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Abstract. The aim of the present study is to find the exact solutions for three gen-
eralized nonlinear time-fractional evolution equations, Kaup-Kupershmidt equation, Burgers-
Fisher equation and, Shallow Water Wave equation. By using the (G ’/G)-expansion method
and depending on second order linear ODE as well as the complex transformation, three
kinds of solutions (hyperbolic, trigonometric, and rational) are obtained. With the help of
Mathematica software package, difficult algebraic systems are solved and surfaces of some
particular solutions of the equations under study are plotted.

Keywords: Burgers-Fisher equation; Kaup-Kupershmidt equation; time-fractional;
Shallow Water Wave equation; traveling wave solutions.

1. INTRODUCTION

In recent years, the problem of research and the construction of exact solution to non-
linear evolutionary equations has been among the first concerns of many mathematicians.

Due to the complexity of the nonlinear system, finding explicit analytical solutions to
this type of equations is often a difficult process. For this, a number of powerful and
important methods have been developed, like inverse scattering transform method, Exp-
function method, Kudryashov method, sine—cosine method, Tanh function method, extended
Tanh (or tanh-coth) method, extended F-expansion method and others.

More recently, the (G’/G)-expansion method (see [1-10]) has been proposed to obtain
traveling wave solutions. This method is firstly proposed by Wang et al. [10] for which the
traveling wave solutions of the nonlinear evolution equations are obtained.

In the present article, by using this well known method, exact solutions of the
following three nonlinear evolution equations will be sought, first the generalized time-
fractional Kaup-Kupershmidt equation in the form

D/ u +20a’bu,, +10abuu,, +25abu u,, +bu’u, =0,

o“u(x,t)

[24

where a,beR’, DU = in the sense of Caputo derivative and 0< o <1.

! Oran Higher School of Economics, 31000 Oran, Algeria. E-mail: djilalimedjahed@yahoo.fr.
2 Djillali Liabes University, Laboratory ACEDP, 22000 Sidi-Bel-Abbes, Algeria.
E-mail: hakemali@yahoo.com.

https://doi.org/10.46939/J.Sci.Arts-20.4-a04 Mathematics Section


file:///E:/JOSA/2020_4(53)/BRUT/djilalimedjahed@yahoo.fr
file:///E:/JOSA/2020_4(53)/BRUT/hakemali@yahoo.com

816 Solving some important ... Medjahed Djilali and Ali Hakem

In the particular case o =1(see [11]): It is a class of the better-known standard fifth-
order KdV equation and has properties similar (but not identical) to those of fKdV(see [12]),
may be used to model dispersive phenomena such as plasma waves.

As the constants a=0,b =0 take different values, different types of Kaup-

Kupershmidt equation are retrieved. For examples, in the case a:z—lo, b =30 (see [13-15]),
fora=6—10,b =180, see [16], Reyes [17] studied the case azﬁ,b =-5, the case

a:—%,b =45 is studied by Parker [18, 19], and when a:%,b =5, yields the equation

treated in [20] and [21]. While, the Kupershmidt equation is obtained by takinga =

(see [22-24]).
The second considerable equation is the time-fractional generalized Burgers-Fisher
equation in the form

1,5
5 4

D/u -u,, +auu, —bu(l-u)=0,

. o“u(x,t
where a,0 eRand 0<a<1,D{u = % in the sense of Caputo derivative.

In the particular case o =1 (see [25-32]): This equation shows a prototypical model
for describing the interaction between the reaction mechanism, covection effect, and diffusion
transport. When b=0, the generalized Burgers— Fisher equation becomes the Burgers equation

u, -u,, +auu, =0.

The Burgers equation is an important nonlinear diffusion equation in physics, which
describes the far field of wave propagation in the corresponding dissipative systems, also
arises in a variety of physical contexts and has been studied by many authors. For examples
(see [31, 32]).

When a=0, b=1, this equation reads

u,-u, -u(l-u)=0.

