ON CAUCHY-RIEMANN STRUCTURES AND THE GENERAL EVEN ORDER STRUCTURE

MOHAMMAD NAZRUL ISLAM KHAN ${ }^{1}$
Manuscript received: 07.08.2020; Accepted paper: 02.10.2020;
Published online: 30.12.2020.

Abstract

The present paper aims to study the Cauchy-Riemann structures and the general even order structure and find the general even order structure that acts on complementary distributions D_{l} and Dm as an almost complex structure and a null operator, respectively. We also discuss integrability conditions and prove certain theorems on the Cauchy-Riemann structures and the general even order structure. Moreover, we construct examples of it.

Keywords: Cauchy-Riemann structures; general even order equation; Nijenhuis tensor.

1. INTRODUCTION

The study of Cauchy-Riemann manifold is a primary topic in differential geometry. Let M be a real manifold and $T_{p} M$ the tangent space at point p of M. Then there exist a subspace $T_{p}^{c} M$ and complex structure on it. The set $T^{c} M=\bigcup_{p \in M} T_{p}^{c} M$ is a Cauchy-Riemann structure or CR-structure over manifold M [1]. Such manifold is called Cauchy-Riemann manifold. Many authors made effective contributions to CR-structures and CR-submanifolds [2-5].

Let M be k-dimanesional manifold and a tensor field $F(\neq 0)$ of type $(1,1)$ such that

$$
\begin{equation*}
F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0 \tag{1}
\end{equation*}
$$

where n is a positive integer $(n>1), \alpha, \beta$ scalars not equal to zero, $I_{2 n}$ denotes the unit tensor field and being of constant rank r everywhere in M [6]. Then we say that the manifold M is equipped with the general even order structure of the rank r and M is called the general even order manifold.

The projection operators l and m are given by [7]

$$
\begin{equation*}
l=-\frac{F^{2 n}+\alpha F^{n}}{\beta}, \quad m=I_{2 n}+\frac{F^{2 n}+\alpha F^{n}}{\beta} . \tag{2}
\end{equation*}
$$

[^0]Theorem 1.1. Let M be the general even order manifold. Then

$$
\begin{equation*}
l+m=I, l^{2}=l, \text { and } m^{2}=m . \tag{3}
\end{equation*}
$$

Proof: In the view of equation (1), the proof is trivial.
The equations (2) and (3) show that D_{l} and D_{m} are complementary distributions with respect to the projection operators l and m, respectively. The rank of F is r implies that dimension of D_{l} is r and dimension of D_{m} is $n-r$.

Theorem 1.2. Let M be the general even order manifold. Then

$$
\begin{align*}
& F l=l F=F, F m=m F=0 \tag{4}\\
& \frac{F^{2 n}+\alpha F^{n}}{\beta}=-l, \quad \frac{F^{2 n}+\alpha F^{n}}{\beta} l=-l, \quad \frac{F^{2 n}+\alpha F^{n}}{\beta} m=0 . \tag{5}
\end{align*}
$$

Thus $\left(\frac{F^{2 n}+\alpha F^{n}}{\beta}\right)^{\frac{1}{2}}$ acts on D_{l} as an almost complex structure and on D_{m} as a null operator.

Proof: In the view of equation (1), the proof is trivial.

2. NIJENHUIS TENSOR

Let U and V be vector fields on M. The Nijenhuis tensor $N(U, V)$ of F satisfying equatin (1) in M is given by

$$
\begin{equation*}
N(U, V)=[F U, F V]-F[F U, V]-F[X U, F V]+F^{2}[U, V] \tag{6}
\end{equation*}
$$

where Lie bracket $[U, V]=U V-V U$.
First we state the proposition for later use [5]:
Proposition 2.1. Let U and V be vector fields on M. The general even order structure F to be integrable ifand only if $N(U, V)=0$.

3. CAUCHY-RIEMANN STRUCTURE

Let $T_{c} M$ be complexified tangent bundle of differentiable manifold M. A CRstructure on M is a complex subbundle H of $T_{c} M$ such that $H_{p} \cap \bar{H}_{p}=0$ and H is involutive, i.e., for complex vector fields U and V in $H,[U, V]$ is in H. Then M is a CRmanifold. Let M be a differentiable manifold and the general even order integrable structure
F satisfying equation (1) of rank $r=2 m$ on it. The complex subbundle H of $T_{c} M$ is given as $H_{p}=\left\{U-\sqrt{-1} F U, U \in \chi\left(D_{l}\right)\right\}$ such that $\operatorname{Real}(H)=D_{l}$ and $H_{p} \cap \bar{H}_{p}=0$, where H_{p} is the complex conjugate of H and $\chi\left(D_{l}\right)$ the $\Gamma\left(D_{m}\right)$ module of all differentiable sections of D_{l} [5].

