ORIGINAL PAPER

ON THE QUANTUM CODES OVER Y_a

ABDULLAH DERTLI¹, YASEMIN CENGELLENMIS²

Manuscript received: 19.03.2017; Accepted paper: 05.11.2020; Published online: 30.12.2020.

Abstract: In this paper, the quantum codes over F_q are constructed by using the cyclic codes over $Y_q = F_q + uF_q + vF_q + uvF_q$ with $u^2 = 1$, $v^2 = 1$, uv = vu, and $q = p^m$, p is an odd prime. Moreover, the parameters of quantum codes over F_q are determined.

Keywords: Cyclic codes; quantum codes; Gray map.

1. INTRODUCTION

Quantum error correcting codes are used in quantum computing to protect quantum information from errors. The first error correcting code was discovered by Shor in [1] and independently by Steane in [2]. Although the theory quantum error correcting codes has differences from theory classical error correcting codes, Calderbank et al, gave a way to construct quantum error correcting codes from classical error correcting codes.

Many quantum error correcting codes have been constructed by using classical error correcting codes over many finite rings [3-16].

In this paper, in section 2, we give some knowledges about the ring Y_q . In section 3, a necessary and sufficient condition for cyclic codes over Y_q that contains its dual is given. The parameters of quantum error correcting codes are obtained from cyclic codes over Y_q . Some examples are given.

2. PRELIMINARIES

In [17], the commutative ring $Y_q = F_q + uF_q + vF_q + uvF_q$ with $u^2 = 1, v^2 = 1, uv = vu$ was introduced, where F_q is a finite field with q elements and $q = p^m, p$ is an odd prime. The skew cyclic codes over Y_q were studied. For q = 3, the commutative ring Y_3 was introduced by Mehmet Ozen et al. in [14]. In this paper the quantum codes over F_3 were constructed by using cyclic codes over Y_3 .

Let

$$\lambda_1 = (\frac{q^2 + 1}{4})(1 + u + v + uv)$$

¹ Ondokuz Mayıs University, Mathematics Department, 55270 Atakum, Samsun, Turkey. E-mail: <u>abdullah.dertli@gmail.com</u>

² Trakya University, Mathematics Department, 22030 Iskender, Edirne, Turkey.

E-mail: <u>ycengellenmis@gmail.com</u>.

$$\lambda_2 = (\frac{q^2 + 1}{4})(1 + u) + (\frac{q^2 - 1}{4})(v + uv)$$
$$\lambda_3 = (\frac{q^2 + 1}{4})(1 + v) + (\frac{q^2 - 1}{4})(u + uv)$$
$$\lambda_4 = (\frac{q^2 + 1}{4})(1 + uv) + (\frac{q^2 - 1}{4})(u + v)$$

It is easy to show that $\lambda_i^2 = \lambda_i, \lambda_i \lambda_j = 0$ and $\sum_{k=1}^4 \lambda_k = 1$, where i, j = 1, 2, 3, 4 and $i \neq j$. This show that $Y_q = \sum_{k=1}^4 \lambda_k F_q$. Therefore, for any $a \in Y_q$, a can be expressed uniquely as $a = \sum_{k=1}^4 \lambda_k a_k$, where $a_k \in F_q$, for k = 1, 2, 3, 4.

We define the Gray map Ψ from Y_q to F_q^4 as follows,

$$\Psi: Y_q \longrightarrow F_q^4$$
$$a + ub + vc + uvd \longmapsto \beta$$

where

$$\beta = \left(\left(\frac{q^{2}+1}{4}\right)(a+b+c+d), \left(\frac{q^{2}+1}{4}\right)(a+b) + \left(\frac{q^{2}-1}{4}\right)(c+d), \left(\frac{q^{2}+1}{4}\right)(a+c) + \left(\frac{q^{2}-1}{4}\right)(b+d), \left(\frac{q^{2}+1}{4}\right)(a+d) + \left(\frac{q^{2}-1}{4}\right)(b+c)\right).$$

This map Ψ can be extended to Y_q^n in obvious way.

Theorem 1. The Gray map Ψ is a distance preserving map from Y_q^n (Lee distance) to F_q^{4n} (Hamming distance) and it is also F_q -linear.

The Hamming distance $d_H(x, y)$ between two vector x and y over F_q is the Hamming weight of the vector x - y.

The Lee weight $w_L(x)$ of $x = (x_0, x_1, ..., x_{n-1}) \in Y_q^n$ is defined as $w_L(x) = w_H(\Psi(x))$. The Lee distance $d_L(x, y)$ is given by $d_L(x, y) = w_L(x - y)$ for any $x, y \in Y_q^n$.