This important nonlinear diffusion equation in nonlinear science called Fisher
equation (or KPP equation), it was first studied by Fisher, Kolmogorov, Petrovski and
Pisconov as a model in biology and is in close connection with some important physical
phenomena, such as neu-tron action, wave motion in liquid crystals, nerve signal propagation
in biophysics.

As for Wazwaz [33], he was interested in studying the specific cases a=0 and
a=-1, b=1.

Finally, let’s consider the time-fractional Generalized Shallow Water Wave equation
in the form

Dtv(u3x)+authv(ux)+ﬂDtV(u)u2x _Dtv(ux)_UZX :0’
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o'u(x,t)

where 0<v<1D/u:= in the sense of Caputo derivative and « =0, 3= 0and

a+[#0.

Let’s point out that the shallow-water wave equations describe a thin layer of fluid of
constant density in hydrostatic balance, bounded from below by the bottom topography and
from above by a free surface.

In the case v =1 (see [34-39],): Clarkson and Mansfield (see [34]) examined two
special cases o =4 and « =24, Ablowitz et al. [35] studied the specific case o =-4 and
B =-2, while Hirota and Satsuma [36] treated the equation when o = g =-3.

Wazwaz [37] used the tanh—coth method to obtain single-soliton solutions and also
applied the Exp-function method to derive a variety of travelling wave solutions for this
equation in the two cases

1.1. CAPUTO DERIVATIVE

The Caputo derivative of order « is defined by the formula (see [40-42]):

L't -0t (e, if m-l<a<m,

D“f (t) = r(mm_“) 0 (1.1)
4" ¢ @), if a=m,
dt”

where m e N*and () denotes the Gamma function defined by I'(X) = IO t*“edt, x >0,
The important properties of the Caputo derivative that will be used in this paper are:

patf = L4+ B) ysa pac_g

YT+ 8-0a) (1.2)
DA[f g ®)]=F ©)Dgt)+gE)DSF (), (1.3)
DALF (wan]=f,(@®)Drgt) =D (g t)[o/®)]", (L4)
d“h(t) =T+ a)dh(t). (1.5)

o

2. DESCRIPTION OF THE (=) -EXPANSION METHOD

G

The general nonlinear Time-Fractional evolution equation, say in two independent
variables x and t , is given by
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P@,D/u,u,,Du,u,,D4u,,.)=0, 0<a<l, (2.1)

XX !
where u=u(x,t) is a nunknown function, P is a polynomial ofland its partial fractional
derivatives, in which the nonlinear terms and the highest order derivatives are included.

G ’

To find the traveling wave solution of Eq. (2.1) by (G

) -expansion method, the

following steps should be taken:
e Step 1: To obtain exact traveling wave solution, the following fractional complex
transformation has been applied

a)ta
u(x,t)=U (&), £=kx _F(l+a)' (2.2)

Where k,o are constants to be determined latter. Then, the Eq (2.1) is reduced to the
following nonlinear ordinary differential equation

PU,-aJ' kU,0U" kU",-akU’,..)=0, (2.3)
where U =U,..

e Step 2: Assuming that the solution of Eq. (2.3) can be expressed as a finite power
series of the form

N G! ;
UE=Ya (=), (2.4)
n=0 G
where G =G (&) satisfies the second order LODE in the form
G"+AG"+ 4G =0. (2.5)

A, 1 are constants to be discuss later and also 8,,8,,...8 (&, #0) are constants to be

determined later.
The general solutions of (2.5) can be written in the forms as follow

1o
g2 ” (AZ sinh(%fdﬂz _4yj+Al cosh (%5\//12 —4;1)), AP =4u>0,
1
GE)=] e? 1)5(Azsin(%éﬂ/&u—lz)+Alcos(%§«/4y—/12jj, A2-4u<0,  (26)

L
(Ac+A)e? " 22 —apu=0,

it yields
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7 an A, sinh (;gﬂ/iz —4,uj+A2 cosh (;@Mz —4;1)
2| A,sinh (25«/,12 —4uj+A1 cosh(lgamz —4uj

, -| A, cos| ~ &4 ﬁzj Alsm[ £4 /12)
G _|NAu—A ( il T2 2 2 _au<o, (2.7)
G 2 Azsin(zg,mﬂ—/lzjwlcos( - /fj

