ON THE QUANTUM CODES OVER $\boldsymbol{Y}_{\boldsymbol{q}}$

ABDULLAH DERTLI ${ }^{1}$, YASEMIN CENGELLENMIS ${ }^{2}$

Manuscript received: 19.03.2017; Accepted paper: 05.11.2020;
Published online: 30.12.2020.

Abstract

In this paper, the quantum codes over F_{q} are constructed by using the cyclic codes over $Y_{q}=F_{q}+u F_{q}+v F_{q}+u v F_{q}$ with $u^{2}=1, v^{2}=1, u v=v u$, and $q=p^{m}, p$ is an

 odd prime. Moreover, the parameters of quantum codes over F_{q} are determined.Keywords: Cyclic codes; quantum codes; Gray map.

1. INTRODUCTION

Quantum error correcting codes are used in quantum computing to protect quantum information from errrors. The first error correcting code was discovered by Shor in [1] and independently by Steane in [2]. Although the theory quantum error correcting codes has differences from theory classical error correcting codes, Calderbank et al, gave a way to construct quantum error correcting codes from classical error correcting codes.

Many quantum error correcting codes have been constructed by using classical error correcting codes over many finite rings [3-16].

In this paper, in section 2, we give some knowledges about the ring Y_{q}. In section 3, a necessary and sufficient condition for cyclic codes over Y_{q} that contains its dual is given. The parameters of quantum error correcting codes are obtained from cyclic codes over Y_{q}. Some examples are given.

2. PRELIMINARIES

In [17], the commutative ring $Y_{q}=F_{q}+u F_{q}+v F_{q}+u v F_{q}$ with $u^{2}=1, v^{2}=1, u v=$ $v u$ was introduced, where F_{q} is a finite field with q elements and $q=p^{m}, p$ is an odd prime. The skew cyclic codes over Y_{q} were studied. For $q=3$, the commutative ring Y_{3} was introduced by Mehmet Ozen et al. in [14]. In this paper the quantum codes over F_{3} were constructed by using cyclic codes over Y_{3}.

Let

$$
\lambda_{1}=\left(\frac{q^{2}+1}{4}\right)(1+u+v+u v)
$$

[^0]\[

$$
\begin{aligned}
& \lambda_{2}=\left(\frac{q^{2}+1}{4}\right)(1+u)+\left(\frac{q^{2}-1}{4}\right)(v+u v) \\
& \lambda_{3}=\left(\frac{q^{2}+1}{4}\right)(1+v)+\left(\frac{q^{2}-1}{4}\right)(u+u v) \\
& \lambda_{4}=\left(\frac{q^{2}+1}{4}\right)(1+u v)+\left(\frac{q^{2}-1}{4}\right)(u+v)
\end{aligned}
$$
\]

It is easy to show that $\lambda_{i}^{2}=\lambda_{i}, \lambda_{i} \lambda_{j}=0$ and $\sum_{k=1}^{4} \lambda_{k}=1$, where $i, j=1,2,3,4$ and $i \neq j$. This show that $Y_{q}=\sum_{k=1}^{4} \lambda_{k} F_{q}$. Therefore, for any $a \in Y_{q}, a$ can be expresed uniquely as $a=\sum_{k=1}^{4} \lambda_{k} a_{k}$, where $a_{k} \in F_{q}$, for $k=1,2,3,4$.

We define the Gray map Ψ from Y_{q} to F_{q}^{4} as follows,

$$
\begin{gathered}
\Psi: Y_{q} \rightarrow F_{q}^{4} \\
a+u b+v c+u v d \mapsto \beta
\end{gathered}
$$

where

$$
\begin{aligned}
& \beta=\left(\left(\frac{q^{2}+1}{4}\right)(a+b+c+d),\left(\frac{q^{2}+1}{4}\right)(a+b)+\left(\frac{q^{2}-1}{4}\right)(c+d),\left(\frac{q^{2}+1}{4}\right)(a+c)+\left(\frac{q^{2}-1}{4}\right)(b+d),\left(\frac{q^{2}+1}{4}\right)(a+d)\right. \\
& \left.+\left(\frac{q^{2}-1}{4}\right)(b+c)\right) .
\end{aligned}
$$

This map Ψ can be extended to Y_{q}^{n} in obvious way.
Theorem 1. The Gray map Ψ is a distance preserving map from Y_{q}^{n} (Lee distance) to $F_{q}^{4 n}$ (Hamming distance) and it is also F_{q}-linear.

