B
v r r

r v r v r v r v r v

r v r r

r v r v r r rr
B

r v r r











 



  



 
 

 

   
 

 

  
 

  

 (3.19) 

 

and the mean curvature of M   is calculated by: 
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1

4 2 22 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

2
2 2 2 2 2

3 3
2 2 2 2 2

cos cos 1 cos

1 cos cos cos sin

1 cos 2

2 1 cos

r r k kr v r v r v

r r r v r v r v r v r r

r v r r rr
H

vr r r

  

 





 

  

 



    
 
 

     
 
    

 


 
. 

(3.20) 

 

Proof: By substituting the equations (3.12) and (3.15) in the formula given in equation (2.10), 

the equations (3.19) and (3.20) can be obtained. 
 

Corollary 3.5 The mean curvature vector and mean curvature of the canal surface M  

parameterized by (3.11) in 4  are given related to the spine curve as follows: 

i) If M  is constructed by a planar curve: 

 
2 2

12 2 2 2 3

2 2

22 2 3

( cos sin )( 2 )

2( ) 2( )

( sin cos )( 2 )
     ,

2( )

k r v r v r r rr
H N B

r r r r

r v r v r r rr
B

r r

  

 

  



     
    

    

   
  

 

 

 

 
1

2 2 2 4 2 2 2 2 2 2

2 2 3

( ) ( )( 2 )

2( )

 k r r r r r r rr
H

r r

   



    



. (3.21) 

 

ii) If M  is constructed by a straight line: 
 

2 2 2 2

1 22 2 3 2 2 3

( cos sin )( 2 ) ( sin cos )( 2 )
,

2( ) 2( )

r v r v r r rr r v r v r r rr
H B B

r r r r

     

 

        
      

    
 

2 2

5

2 2 2

2
.

2( )

r r rr
H

r r

 



 




 (3.22) 

 

Corollary 3.6 The mean curvature vector and mean curvature of the tube surface with 

( )r v c  ( c  is constant) M  parameterized by (3.11) in 4  are obtained by: 

 
2 2 2 2 2 2

2 2 2 3 2 2 2 2 3

2 2 2 2 2 2

1 23 2 2 2 2 3 2 2 2 2

cos ( cos cos ) cos cos

2 (1 cos ) 2 (1 cos )

cos (1 2 cos ) sin (1 2 cos )
     ,

2 (1 cos ) 2 (1 cos )

v k kr v r v k kr v r v
H T N

r r v r r v

v r v v r v
B B

r r v r r v

    

 

 

 

       
    

    

    
      

    

 

 
1

2 2 2 6 6 6 2 3 2 2 2 2

3 2 2 2 4 2 4 2 2

5

3 2 2 2 2

1 5 cos 4 cos ( cos )

2 cos (1 cos ) cos (8 cos )
.

2 (1 cos )

r v r v k r r v

kr v r v r v v
H

r r v

  

   



 

    
 
    



 
(3.23) 
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Corollary 3.7 The mean curvature vector and the mean curvature of the tube surface M  

parameterized by (3.11) with ( )r v c  ( c  is constant) in 4  with respect to following spine 

curves can be given as follows: 

i) If M  is constructed by a planar curve: 
 

1 22 3 3

2 2

3

cos sin
,

2 2 2

1
1 .

2

k v v
H N B B

r r r

H k r
r

  

 

 

 

ii) If M  is constructed by a straight line: 

 

                                                    1 23 3

cos sin

2 2
,

v v
H B B

r r
    

3

1

2
H

r
 . (3.24) 

 

Proposition 3.3 Let M  be a tube surface parameterized by (3.11) in 4 . Then, M  is a 

Weingarten surface if and only if one of the conditions hold: 

 M  is constructed by a planar curve, i.e, 0  . 

 M  is constructed by a straight line, i.e, 0k  . 

 The first curvature of   is constant, i.e, 0k   . 
 

Proof: By using the equations (3.18) and (3.23) : 
 

2 2

2 2 2 3 2 2 2 2 2 2 4 2 2

(1 )cos sin
.

(1 cos ) (1 2 cos ) ( cos )
u v v u

kk r v v
K H K H

r r v r v k r r v



  

 
 

   
 

 

Then, 0u v v uK H K H   for which 0   or 0k   or 0k   . 

 

Proposition 3.4 Let M  be a tube surface parameterized by (3.11) with ( )r v c  ( c  is 

constant) in 4 . Then, M  is a linear Weingarten surface if and only the spine curve   is a 

straight line. 
 