A, A A*—4u=0
AE+A, 2 ’

—Z 2% —4u>0,
> H

where A, and A, are arbitrary constants.

e Step 3: The degree N of the power series (2.4) is determined by considering the
homoge-neous balance between the nonlinear term in Eq. (2.3) and the highest-order
derivative.

e Step 4: Substituting Eq. (2.4) using Eqg. (2.5) into Eq. (2.3). Then collecting the

coefficients of like powers of ((é—)” ,(n=0,1,2,...,N) . Asetof nonlinear algebraic

equations is obtained, by equating each coefficient to zero. The resulting algebraic
system is solved with the help of Mathematica to get the values of unknown constants
dy,a;,...dy and, k,w.
e Step 5: Since the general solution of (2.5) has been well known for us, then
substituting 4, , K, and (2.7) into (2.4), three types of the Exact traveling wave
solutions of the time-fractional nonlinear evolution equation are obtained (2.1).

3. APPLICATIONS

solve nonlinear time-fractional evolution equations.

3.1. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED KAUP-
KUPERSHMIDT EQUATION

Let’s start with (TFKKE), this equation can be written as the form

aSu(x t)

o“u(x,t) -+ 20a% ou(x,t)
a aXS

2
+10abu (x,t) ZLED) L ogey MOGH TUGY) o 12 UKD 6 3.1)
ox ox 2 ox
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. . . at”
Using the fractional complex transformation u(X,t)=U (&), {=x - , the
I'l+a)
(TFKKE) (3.1) is converted to the (NLODE)
20a’bU® + 25abU U " +10abUU® +bU U '— U =0. (3.2)

Balancing U® with Uu® in (3.2) gives N+5=3N+1 , hence N=2. Then, let’s
suppose that (3.2) has the following formal solutions:

U (&) =a, +q(%)+a2(%)2, a, #0. (3.3)

Substituting Equation (3.3) into Equation (3.2) and collecting all term with the same
order of (CG;—) together, the left-hand sides of Equation (3.2) are converted into a polynomial

. (G’
in (=).
&)
Setting each coefficient of each term to zero, a set of algebraic equations for

dy,dy,a,, @ is derived.

~20a’b ua, A* —600a’h 1°a,A° — 440a% u’a, A* —10ab pa,a, A — 25ab p°a’ A — 24008 1°a, A
—60ab 1*a,a,4 —320a% u’a, —b paza, + uwa, — 20ab p*aa, —50ab ’aa, =0,

~20a’ba,2° —1240a°b pa,A* —1040a°b pia, 2° —10aba,a, A° - 60ab 1’ A% —11680a% 1’8, A?
~140ab uaa,A° — 2720a% u’a, A —ba’a A + wa, A —80ab uaa, A —310ab 1’a,a,A

~70ab %} — 2b pra 8’ —100ab 1°a’ —5440a°b i°a, — 2b piaZa, + 2 uwa, —160ab paga, =0,
—640a’ba, A’ —620a’ba, A* —35aba’A° —17680a% wa,1’ —80aba,a, A’ —5840a’h ya,A*
~70aba,a,A* —500ab ua,a,A* — 230ab pa’ A — 2baa’ A — 460ab u’a’ A —34240a°b p*a, A
~2baza, A +2wa,A —520ab pa,a,A —b ia’ - 2720a% p’a, —baza, + wa,

~80ab ua,a, —530ab 1, — 6b paaa, =0,

—8440a%ba,A* —3600a’ba,A° — 240aba,a, A’ —170aba’ A — 640ab pa’ A* — 62080a%0 pa, A (3.4)
~380aba,a,A” —ba’1 —9600a’h wa, A —120aba,a,4 —1500ab 1a,a,1 — 6baa,a, A

~180ab ya” — 2baa’ —660ab 1°aZ — 4b uaa; —24640a% ua, — 20aia, —4b 1a’a,

+2wa, —400ab 18, =0,

—280aba’A* - 34200a%ba, ° — 7800a%ba,4* —1000aba,a, A° — 245aba’ A —1720ab a2
~4baa’ A - 4ba/a,A —79200a’h 1,4 —540aba,a,4 —ba’ —5b ya,a’ —4800a’h 1a,

—60aba,a, —1030ab 1a,a, —6ba,a,a, =0,

~2b 123 —1080ab A%aZ ~1100ab ua’ - 4ba,a’ —5b a,a’ —60000a’h A%a, —4ba’a,
~33600a% @, — 240aba,a, —1310ab Aa,a, —110aba —7200a Aa, =0, .