The Hamming distance $d_{H}(x, y)$ between two vector x and y over F_{q} is the Hamming weight of the vector $x-y$.

The Lee weight $w_{L}(x)$ of $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in Y_{q}^{n}$ is defined as $w_{L}(x)=w_{H}(\Psi(x))$. The Lee distance $d_{L}(x, y)$ is given by $d_{L}(x, y)=w_{L}(x-y)$ for any $x, y \in Y_{q}^{n}$.

A linear code of length n over Y_{q} is a Y_{q}-submodule of Y_{q}^{n}.

Lemma 2. Let C be a linear code of length n over Y_{q} with rank k and minimum Lee distance d, then $\Psi(C)$ is a $[4 n, k, d]$ linear code over F_{q}.

For any $x=\left(x_{0}, \ldots, x_{n-1}\right), y=\left(y_{0}, \ldots, y_{n-1}\right)$ the inner product is defined as

$$
x y=\sum_{i=0}^{n-1} x_{i} y_{i}
$$

If $x y=0$, then x and y are said to be orthogonal. Let C be a linear code of length n over Y_{q}, the dual of C

$$
C^{\perp}=\{x: \forall y \in C, x y=0\}
$$

which is also a linear code over Y_{q} of length n. A code C is self orthogonal, if $C \subset C^{\perp}$ and self dual, if $C=C^{\perp}$.
Theorem 3. Let C be a linear code of length n over Y_{q}. If C is self orthogonal, so is $\Psi(C)$.

Proof: It is proved that as in [4].
If $B_{i}(i=1,2,3,4)$ are codes over F_{q}, we denote their direct sum by

$$
B_{1} \oplus B_{2} \oplus B_{3} \oplus B_{4}=\left\{b_{1}+\ldots+b_{4}: b_{i} \in B_{i}, i=1, \ldots, 4\right\}
$$

Definition 4. Let C be a linear code of length n over Y_{q}, we define

$$
\begin{aligned}
& C_{1}=\left\{\left(\frac{q^{2}+1}{4}\right)(a+b+c+d) \in F_{q}^{n}: a+u b+v c+u v d \in C\right\} \\
& C_{2}=\left\{\left(\frac{q^{2}+1}{4}\right)(a+b)+\left(\frac{q^{2}-1}{4}\right)(c+d) \in F_{q}^{n}: a+u b+v c+u v d \in C\right\} \\
& C_{3}=\left\{\left(\frac{q^{2}+1}{4}\right)(a+c)+\left(\frac{q^{2}-1}{4}\right)(b+d) \in F_{q}^{n}: a+u b+v c+u v d \in C\right\} \\
& C_{4}=\left\{\left(\frac{q^{2}+1}{4}\right)(b+d)+\left(\frac{q^{2}-1}{4}\right)(a+c) \in F_{q}^{n}: a+u b+v c+u v d \in C\right\}
\end{aligned}
$$

It is note that $C_{i} \quad(i=1, \ldots, 4)$ are linear codes over F_{q}^{n}. Moreover, $C=\lambda_{1} C_{1} \oplus \lambda_{2} C_{2} \oplus \lambda_{3} C_{3} \oplus \lambda_{4} C_{4}$ and $|C|=\left|C_{1}\right|\left|C_{2}\right|\left|C_{3}\right|\left|C_{4}\right|$.

