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Abstract. The aim of the present study is to find the exact solutions for three gen-      

eralized nonlinear time-fractional evolution equations, Kaup-Kupershmidt equation, Burgers-

Fisher equation and, Shallow Water Wave equation. By using the (G’/G)-expansion method 

and depending on second order linear ODE as well as the complex transformation, three 

kinds of solutions (hyperbolic, trigonometric, and rational) are obtained. With the help of 

Mathematica software package, difficult algebraic systems are solved and surfaces of some 

particular solutions of the equations under study are plotted. 

Keywords: Burgers-Fisher equation; Kaup-Kupershmidt equation; time-fractional; 

Shallow Water Wave equation; traveling wave solutions. 

 

 

1. INTRODUCTION  

 

 

In recent years, the problem of research and the construction of exact solution to non-

linear evolutionary equations has been among the first concerns of many mathematicians. 

Due to the complexity of the nonlinear system, finding explicit analytical solutions to 

this type of equations is often a difficult process. For this, a number of powerful and 

important methods have been developed, like inverse scattering transform method, Exp-

function method, Kudryashov method, sine–cosine method, Tanh function method, extended 

Tanh (or tanh-coth) method, extended F-expansion method and others. 

More recently, the (G’/G)-expansion method (see [1-10]) has been proposed to obtain 

traveling wave solutions. This method is firstly proposed by Wang et al. [10] for which the 

traveling wave solutions of the nonlinear evolution equations are obtained. 

In the present article, by using this well known method, exact solutions of the 

following three nonlinear evolution equations will be sought, first the generalized time-

fractional Kaup-Kupershmidt equation in the form 

 

                              
2 2

5 3 220 10 25 0t x x x x xD u a bu abuu abu u bu u      , 

 

where  
*,a b  , 

( , )
:t

u x t
D u

t










 in the sense of Caputo derivative and 0 1  . 
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In the particular case 1  (see [11]): It is a class of the better-known standard fifth- 

order KdV equation and has properties similar (but not identical) to those of fKdV(see [12]), 

may be used to model dispersive phenomena such as plasma waves.  

As the constants 0, 0a b   take different values, different types of  Kaup-

Kupershmidt equation are retrieved. For examples, in the case 
1

,  30
20

a b  (see [13-15]), 

for
1

, 180
60

a b  , see [16], Reyes [17] studied the case 
1

, 5
10

a b   , the case  

1
, 45

30
a b    is studied by Parker [18, 19], and when 

1
, 5

30
a b  , yields the equation 

treated in [20] and [21]. While, the Kupershmidt equation is obtained by taking
1 5

,
5 4

a b    

(see [22-24] ). 

The second considerable equation is the time-fractional generalized Burgers-Fisher 

equation in the form  

 

                                 (1 ) 0t xx xD u u auu bu u      , 

  

where 
*,a b  and 

( , )
0 1, :t

u x t
D u

t








  


 in the sense of Caputo derivative.  

In the particular case 1   (see [25-32]): This equation shows a prototypical model 

for describing the interaction between the reaction mechanism, covection effect, and diffusion 

transport. When b=0 , the generalized Burgers– Fisher equation becomes the Burgers equation 

 

                                              0t xx xu u auu   .                         

              

The Burgers equation is an important nonlinear diffusion equation in physics, which 

describes the far field of wave propagation in the corresponding dissipative systems, also 

arises in a variety of physical contexts and has been studied by many authors. For examples 

(see [31, 32]). 

When a=0, b=1, this equation reads   

                                           

                                                (1 ) 0t xxu u u u    . 

 

This important nonlinear diffusion equation in nonlinear science called Fisher 

equation (or KPP equation), it was first studied by Fisher, Kolmogorov, Petrovski and 

Pisconov as a model in biology and is in close connection with some important physical 

phenomena, such as neu-tron action, wave motion in liquid crystals, nerve signal propagation 

in biophysics. 

 As for Wazwaz [33], he was interested in studying the specific cases a=0 and 
a=-1, b=1. 

Finally, let’s consider the time-fractional Generalized Shallow Water Wave equation 

in the form 

 

                          3 2 2( ) ( ) ( ) ( ) 0,t x x t x t x t x xD u u D u D u u D u u            
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where 
( , )

0 1, :t

u x t
D u

t








  


 in the sense of Caputo derivative and 0, 0   and 

0   . 

Let’s point out that the shallow-water wave equations describe a thin layer of fluid of 

constant density in hydrostatic balance, bounded from below by the bottom topography and 

from above by a free surface. 

In the case 1   (see [34-39],): Clarkson and Mansfield (see [34]) examined two 

special cases    and 2  , Ablowitz et al. [35] studied the specific case 4    and 

2   , while Hirota and Satsuma [36] treated the equation when 3    . 

Wazwaz [37] used the tanh–coth method to obtain single-soliton solutions and also 

applied the Exp-function method to derive a variety of travelling wave solutions for this 

equation in the two cases 

 

 

1.1. CAPUTO DERIVATIVE 

 

 

The Caputo derivative of order   is defined by the formula (see [40-42]): 

   

1 ( )

0

1
( ) ( ) , if 1 ,

( )
( )

( ), if ,

t
m m

m

m

t f d m m
m

D f t
d

f t m
dt





   




 




     

 
 



                       (1.1)  

  

where m  and (.) denotes the Gamma function defined by 
1

0
( ) , 0x tx t e dt x


    . 