The resulting algebraic system (3.4) is solved with the help of Mathematica to get the
values of unknown constants @, ,d, ;d, ;@
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{ao —>—20(a4 +8a) 3, —> ~24084,8, —» 2408, —> 220a% (1 - 4y)2} ,

{ao —>%(—5)(a/12 +8ay),a, —-30al,a, > -30a,0 - %azb (22 —4u)2}, (3.5)

where A and  are arbitrary constants.
By using Egs. (3.5) , expression (3.3) can be written as

U, (&) =-20(at’ +8ay)—240aﬁ(%) - 24Oa(%)2, (3.6)
v 2 2 2t
where £ =X —220ab (/1 4,u) —F(1+a) , or
1 G’ G’
U.(&)=>(-5) (a2’ +8au)—30al(G )—30a(a)2, (3.7)
where & =X 2% (/12 —4,u)2 t
4 I'l+a)

Using the general solutions of Eq. (2.5) into (3.6)-(3.7), three kinds of traveling wave
solutions are obtained.

o Casel: A —41>0, hyperbolic function solutions of Eq. (3.1) are obtained.

ul,l(x ,t) :U1,1(§)

2

Alsinh(;gw/lz —4;1]+A2 cosh (;5«//12 —4yj

— 40a(A? — 411) — 60a(A% — 41) : - (3.8)
A, sinh (25«/12 -~ 4yj +A, cosh (292//12 -~ 4yj
2 (92 2 t°
where & =x —220a’b (A —4u) e
ul,z(x 1) :U1,2(§)
2
15 Alsinh(;§1112—4yj+A2 cosh(;§\112—4yj
=5a(1* ~4u) - a(2* ~4u) (3.9)

A, sinh G@MZ —4yj+A1 cosh @5«/12 —4/1]

ta
Il+a)
In particular, if a:_g_lo’b :45,1:1,;1:0,05:%A1 #0,A, =0, then

where & =X —%azb (/12 —4/1)2
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3
4

t

E=x-11 7
T'(—
()
and (3.8) becomes
3
1
U, () =2+ 2tanh?(x ~11-12) (3.10)
\ 3 7
r(,)

1
2

t
Also, if azﬁyb=—5i=Lﬂ=Qa=%JM¢QA2=thH§=X— 3~ and (3.9)

1"*
(2)
becomes
1
2
0,00 =2 Stanh?(x + =) (3.12)
’ 2 4 1 3
F(E)

Figure 1. The 3D surfaces of the exact solutions of Eq. (3.1), (a) given by (3.10) and
(b) (3.11), for (x,t) e[-5,5] %[0, 5]

Case 2: A —4u<0 | trigonometric function solutions of Eq. (3.1) are obtained.

u2,l(x 1t) =U 2,1(5)

2

A, cos(;gw/4y—in—Alsin (;5«/4;1—12)
A, sin @5«/4;1—/12}& COSG@/M—AZJ

ta
Il+a)’

=-40a(4u—A%)—60a(4u— 1) (3.12)

where &=x —220a% (22~ 4u) or

uz,z(x 1t) :Uz,z(éj)
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2

A, COS(;g‘\My—iz )—Alsin(;&My—/izj
Azsin(;gw/4y—ﬂzj+Al cos@g 4;1—/12)

=—5a(4,u—/12)—§a(4,u—/12) (3.13)

2t

where & =X —%azb (12 —4;1)