Theorem 5. Let $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ be a linear code of length n over Y_{q}. Then $C^{\perp}=\sum_{i=1}^{4} \lambda_{i} C_{i}^{\perp}$.
Lemma 6. If G_{i} are generator matrices of q-ary linear codes $C_{i}(i=1, \ldots, 4)$, then the generator matrix of C is

$$
G=\left[\begin{array}{l}
\lambda_{1} G_{1} \\
\lambda_{2} G_{2} \\
\lambda_{3} G_{3} \\
\lambda_{4} G_{4}
\end{array}\right]
$$

Let d_{L} minimum Lee weight of linear code C over Y_{q}. Then,

$$
d_{L}=d_{H}(\Psi(C))=\min \left\{d_{H}\left(C_{1}\right), d_{H}\left(C_{2}\right), d_{H}\left(C_{3}\right), d_{H}\left(C_{4}\right)\right\}
$$

Where $d_{H}\left(C_{i}\right)$ denotes the minimum Hamming weights of codes $C_{1}, C_{2}, C_{3}, C_{4}$, respectively. Proposition 7. Let $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ be a linear code of length n over Y_{q}, where C_{i} are codes over F_{q} of length n for $i=1, \ldots, 4$. Then C is a cyclic code over Y_{q} iff $C_{i}, i=1, \ldots, 4$ are all cyclic codes over F_{q}.

Proof: Let $\left(a_{0}^{i}, a_{1}^{i}, \ldots, a_{n-1}^{i}\right) \in C_{i}$, where $i=1, \ldots, 4$. Assume that $m_{i}=\lambda_{1} a_{i}^{1}+\lambda_{2} a_{i}^{2}+\lambda_{3} a_{i}^{3}+\lambda_{4} a_{i}^{4}$ for $i=0,1, \ldots, n-1$. Then $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in C$. Since C is a cyclic code, it follows that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right) \in C$. Note that

$$
\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=\lambda_{1}\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+\lambda_{4}\left(a_{n-1}^{4}, a_{0}^{4}, \ldots, a_{n-2}^{4}\right)
$$

Hence $\left(a_{n-1}^{i}, a_{0}^{i}, \ldots, a_{n-2}^{i}\right) \in C_{i}$, for $i=1, \ldots, 4$. Therefore, $C_{1}, C_{2}, C_{3}, C_{4}$ are cyclic codes over F_{q}.

Conversely, suppose that $C_{1}, C_{2}, C_{3}, C_{4}$ are cyclic codes over F_{q}. Let $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in C$ where $m_{i}=\lambda_{1} a_{i}^{1}+\ldots+\lambda_{4} a_{i}^{4}$ for $i=0, \ldots, n-1$. Then $\left(a_{0}^{i}, a_{1}^{i}, \ldots, a_{n-1}^{i}\right) \in C_{i}$ for $i=1, \ldots, 4$. Note that

$$
\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=\lambda_{1}\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+\lambda_{4}\left(a_{n-1}^{4}, a_{0}^{4}, \ldots, a_{n-2}^{4}\right) \in C=\lambda_{1} C_{1} \oplus \lambda_{2} C_{2} \oplus \lambda_{3} C_{3} \oplus \lambda_{4} C_{4} .
$$

So, C is a cyclic code over Y_{q}.
Proposition 8. Suppose $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ is a cyclic code of length n over Y_{q}. Then

$$
C=\left\langle\lambda_{1} f_{1}, \lambda_{2} f_{2}, \lambda_{3} f_{3}, \lambda_{4} f_{4}\right\rangle
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ are generator polynomials of $C_{1}, C_{2}, C_{3}, C_{4}$, respectively.
Lemma 9. For any cyclic code $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ of length n over Y_{q}, there exists a unique polynomial $f(x)$ such that $C=\langle f(x)\rangle$ and $f(x) \mid x^{n}-1$ where $f_{i}(x)$ are the generator polynomials of $C_{i}, i=1,2,3,4$ and $f(x)=\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\lambda_{3} f_{3}(x)+\lambda_{4} f_{4}(x)$.
Lemma 10. Let $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ be a cyclic code of length n over Y_{q}, where $C_{1}, C_{2}, C_{3}, C_{4}$ are codes over F_{q}. Then

$$
C^{\perp}=\left\langle\lambda_{1} h_{1}^{*}+\lambda_{2} h_{2}^{*}+\lambda_{3} h_{3}^{*}+\lambda_{4} h_{4}^{*}\right\rangle
$$

where for $h_{i}^{*}(x)$ are the reciprocal polynomials of $h_{i}(x)=\left(x^{n}-1\right) / f_{i}(x)$, that is $h_{i}^{*}(x)=x^{\operatorname{deg} h_{i}(x)} h_{i}\left(x^{-1}\right)$ for $i=1,2,3,4$.