A linear code of length *n* over Y_q is a Y_q -submodule of Y_q^n .

Lemma 2. Let C be a linear code of length n over Y_q with rank k and minimum Lee distance d, then $\Psi(C)$ is a [4n,k,d] linear code over F_q .

For any $x = (x_0, ..., x_{n-1}), y = (y_0, ..., y_{n-1})$ the inner product is defined as

$$xy = \sum_{i=0}^{n-1} x_i y_i$$

If xy = 0, then x and y are said to be orthogonal. Let C be a linear code of length n over Y_q , the dual of C

$$C^{\perp} = \left\{ x : \forall y \in C, xy = 0 \right\}$$

which is also a linear code over Y_q of length n. A code C is self orthogonal, if $C \subset C^{\perp}$ and self dual, if $C = C^{\perp}$.

Theorem 3. Let C be a linear code of length n over Y_q . If C is self orthogonal, so is $\Psi(C)$.

Proof: It is proved that as in [4].

If B_i (i = 1, 2, 3, 4) are codes over F_q , we denote their direct sum by

$$B_1 \oplus B_2 \oplus B_3 \oplus B_4 = \{b_1 + \dots + b_4 : b_i \in B_i, i = 1, \dots, 4\}$$

Definition 4. Let C be a linear code of length n over Y_q , we define

$$\begin{split} C_1 &= \left\{ (\frac{q^2 + 1}{4})(a + b + c + d) \in F_q^n : a + ub + vc + uvd \in C \right\} \\ C_2 &= \left\{ (\frac{q^2 + 1}{4})(a + b) + (\frac{q^2 - 1}{4})(c + d) \in F_q^n : a + ub + vc + uvd \in C \right\} \\ C_3 &= \left\{ (\frac{q^2 + 1}{4})(a + c) + (\frac{q^2 - 1}{4})(b + d) \in F_q^n : a + ub + vc + uvd \in C \right\} \\ C_4 &= \left\{ (\frac{q^2 + 1}{4})(b + d) + (\frac{q^2 - 1}{4})(a + c) \in F_q^n : a + ub + vc + uvd \in C \right\} \end{split}$$

It is note that C_i (i=1,...,4) are linear codes over F_q^n . Moreover, $C = \lambda_1 C_1 \oplus \lambda_2 C_2 \oplus \lambda_3 C_3 \oplus \lambda_4 C_4 \text{ and } |C| = |C_1| |C_2| |C_3| |C_4|.$

Theorem 5. Let $C = \sum_{i=1}^{4} \lambda_i C_i$ be a linear code of length *n* over Y_q . Then $C^{\perp} = \sum_{i=1}^{4} \lambda_i C_i^{\perp}$.

Lemma 6. If G_i are generator matrices of q-ary linear codes C_i (i = 1,...,4), then the generator matrix of C is

$$G = \begin{bmatrix} \lambda_1 G_1 \\ \lambda_2 G_2 \\ \lambda_3 G_3 \\ \lambda_4 G_4 \end{bmatrix}$$

Let d_L minimum Lee weight of linear code C over Y_q . Then,

$$d_L = d_H(\Psi(C)) = \min\{d_H(C_1), d_H(C_2), d_H(C_3), d_H(C_4)\}$$

Where $d_H(C_i)$ denotes the minimum Hamming weights of codes C_1, C_2, C_3, C_4 , respectively. **Proposition 7.** Let $C = \sum_{i=1}^{4} \lambda_i C_i$ be a linear code of length *n* over Y_q , where C_i are codes over F_q of length *n* for i = 1,...,4. Then *C* is a cyclic code over Y_q iff C_i , i = 1,...,4 are all cyclic codes over F_q .

Proof: Let $(a_0^i, a_1^i, ..., a_{n-1}^i) \in C_i$, where i = 1, ..., 4. Assume that $m_i = \lambda_1 a_i^1 + \lambda_2 a_i^2 + \lambda_3 a_i^3 + \lambda_4 a_i^4$ for i = 0, 1, ..., n-1. Then $(m_0, m_1, ..., m_{n-1}) \in C$. Since C is a cyclic code, it follows that $(m_{n-1}, m_0, ..., m_{n-2}) \in C$. Note that

$$(m_{n-1}, m_0, \dots, m_{n-2}) = \lambda_1(a_{n-1}^1, a_0^1, \dots, a_{n-2}^1) + \dots + \lambda_4(a_{n-1}^4, a_0^4, \dots, a_{n-2}^4)$$

Hence $(a_{n-1}^i, a_0^i, ..., a_{n-2}^i) \in C_i$, for i = 1, ..., 4. Therefore, C_1, C_2, C_3, C_4 are cyclic codes over F_a .