Il+a)
: , 1 1 3
In  particular, if a=-—b=451=0,u==,a==,A,#0,A,=0, then
30 4 4
3
t4
¢ =X ~11—- and (3.12) becomes
T'(—
()
3
4
Uy, () = 24 2tan?(x ~11-12). (3.14)
‘ 3 7
r(,)

1
2

. 1 11 ot
Also, if a:E,b=—5,ﬂ:0,u=Z,a:§,Al¢0,A2=0,then =X 3~ and

r‘f
)
(3.13) becomes

1
13 3 t2

u,,(x,t)=—=—>tan*(x +——) (3.15)
’ 2 4 16 3
F(E)

Figure 2. The 3D surfaces of the exact solutions of Eq. (3.1), (c) given by (3.14) and (d)
(3.15), for (x,t) e[-5,5]<[0,5].

e Case3: A'—4u=0, sothat &=x , rational function solutions of Eq. (3.1) are
obtained.

A
U, (X ,t):—240a(m)2 , (3.16)
1 2
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or
A
2 2
u,,(x t) =—30a(——2—)2. (3.17)
A +AX
(A) (B)
u 1(x,3) 1 2(x,3)
—_— -*g.‘
. B o=
K y ) MW =05
‘ ‘ . ¥ } M =075
-4 -2 f 4 M ¢=0.25
W o=t -05} / R
M «=05 | A ] I X
M «=0.75 -4 - A 2 4
W =0.25 1ol “‘
—02} N

Figure 3. The 2D surfaces of the exact solutions of Eq. (3.1), (A) given by (3.10) and
(B) (3.11), forx [-5,5],t =3and « =1,0.75,0.5,0.25.

3.2. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED BURGERS-FISHER
EQUATION

Let’s study the following (TFGBFE) in the form

8”‘u(x,t)_62u(x,t)Jr
ot” OX OX

au (x ,t)%—bu (x,)@-u(x,t))=0, (3.18)

the fractional complex transformation

eta
rl+a)’

u(x,t)=U (&), £=kx —

permit to convert the (TFGBFE) (3.18) into the (NLODE)
—6U -k U"+akUU -bU (1-U) =0, (3.19)

Now, balancing the terms of U" with UU' gives N+2=2N+1, so that N=1and thus the
solutions are as follow.

G!
U@)=a,+a(Z) a=0. (3.20)
Proceeding as above, substituting (3.20) into (3.19) and equating the coefficients of
same powers of (2—) to zero, yields a set of simultaneous algebraic equations among

8,,8,k,0.
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agh —ah +a,0u+a,(-A)k*u—aaak 1 =0,

—ab +2aab +a6l+a, (—/12)k ?-2ak?u—aa@a ik —aa’k u=0, (3.21)
a/b +a,0-3a 1k *-aa’ ik —aaak =0,
~2ak?-aa’k =0,

After solving these algebraic systems, four sets of values of arbitrary constants are
obtained:

o if A’=4u>0, then
2\ a2 -au ) A2 -au 22 —4u’ A\ Jai—au )|

1 y) 1 a 1{ a*+4b
a—>—=|l1-——— |, > — kK — 0> = — |- (3.22)
{ 2( «/42—4;J JAZ—4u 222 —4u 4\ JA? - 4pu

o If A*=4u<0, then

2\ Jau-22) " Jau-27 2J4u—2%" 4\ Jau—a? )|

2 [4—32 | Jau-27 2Jau—-22" A\ Jau-A

where A*—-4u#0.

By substituting @,,4d,, k,0 from (3.22) -(3.23) and the general solution of second order

linear ODE (2.5) into (3.20), three types of travelling wave solutions of EQ.(3.18) are
derieved.

o Case1:when A*—4u>0, then

uXt)=Uy, -1 +L
1,008)=U,,(9 2[1 MJ

. A —4u (Alsinh [;5«//12 —4y)+A2 cosh G@MZ —4;1)] ;
VAS —4u Z(Azsinh @5«//12 —4,uj+A1 cosh Ga/;ﬂ —4;1]}
1 Alsinh(;§«/12—4yj+A2 cosh(;§\/12—4yj