Lemma 11. (9) A cyclic code C with generator polynomial $f(x)$ contains its dual code if

$$
x^{n}-1 \equiv 0\left(\bmod f f^{*}\right)
$$

where $f^{*}(x)$ is the reciprocal polynomial of $f(x)$.

3. QUANTUM CODES FROM CYCLIC CODES OVER Y_{q}

Lemma 12. (13) Let C_{1} and C_{2} be linear codes over F_{q} with parameters $\left[n, k_{1}, d_{1}\right]_{q}$ and $\left[n, k_{2}, d_{2}\right]_{q}$, respectively and $C_{2}^{\perp} \subseteq C_{1}$. Furthermore, let

$$
d=\min \left\{w_{t}(v): v \in\left(C_{1} \backslash C_{2}^{\perp}\right) \cup\left(C_{2} \backslash C_{1}^{\perp}\right)\right\} \geq \min \left\{d_{1}, d_{2}\right\}
$$

Then, there exists a quantum error correcting code C with parameters $\left[\left[n, k_{1}+k_{2}-n, d\right]\right]_{q}$. In particular, if $C_{1}^{\perp} \subseteq C_{1}$, then there exists a quantum error correcting code C with parameters $\left[\llbracket n, 2 k_{1}-n, d\right]$, where $d_{1}=\min \left\{w_{t}(v): v \in C_{1} \backslash C_{1}^{\perp}\right\}$.

Theorem 13. Let C be a cyclic code of arbitrary length n over Y_{q}, where $f(x)=\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\lambda_{3} f_{3}(x)+\lambda_{4} f_{4}(x)$, then $C^{\perp} \subseteq C$ iff $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right)$, where $f_{i}^{*}(x)$ are the reciprocal polynomials of $f_{i}(x)$ respectively, for $i=1,2,3,4$.

Proof: Let $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right)$ for $i=1,2,3,4$. By using Lemma $11 C_{i}^{\perp} \subseteq C_{i}$ for $i=1,2,3,4$. By using this, we get $\lambda_{i} C_{i}^{\perp} \subseteq \lambda_{i} C_{i}$ for $i=1,2,3,4$. Hence, $\sum_{j=1}^{4} \lambda_{j} C_{j}^{\perp} \subseteq \sum_{j=1}^{4} \lambda_{j} C_{j}$. So, we have $\left\langle\sum_{j=1}^{4} \lambda_{j} h_{j}^{*}(x)\right\rangle \subseteq\left\langle\sum_{j=1}^{4} \lambda_{j} f_{j}(x)\right\rangle$. This implies that $C^{\perp} \subseteq C$.

Conversely, if $C^{\perp} \subseteq C$, then $\sum_{j=1}^{4} \lambda_{j} C_{j}^{\perp} \subseteq \sum_{j=1}^{4} \lambda_{j} C_{j}$. Since C_{i} are the q-ary codes such that $\lambda_{i} C_{i}$ is equal to $C \bmod \lambda_{i}, i=1,2,3,4$, we have $C_{i}^{\perp} \subseteq C_{i}, i=1,2,3,4$. So, $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right), i=1,2,3,4$.

Theorem 14. Let $C=\sum_{i=1}^{4} \lambda_{i} C_{i}$ be a cyclic code of length n over Y_{q}. If $C_{i}^{\perp} \subseteq C_{i}$ where $i=1,2,3,4$, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $\left.\llbracket\left[4 n, 2 k-4 n, d_{L}\right]\right]$, where d_{L} is the minimum Lee weight of the code C and k is the dimension of the code $\Psi(C)$.