Conversely, suppose that C_1, C_2, C_3, C_4 are cyclic codes over F_q . Let $(m_0, m_1, ..., m_{n-1}) \in C$ where $m_i = \lambda_1 a_i^1 + ... + \lambda_4 a_i^4$ for i = 0, ..., n-1. Then $(a_0^i, a_1^i, ..., a_{n-1}^i) \in C_i$ for i = 1, ..., 4. Note that

$$(m_{n-1}, m_0, \dots, m_{n-2}) = \lambda_1(a_{n-1}^1, a_0^1, \dots, a_{n-2}^1) + \dots + \lambda_4(a_{n-1}^4, a_0^4, \dots, a_{n-2}^4) \in C = \lambda_1 C_1 \oplus \lambda_2 C_2 \oplus \lambda_3 C_3 \oplus \lambda_4 C_4.$$

So, C is a cyclic code over Y_a .

Proposition 8. Suppose $C = \sum_{i=1}^{4} \lambda_i C_i$ is a cyclic code of length *n* over Y_q . Then

$$C = \left\langle \lambda_1 f_1, \lambda_2 f_2, \lambda_3 f_3, \lambda_4 f_4 \right\rangle$$

where f_1, f_2, f_3, f_4 are generator polynomials of C_1, C_2, C_3, C_4 , respectively.

Lemma 9. For any cyclic code $C = \sum_{i=1}^{4} \lambda_i C_i$ of length *n* over Y_q , there exists a unique polynomial f(x) such that $C = \langle f(x) \rangle$ and $f(x) | x^n - 1$ where $f_i(x)$ are the generator polynomials of C_i , i = 1, 2, 3, 4 and $f(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) + \lambda_4 f_4(x)$.

Lemma 10. Let $C = \sum_{i=1}^{4} \lambda_i C_i$ be a cyclic code of length *n* over Y_q , where C_1, C_2, C_3, C_4 are codes over F_q . Then

$$C^{\perp} = \left\langle \lambda_1 h_1^* + \lambda_2 h_2^* + \lambda_3 h_3^* + \lambda_4 h_4^* \right\rangle$$

where for $h_i^*(x)$ are the reciprocal polynomials of $h_i(x) = (x^n - 1)/f_i(x)$, that is $h_i^*(x) = x^{\deg h_i(x)} h_i(x^{-1})$ for i = 1, 2, 3, 4.

Lemma 11. (9) A cyclic code C with generator polynomial f(x) contains its dual code if

$$x^n - 1 \equiv 0 \left(\mod f f^* \right)$$

where $f^*(x)$ is the reciprocal polynomial of f(x).

3. QUANTUM CODES FROM CYCLIC CODES OVER Y_a

Lemma 12. (13) Let C_1 and C_2 be linear codes over F_q with parameters $[n,k_1,d_1]_q$ and $[n,k_2,d_2]_q$, respectively and $C_2^{\perp} \subseteq C_1$. Furthermore, let

$$d = \min\{w_t(v): v \in (C_1 \setminus C_2^{\perp}) \cup (C_2 \setminus C_1^{\perp})\} \ge \min\{d_1, d_2\}$$

Then, there exists a quantum error correcting code C with parameters $[[n,k_1+k_2-n,d]]_q$. In particular, if $C_1^{\perp} \subseteq C_1$, then there exists a quantum error correcting code C with parameters $[[n,2k_1-n,d]]$, where $d_1 = \min\{w_t(v): v \in C_1 \setminus C_1^{\perp}\}$.

Theorem 13. Let *C* be a cyclic code of arbitrary length *n* over Y_q , where $f(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) + \lambda_4 f_4(x)$, then $C^{\perp} \subseteq C$ iff $x^n - 1 \equiv 0 \pmod{f_i(x) f_i^*(x)}$, where $f_i^*(x)$ are the reciprocal polynomials of $f_i(x)$ respectively, for i = 1, 2, 3, 4.

Proof: Let $x^n - 1 \equiv 0 \pmod{f_i(x) f_i^*(x)}$ for i = 1, 2, 3, 4. By using Lemma 11 $C_i^{\perp} \subseteq C_i$ for i = 1, 2, 3, 4. By using this, we get $\lambda_i C_i^{\perp} \subseteq \lambda_i C_i$ for i = 1, 2, 3, 4. Hence, $\sum_{j=1}^4 \lambda_j C_j^{\perp} \subseteq \sum_{j=1}^4 \lambda_j C_j$. So, we have $\left\langle \sum_{j=1}^4 \lambda_j h_j^*(x) \right\rangle \subseteq \left\langle \sum_{j=1}^4 \lambda_j f_j(x) \right\rangle$. This implies that $C^{\perp} \subseteq C$.