1
= — 4 —
2

2 2 sinh (;@/12 —4,uj+Al cosh (;5«//12 —4,uj

+

(3.24)
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2 a

where Fee a - a“+4b t
222 -4y aJA? -4y TA+a)
So,
2 a 2 a
1 AlsinhL—ix + 2 ;4br1t j+A2cosh(—ax +2 g4br1t j
Uy (X, t) =2+ 8 Td+a) 8T+ (325)
. a a“+4b t a a“+4b t
A,sinh| ——x + +A,cosh| —=x +
4 8 TI'(l+a) 4 8 TI(l+a)

In particular, if a=4,0=2,a=1A,#0,A,=0, then (3.25) becomes

UL, (X.t) =%+%tanh(3t “x), (3.26)
or,
1 1Alsinh(lgw/iz—4,uj+Azcosh(1§«//12—4yj
U, (X, t)=U,(5) = 575 (3.27)
Azsinh( EJAT - 4yj+A cosh( NV - )
where £ a « a’+4b -
2224y 4JA2—4u TQA+a)
So,
2 a 2 a
1 1Alsinh@x—a ;4b F(; )]+Azcosh[jx—a ;4b F(lt )J
+a ta
U,xt)y==-= > - > - . (3.28)
. [a a“+4b t a a‘+4b t
A,sinh| —x — +A, cosh| =x —
4 8 TI'(l+a) 4 8 TI'(l+a)
Also, if a=4,b=2,a=0.75A,=0,A, #0, then (3.28) becomes
1 1 t0.75
t)==—=coth| x —3 3.29
Ui (1) 2 2% ( r(1.75)J (3.29)
e Case2:when A’ -4 <0, after simplification, then
A cos(—4x (@’ ;r4b)ri[“ ]—Alsin(—x (@’ g4b)ri[a ]
U )=t A+a) o)) (3.30)
Azsin(—x+|(a t4p) j+A cos[ x+|(a +4p) ]
4 8 I'd+ea) 8 I'd+e)
and

WWW.josa.ro
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i 1 2 a . ; 2 .
.Azcos('jlx—'(a +4b) t j—Alsin('ax_'(a +4b) t j

U, (x t)___I_ 8 rd+ea) 4 8 I'd+ea) (3.31)
22 (e @)t ) fia i@+4p) t7 )
2 4 8 TI(+a)) 4 8 I'(l+a)

If A, =0,A, #0, with the fact that (sin(i @) = i sinh(8), cos(i &) = cosh(8) ) , then

11 a_(@*+4b) t°
u,.(x,t)==+=coth(—=x .32
21 (X1) 272 ( 2 g F(1+a)) (3:32)
and, if A,=0,A, #0  then
1 1 a_(@*+4b) t°
u,,(x,t)==—=tanh{=x — 3.33

Figure 4. The 3D surfaces of the exact solutions of Eq. (3.18), (e) given by (3.26) and (f)
(3.29), for (x,t) e[-5,5]%[0,1].

(E)
,1(x,0.5)

el

081

0:6+
H =1
MW «=05 04
B «=0.75

W =025
021

-4 2

Figure 5. The 2D surfaces of the exact solutions of Eq. (3.18), (e) given by (3.26), for
x e[-5,5],t=0.5and ¢ =1,0.75,0.5,0.25.

3.3. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED SHALLOW WATER
WAVE EQUATION
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Let’s consider the (TFGSWW) equation of the form

(a3u§(x t)) au(x 1) 0 (au(x t)) ﬁazu(x 1) ou(x,t)

3.34
ot” ox 2 ot” (3:34)
u(x,t U (x,t
(0 ( )) 0 (2, )_o
OX
The fractional complex transfomation u(x,t)=U (£),& =kx +a)r(; X transform
+v
the Eq. (3.34) to the following ordinary differential equation:
k) @ —(k?*+ko)U"+UU"(ak o+ pk *0)=0. (3.35)
Integrating Eq. (3.35) with respect to ¢ once, yields
kel @ —(k?* +k @)U’ +2(ak o+ pk’w) (") =0. (3.36)