Proof: Suppose that M  is a tube surface with parametrisation (3.11) with ( )r v c  ( c  is 

constant) and the spine curve   is a straight line. Then, 1K    from Corollary 3.2 and 

3

1

2
H

r
  from the equation (3.24). So, 

 

3
.

2
K H

r
    

b
a b a c  

 

The above equation has the solution 3( ,2( ) , )ra a c c  for non-zero real numbers ,a b  and c . 
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4. EXAMPLES ON VISUALIZATION 
 

 

In this section, the examples of canal surfaces in 4  are presented. The projections of 

canal surfaces in 4  are plotted by using the command: 
 

 3 [ , , , , , , , , ]min max min maxParametricPlot D x y z w u u u v v v  

 

in Wolfram Mathematica 9. 
 

Example 4.1 Consider the curve with arc-length parameterisation:  
 

21 sin 2
( ) cos , ,sin ,cos .

22

u
u u u u

 
  

 
 

 

If we use the parametrisation (3.9), then the equation of the canal surface is given 

below (see Fig. 1): 
 

21 2 1 1
( , ) cos cos 2 cos sin 2 sin cos 2 ,

2 5 2 5

1 1 1
                sin 2 2 sin 2 cos cos 2 sin sin 2 ,

2 2 2 5

1 1 2
                sin 2 sin cos cos sin sin ,

2 2 5

1 1
                cos cos co

2 2

X u v u b u q v u q v u

u b u q v u q v u

u b u q v u q v u

u b u q


   


  

  

 
2

s sin sin cos ,
5

v u q v u


 


 (4.1) 

 

where    
2 2

, .q r v b u v   

 

  
 

( )r v v , ( , ) sinb u v v  ( ) vr v e , ( , )b u v uv  2( )r v v , ( , ) sinhb u v uv  

Figure 1. Canal surfaces given in equation (4.1). 

 

Moreover, the equation of the canal surface with parametrisation (3.11) is given by the 

following equation (see Fig. 2): 
 

21 1 1
( , ) cos ( )cos sin 2 ( )sin cos 2 ,

2 2 5

1 1 1
                sin 2 ( )cos cos 2 ( )sin sin 2 ,

2 2 2 5

X u v u r v v u r v v u

u r v v u r v v u
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1 1 2
                sin ( )cos cos ( )sin sin ,

2 2 5

1 1 2
                cos ( )cos sin ( )sin cos .

2 2 5

u r v v u r v v u

u r v v u r v v u

 


  



 (4.2) 

 

  

 

 ( ) sinr v v   ( ) coshr v v  
 

2

( ) vr v e  

Figure 2. Canal surfaces given in equation (4.2). 

 

Example 4.2 Consider the curve with arc-length parameterisation: 
 

3
( ) sin ,  ,  cos ,  0 .

2 2 2

u u
u u

 
   
 

 

 

The canal surface given by the parametrisation (3.11) is as follows (see Fig. 3): 
 

3 3 1 3
( , ) sin ( )cos cos , ( )cos ,cos ( )cos sin , ( )sin .

2 2 2 2 2 2 2 2

u u u u
X u v r v v u r v v r v v r v v

 
     
 

 (4.3) 

 

   
( )r v v  2( )r v v  3( ) vr v e   

Figure 3. Canal surfaces given in equation (4.3). 

 

Example 4.3 Consider the straight line: 
 

3 1 1
( ) 2, 3, 4,0 .

2 2 2
u u u u

 
     
 

 

 

Then, the graph of the canal surface of the above straight line by taking 

parametrisation (3.11) can be seen in Fig. 4 for different radius functions. 
 

    

( )r v v  2( )r v v  ( ) sinr v v v  ( ) cosr v v v  

Figure 4. Canal surfaces of a straight line. 
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4. CONCLUSION 
 

 

This study deals with constructing of canal surfaces in 4  by using the theory given in 

[20]. By taking the radius function ( )r r u  and ( )r r v  for the unit speed spine curve 

 1 2 3 4( ) ( ), ( ), ( ), ( )u u u u u     , the parametrization of new type of canal surfaces are 

obtained in the equations (3.1) and (3.9).  The differential geometric properties are examined 

under the condition ( ),  ( , ) 0r r v b u v   for the curve  1 2 3( ) ( ), ( ), ( ),0u u u u    . Finally, 

graphing surfaces in examples in Section 4 makes up visuality for better understanding. 
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