Theorem 3.1. If U and V are two vector fields in M, then

$$
\begin{equation*}
[P, Q]=[U, V]-[F U, F V]-\sqrt{-1}[U, F V]+[F U, V] \tag{7}
\end{equation*}
$$

$\forall P, Q \in H$.
Proof: Since P and Q are two elements of H . Then we can write $P=U-\sqrt{-1} F U$ and $Q=V-\sqrt{-1} F V$. Thus

$$
\begin{aligned}
{[P, Q] } & =[X-\sqrt{-1} F U, V-\sqrt{-1} F V] \\
& =[U, V]-[F U, F V]-\sqrt{-1}([U, F V]+[F U, V]) .
\end{aligned}
$$

Theorem 3.2. The integrable general even order structure satisfying

$$
F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0
$$

on M is integrable, we obtain

$$
\begin{equation*}
-\left(F^{2 n-1}+\alpha F^{n-1}\right)\left([F U, F V]+F^{2}[U, V]\right)=\beta l([F U, V]+[U, F V]) . \tag{8}
\end{equation*}
$$

Proof: The Nijenhuis tensor N of F is given by

$$
N(U, V)=[F U, F V]-F[F U, V]-F[U, F V]+F^{2}[U, V]
$$

since F is integrable then $N(U, V)=0$, we get

$$
\begin{equation*}
[F U, F V]+F^{2}[U, V]=F([F U, V]+[U, F V]) \tag{9}
\end{equation*}
$$

multiplying equation (9) by $-\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta}$ and making use of equation (2), we obtain

$$
\begin{align*}
& -\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta}\left([F U, F V]+F^{2}[U, V]\right)=-\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta} F([F U, V]+[U, F V]) \tag{10}\\
& -\left(F^{2 n-1}+\alpha F^{n-1}\right)\left([F U, F V]+F^{2}[U, V]\right)=\beta l([F U, V]+[U, F V]) \tag{11}
\end{align*}
$$

Hence, the theorem (3.2) is proved.

Theorem 3.3. Let N be the Nijenhuis tensor of F then

$$
\begin{align*}
& m N(U, V)=m N(F U, F V) \tag{12}\\
& m N\left(\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta} U, V\right)=m\left(\frac{F^{2 n}+\alpha F^{n}}{\beta} U, F V\right) \tag{13}
\end{align*}
$$

where U and V are vector fields on M.
Proof: The proof is obvious by using Theorem (1.1), Theorem (1.2) and equations (2).
Theorem 3.4. Let N be the Nijenhuis tensor of F. The given statements are equivalent.

$$
\begin{array}{ll}
\text { i. } & m N(U, V)=0 \\
\text { ii. } & m[F U, F V]=0 \\
\text { iii. } & m N\left(\frac{F^{2 n}+\alpha F^{n}}{\beta} U, V\right)=0 \\
\text { iv. } & m\left[\frac{F^{2 n}+\alpha F^{n}}{\beta} F U, F V\right]=0 \\
\text { v. } & m\left[\frac{F^{2 n}+\alpha F^{n}}{\beta} l F U, F V\right]=0
\end{array}
$$

where U and V are vector fields on M.
Proof: Using equations (1), (2), (6) and Theorem (1.2) and Theorem (3.3), the given statements can be showed to be equivalent.

Theorem 3.5. Let $\left(\frac{F^{2 n}+\alpha F^{n}}{\beta}\right)^{\frac{1}{2}}$ acts on D_{l} as an almost complex structure, we have

$$
\begin{equation*}
m\left[\frac{F^{2 n}+\alpha F^{n}}{\beta} l F U, F V\right]=m[-F U, F V]=0 . \tag{14}
\end{equation*}
$$

Proof: Since $\left(\frac{F^{2 n}+\alpha F^{n}}{\beta}\right)^{\frac{1}{2}}$ acts on D_{l} as an almost complex structure i.e. $\frac{F^{2 n}+\alpha F^{n}}{\beta}=-l$. Making use of equations (3), (5) and $[U, V]=U V-V U$, we get equation (14).

Theorem 3.6. For $U, V \in \chi\left(D_{l}\right)$, we have $l([U, F V]+[F U, V])=[U, F V]+[F U, V]$.
Proof: As $U \in \chi\left(D_{l}\right)$, using Theorem (1.2) and $[U, V]=U V-V U$, we obtain the result.

Theorem 3.7. If general even order structure satisfying $F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0$ is integrable on M and gives a CR-structure H on it implies that $\operatorname{Real}(H)=D_{l}$.

Proof: Since $[U, F V]$ and $[F U, V]$ are elements of $\chi\left(D_{l}\right)$ and using Theorem (3.1) and Theorem (3.2) and Theorem (3.6), we obtain $[P, Q] \in \chi\left(D_{l}\right)$. Hence the general even order structure satisfying $F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0$ on M defines a CR-structure.