4. EXAMPLE

Let $\quad n=5, \quad x^{10}-1=(x+1)^{5}(x+4)^{5}$ in $\quad F_{5}[x] . \quad$ Let $\quad f_{1}(x)=f_{2}(x)=x+4$, $f_{3}(x)=f_{4}(x)=f_{5}(x)=f_{6}(x)=x+1$. Thus $C=\left\langle\eta_{1} f_{1}, \eta_{2} f_{2}, \ldots, \eta_{6} f_{6}\right\rangle . \quad C_{i}, i=1, \ldots, 6 \quad$ are $[10,9,2]$ codes of length 10 . So, $\Psi(C)$ is $[40,36,2]$ linear code. By Theorem $13, C^{\perp} \subseteq C$. Using Theorem 14, we obtain a quantum code with parameters [[40,32,2]].

Table 1. Some parameters of quantum codes.

\boldsymbol{n}	\boldsymbol{q}	$\boldsymbol{C}_{\boldsymbol{i}}$	$\boldsymbol{\Psi}(\boldsymbol{C})$	$[[\boldsymbol{N}, \boldsymbol{K}, \boldsymbol{D}]]$
3	19	$[3,2,2]$	$[12,8,2]$	$[[12,4,2]]$
4	9	$[4,3,2]$	$[16,12,2]$	$[[16,8,2]]$
5	5	$[5,3,3]$	$[20,12,3]$	$[[20,4,3]]$
12	3	$[12,9,2]$	$[48,36,2]$	$[[48,24,2]]$
20	9	$[20,16,4]$	$[80,64,4]$	$[[80,48,4]]$
27	3	$[27,21,2]$	$[108,84,2]$	$[[108,60,2]]$
30	5	$[30,29,2]$	$[120,116,2]$	$[[120,112,2]]$
36	5	$[36,34,2]$	$[144,136,2]$	$[[144,128,2]]$

CONCLUSION

In this paper, by using cyclic codes over the finite ring Y_{q} some parameters of quantum codes are obtained.

REFERENCES

[1] Shor, P. W., Phys. Rev. A, 52, 2493, 1995.
[2] Steane, A.M., Phys. Rev. A, 54, 4741, 1996.
[3] Calderbank, A.R., Rains, E.M., Shor, P.M. Sloane, N.J.A., IEEE Trans. Inf. Theory, 44, 1369, 1998.
[4] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Quantum Inf., 13, 1550031, 2015.
[5] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Algebra, 9, 115, 2015.
[6] Dertli, A., Cengellenmis, Y., Eren, S., Discrete Math. Algorithms Appl., 8(2), 1650036, 2016.
[7] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Quantum Inf., 14(1), 1650012, 2016.
[8] Dertli, A., Cengellenmis, Y., Eren, S., Palestine J. Math., 4, 547, 2015.
[9] Qian, J., J. Inf. Comput. Sci., 10, 1715, 2013.
[10] Qian, J., Ma, W., Gou, W., Int. J. Quantum Inform., 7, 1277, 2009.
[11] Ashraf, M., Mohammad, G., Int. J. Quantum Inform., 12,1450042, 2014.
[12] Ashraf, M., Mohammad, G., Int. J. Inf. Coding Theory, 2, 137, 2015.
[13] Ashraf, M., Mohammad, G., Quantum Inform. Proc., 15, 4089, 2016.
[14] Ozen, M., Ozzaim, N.T., Ince, H., J. Phys. Conf. Ser., 766(1), 012020, 2016.
[15] Kai, X., Zhu, S., Int. J. Quantum Inform., 9, 689, 2011.
[16] Yin, X., Ma, W., International Joint Conferences of IEEE TrustCom-11, 2011. https://doi.org/10.1109/TrustCom.2011.122
[17] Dertli, A., Cengellenmis, Y., J. Sci. Arts, 2, 215, 2017.

[^0]: ${ }^{1}$ Ondokuz Mayıs University, Mathematics Department, 55270 Atakum, Samsun, Turkey. E-mail: abdullah.dertli@gmail.com
 ${ }^{2}$ Trakya University, Mathematics Department, 22030 Iskender, Edirne, Turkey.
 E-mail: ycengellenmis@gmail.com.