By the same procedure as illustrated below, the value of N can be determined by
balancing U® and U'U" in Eqg. (3.36). So N =1. Let’s suppose that the solutions of Eq.
(3.36) is of the form

U@ =a+a(3) a =0
(3.37)

where G =G (&) satisfies (2.5). Substituting Egs. (3.37) into Eq. (3.36), collecting the co-

efficients of (Z—)' (i =0,1,2,...) and set it to zero, yields a set of algebraic equations for

8,,8,K,@. These systems are

—a, A%k *uw —2a,k 3yza)+%aafk 2y2w+%afﬂk ‘pPo+ak’u+akou=0,

3, (—2° )k *w—8a Ak * oo+ cral Ak * pieo + 2 pAK * oo+ 3, + k *A+a, Ak 0 =0,

_7a,2%k *0—8ak Sya)+%aaf/12k 20+ aa’k Z,ua)+%af,6/12k 200+ 82 Bk * o (3.38)
+a,+k*+akw=0,

~12a,Ak *w+aa’ Ak *o+a ik ‘o =0,

—6a,k 3a)+%0(a12k 2a)+%a12ﬂk ?w=0.

The roots of Egs. (3.38) are obtained by the aid of Mathematica as
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12k k
—— k =k,® : 3.39
{ao Rz k2(424ﬂ)1} o

where K =0 and o+ B =0.

k?(2°—4u)-1

Now substituting (3.39) and using Egs. (2.6) into (3.37), three kinds of traveling wave
solutions of Eq. (3.34) are obtained as follows:

o Case1l:when A° —441>0, then, hyperbolic function solutions are obtained:

6k A +6k 274y Aﬁmh&éﬂ}&cosh&@/ﬁj
a+p a+p Aﬁinh@fﬂ}&cosh@gﬂj

k "
k?(A°—4u)-1TQA+v)

In particular, if 83, =0,A=-Lu=0k =2,a=-2 f=-1Lv=0.75A, #0,A, =0, then

u, (X, t)=a, - ) (3.40)

where £ =kx +

2t0.75
u,(x,t) =—4tanh +2x |—4. (3.41)
30(L.75)

o Case2: when A*—4u<0 | then, trigonometric function solutions are obtained:

6k A 6k YRYE A COS( EJbu— Aj Asm( E\du— Aj

u,(x,t)=a,— (3.42)
arf ath A sm( N/PE /12)+A cos( N zzj
k t”
where £ =kx .
d +k2(}tz—4y)—11“(1+v)
Ifa0=0,i=0,y:%,k —2,a=2,8=1v=05A,#0,A, =0 , then
2tO.5
u,(x,t)=—4tan +2X |- (3.43)
3r(L.5)
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o Case3:when A° —411=0, then rational function solutions are obtained:

u,(x,t)=a,- bk 4 + 12k A, o ) (3.44)
ath atbBop L a(kx -k )
@+v)
If ao=4,/1=1,y=%,k —la=2F=1v=025A =A,=1, then
4 12, (3.45)

us(x,t) = o
(x _t j+1
I'(1.25)

(@)

Figure 6. The 3D surfaces of the exact solutions of Eq. (3.34), (g) given by (3.41), (h). (3.43), and (i) (3.45) ,
for (x,t) €[-5,5]%[0,5].
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(5}
~ )

H v=1

M v=05
M v=0.75
W v=025

Figure 7. The 2D surfaces of the exact solutions of Eq. (3.34), (g) given by (3.41), for
x €[-5,5],t =5 and v =1,0.75,0.5,0.25.

4. CONCLUSION

In this work the solutions of three important nonlinear time-fractional evolution

equations, TFKKE, TFGBFE, and TFGSWW were found. Through using the ((é ) -
expansion method, three types exact solutions (hyperbolic, trigonometric, and rational
solutions) are derived . The availability of computer systems like Mathematica facilitates the
tedious algebraic calculations and plots of surfaces of solutions. The proposed method in this
paper is also a standard, direct and computerizable method, which allows us to do
complicated and tedious algebraic calculation.
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