Definition 3.1. If M be a differentiable manifold and \tilde{K} be the complementary distribution of $\operatorname{Real}(H)$ to $T M$, a morphism of vector bundles $F: T M \rightarrow T M$ implies that $F(X)=0$ for all $X \in(\tilde{K})$, such that

$$
\begin{equation*}
F(U)=\frac{1}{2} \sqrt{-1}(P-\bar{P}) \tag{15}
\end{equation*}
$$

where $U+\sqrt{-1} V \in H_{p}$ and \bar{P} is a complex conjugate of P [5].
Corollary 3.1. If $P=U+\sqrt{-1} V$ and $\bar{P}=U-\sqrt{-1} V \in H_{p}$,
then

$$
F(U)=\frac{1}{2} \sqrt{-1}(P-\bar{P}), F(V)=\frac{1}{2}(P+\bar{P})
$$

and

$$
F(-V)=-\frac{1}{2}(P+\bar{P}),
$$

then

$$
F(U)=-V, F^{2}(U)=-U
$$

and

$$
F(-V)=-U
$$

Proof. In view of equation (15), we obtain

$$
\begin{aligned}
& F(U)=\frac{1}{2} \sqrt{-1}(U+\sqrt{-1} V-U-\sqrt{-1} V)=\frac{1}{2} \sqrt{-1}(2 \sqrt{-1} V) \\
& F(U)=-V
\end{aligned}
$$

Operating F on both sides of above equation, we obtain

$$
\begin{equation*}
F(F(U))=F(-V), \tag{16}
\end{equation*}
$$

But

$$
F(V)=\frac{1}{2}(U+\sqrt{-1} V+U-\sqrt{-1} V)=-U
$$

Also,

$$
\begin{align*}
F(-V) & =-\frac{1}{2}(U+\sqrt{-1} V+U-\sqrt{-1} V) \tag{17}\\
& =-U
\end{align*}
$$

From equations (16) and (17), we obtain $F^{2}(U)=-U$.
Theorem 3.8. Let M be a differentiable manifold and CR-structure defined on it. Then $F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0$ and consequently the general even order structure is defined on M implies that D_{l} and D_{m} coincide respectively with $\operatorname{Real}(H)$ and K.

Proof: Let CR-structure defined on a differentiable manifold M. Then with the help of equation (15), $F(U)$ can be written as

$$
\begin{equation*}
F(U)=-V \tag{18}
\end{equation*}
$$

multiply equation (18) by $-\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta}$, we obtain

$$
\begin{equation*}
\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta} F(U)=\frac{F^{2 n-1}+\alpha F^{n-1}}{\beta}(-V) \tag{19}
\end{equation*}
$$

By straight forward calculation, we have $F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0$.

4. EXAMPLES

4.1. $F(4,2)-S T R U C T U R E$

Suppose that a tensor field $F(\neq 0)$ of type $(1,1)$ in M satisfying $F^{4}+F^{2}=0$ with rank r.

The projection operators are given by

$$
l=-F^{2}, \quad m=I+F^{2}
$$

It can obtain

$$
\begin{aligned}
& l+m=I, \quad l^{2}=l, \quad m^{2}=m, \\
& F l=l F=F, \quad F m=m F=0, \\
& F^{2}=-l, \quad F^{2} l=-l, \quad F^{2} m=0 .
\end{aligned}
$$

Thus F acts on D_{l} as an almost complex structure and on D_{m} as null operator. Taking into account the above results, it is easily seen that a relationship between CRstructures and $F(4,2)$-structure by a similar device used in the above Theorems.

4.2. $F(4,-2)-S T R U C T U R E$

Suppose that a tensor field $F(\neq 0)$ of type $(1,1)$ in M satisfying $F^{4}-F^{2}=0$ with rank r.

The projection operators are given by

$$
l=F^{2}, \quad m=I-F^{2}
$$

It can obtain

$$
\begin{aligned}
& l+m=I, \quad l^{2}=l, \quad m^{2}=m, \\
& F l=l F=F, \quad F m=m F=0, \\
& F^{2}=l, F^{2} l=l, \quad F^{2} m=0 .
\end{aligned}
$$

Thus F acts on D_{l} as an almost product structure and on D_{m} as null operator.

5. CONCLUSION

We considered that CR-structures and the general even order structure satisfying $F^{2 n}+\alpha F^{n}+\beta I_{2 n}=0, n>1, \alpha, \beta$ are nonzero scalars. We have shown that the relationship between CR-structures and the general even order structure.

REFERENCES

[1] Tumanov, A. E., Encyclopaedia of Mathematical Sciences, 9, Springer, Berlin, 1989.
[2] Bejancu, A., D. Reidel Publishing Co., Dordrecht, 1986.
[3] Chen, B.Y., Marcel Dekker, New York, 1973.
[4] Dragomir, S., Shahid, M. H., Al-Solamy, F.R., Springer, Singapore, 2016.
[5] Das, Lovejoy S, Rocky Mountain Journal of Mathematics, 36(3), 885, 2006.
[6] Khan, M. N. I., International Journal of Mathematics and Computer Science, 15(4), 983, 2020.
[7] Das, Lovejoy S., International Journal of Mathematics and Mathematical Sciences, 26, 167, 2001.

[^0]: ${ }^{1}$ Qassim University, College of Computer, Department of Computer Engineering, Buraydah, Saudi Arabia. E-mail: m.nazrul@qu.edu.sa; mnazrul@rediffmail.com.