Conversely, if $C^{\perp} \subseteq C$, then $\sum_{j=1}^{4} \lambda_j C_j^{\perp} \subseteq \sum_{j=1}^{4} \lambda_j C_j$. Since C_i are the *q*-ary codes such that $\lambda_i C_i$ is equal to $C \mod \lambda_i$, i = 1, 2, 3, 4, we have $C_i^{\perp} \subseteq C_i$, i = 1, 2, 3, 4. So, $x^n - 1 \equiv 0 \pmod{f_i(x) f_i^*(x)}$, i = 1, 2, 3, 4.

Theorem 14. Let $C = \sum_{i=1}^{4} \lambda_i C_i$ be a cyclic code of length n over Y_q . If $C_i^{\perp} \subseteq C_i$ where i = 1, 2, 3, 4, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $[[4n, 2k - 4n, d_L]]$, where d_L is the minimum Lee weight of the code C and k is the dimension of the code $\Psi(C)$.

4. EXAMPLE

Let n = 5, $x^{10} - 1 = (x+1)^5 (x+4)^5$ in $F_5[x]$. Let $f_1(x) = f_2(x) = x+4$, $f_3(x) = f_4(x) = f_5(x) = f_6(x) = x+1$. Thus $C = \langle \eta_1 f_1, \eta_2 f_2, ..., \eta_6 f_6 \rangle$. $C_i, i = 1, ..., 6$ are [10,9,2] codes of length 10. So, $\Psi(C)$ is [40,36,2] linear code. By Theorem 13, $C^{\perp} \subseteq C$. Using Theorem 14, we obtain a quantum code with parameters [[40,32,2]].

Tuble 1. Some parameters of quantum codes.				
n	q	C_i	$\Psi(C)$	[[<i>N</i> , <i>K</i> , <i>D</i>]]
3	19	[3,2,2]	[12,8,2]	[[12,4,2]]
4	9	[4,3,2]	[16,12,2]	[[16,8,2]]
5	5	[5,3,3]	[20,12,3]	[[20,4,3]]
12	3	[12,9,2]	[48,36,2]	[[48,24,2]]
20	9	[20,16,4]	[80,64,4]	[[80,48,4]]
27	3	[27,21,2]	[108,84,2]	[[108,60,2]]
30	5	[30,29,2]	[120,116,2]	[[120,112,2]]
36	5	[36,34,2]	[144,136,2]	[[144,128,2]]

Table 1. Some parameters of quantum codes.

CONCLUSION

In this paper, by using cyclic codes over the finite ring Y_q some parameters of quantum codes are obtained.

REFERENCES

- [1] Shor, P. W., *Phys. Rev. A*, **52**, 2493, 1995.
- [2] Steane, A.M., *Phys. Rev. A*, **54**, 4741, 1996.
- [3] Calderbank, A.R., Rains, E.M., Shor, P.M. Sloane, N.J.A., *IEEE Trans. Inf. Theory*, 44, 1369, 1998.
- [4] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Quantum Inf., 13, 1550031, 2015.
- [5] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Algebra, 9, 115, 2015.
- [6] Dertli, A., Cengellenmis, Y., Eren, S., *Discrete Math. Algorithms Appl.*, **8**(2), 1650036, 2016.
- [7] Dertli, A., Cengellenmis, Y., Eren, S., Int. J. Quantum Inf., 14(1), 1650012, 2016.
- [8] Dertli, A., Cengellenmis, Y., Eren, S., Palestine J. Math., 4, 547, 2015.
- [9] Qian, J., J. Inf. Comput. Sci., 10, 1715, 2013.
- [10] Qian, J., Ma, W., Gou, W., Int. J. Quantum Inform., 7, 1277, 2009.
- [11] Ashraf, M., Mohammad, G., Int. J. Quantum Inform., 12, 1450042, 2014.
- [12] Ashraf, M., Mohammad, G., Int. J. Inf. Coding Theory, 2, 137, 2015.
- [13] Ashraf, M., Mohammad, G., Quantum Inform. Proc., 15, 4089, 2016.
- [14] Ozen, M., Ozzaim, N.T., Ince, H., J. Phys. Conf. Ser., 766(1), 012020, 2016.
- [15] Kai, X., Zhu, S., Int. J. Quantum Inform., 9, 689, 2011.
- [16] Yin, X., Ma, W., International Joint Conferences of IEEE TrustCom-11, 2011. https://doi.org/10.1109/TrustCom.2011.122
- [17] Dertli, A., Cengellenmis, Y., J. Sci. Arts, 2, 215, 2017.