The important properties of the Caputo derivative that will be used in this paper are: 

 

                              
(1 )

, 0,
(1 )

tD t t D c    

 

 
 
  

                                           (1.2) 

 

                          ( ) ( ) ( ) ( ) ( ) ( ),[ ]t t tD f t g t f t D g t g t D f t                                      (1.3) 

 

                  ( ( )) ( ( )) ( ) ( ( )) ,( )[ ] [ ]t g t g tD f g t f g t D g t D f g t g t                               (1.4) 

   

                                              ( ) (1 ) ( ).d h t d h t                                                  (1.5) 

  

  

2. DESCRIPTION OF THE ( )
G

G


-EXPANSION METHOD 

 

 

The general nonlinear Time-Fractional evolution equation, say in two independent  

variables x  and t , is given by  
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2( , , , , , , ) 0, 0 1,t x t xx t xP u D u u D u u D u                                               (2.1) 

 

where u =u( x, t)  is a nunknown function, P is a polynomial of u and its partial fractional 

derivatives, in which the nonlinear terms and the highest order derivatives are included. 

To find the traveling wave solution of Eq. (2.1) by  ( )
G

G


-expansion method, the 

following steps should be taken: 

 Step 1: To obtain exact traveling wave solution, the following fractional complex 

transformation has been applied 

                                                                                                                                                   

                                     ( , ) ( ),
(1 )

t
u x t U kx


 


  

 
.                              (2.2) 

  

 Where ,k   are constants to be determined latter. Then, the Eq (2.1) is reduced to the 

following nonlinear ordinary differential equation  

 

                                  
2 2( , , , , , , ) 0,P U U kU U k U kU                                            (2.3) 

 

where  
( )i

iU U  . 

  Step 2: Assuming that the solution of Eq. (2.3) can be expressed as a finite power 

series of the form  

 

   
0

,( ) ( )
N

n

n

n

G
U a

G





                                                                  (2.4) 

 

where ( )G G   satisfies the second order LODE in the form 

 

                                                  0G G G     .                                                            (2.5)                                                           

 

,   are constants to be discuss later and also 0 1, , ( 0)N Na a a a   are constants to be 

determined later. 

The general solutions of (2.5) can be written in the forms as follow 

  

 

1
( )

2 2 22
2 1

1
( )

2 2 22
2 1

1
( )

22
2 1

1 1
sinh 4 cosh 4 , 4 0,

2 2

1 1
( ) sin 4 cos 4 , 4 0,

2 2

, 4 0,

e A A

G e A A

A A e

 

 

 

       

        

  







     
         

    
      

          
    


   


     (2.6) 

 

it yields  
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2 2

2 1 2
2

2 2

2 1

2 2

2 2 1

2 2

2 1

1 1
sinh 4 cosh 4

4 2 2
, 4 0,

1 12 2
sinh 4 cosh 4

2 2

1 1
cos 4 sin 4

4 2 2

1 12
sin 4 cos 4

2 2

A A

A A

A A
G

G
A A

     
  

 

     

     
 

     

    
              

          
    

   
          

   
     

   

2

22

2 1

, 4 0,
2

, 4 0,
2

A

A A


 


 









  
  

    
 
   


   
 




 (2.7) 

   

where  1A  and 2A  are arbitrary constants. 

 Step 3: The degree N of the power series (2.4) is determined by considering the 

homoge-neous balance between the nonlinear term in Eq. (2.3) and the highest-order 

derivative. 

 Step 4: Substituting Eq. (2.4) using Eq. (2.5) into Eq. (2.3). Then collecting the 

coefficients of like powers of  , ( 0,1,2, , )( )nG
n N

G


   . A set of nonlinear algebraic 

equations is obtained, by equating each coefficient to zero. The resulting algebraic 

system is solved with the help of Mathematica to get the values of unknown constants 

        0 1, , Na a a  and, ,k  . 

 Step 5: Since the general solution of (2.5) has been well known for us, then 

substituting , ,na k   and (2.7) into (2.4), three types of the Exact traveling wave 

solutions of the time-fractional nonlinear evolution equation are obtained (2.1). 

 

 

3. APPLICATIONS  

 

 

Here, three examples to illustrate the applicability of the ( )
G

G


-expansion method to 

solve nonlinear time-fractional evolution equations. 

 

 

 3.1. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED KAUP-

KUPERSHMIDT EQUATION 

 

 

Let’s start with (TFKKE), this equation can be written as the form 

 
5 3 2

2 2

5 3 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
20 10 ( , ) 25 ( , ) 0

u x t u x t u x t u x t u x t u x t
a b abu x t ab bu x t

t x x x x x





     
    

     
 (3.1) 
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Using the fractional complex transformation  ( , ) ( ),
(1 )

t
u x t U x


 


  

 
 , the 

(TFKKE) (3.1) is converted to the (NLODE)  

 

                                         2 (5) (3) 220 bU 25 10 UU U 0.a abU U ab bU U                      (3.2) 

 

Balancing (5)U  with (3)UU  in (3.2) gives N+5=3N+1 , hence N=2 . Then, let’s  

suppose that (3.2) has the following formal solutions: 

 

                                   2

0 1 2 2( ) , 0( ) ( )G G
U a a a a

G G


 
    .                                           (3.3)    

 

 Substituting Equation (3.3) into Equation (3.2) and collecting all term with the same 

order of  ( )G

G


 together, the left-hand sides of Equation (3.2) are converted into a polynomial 

in ( )G

G


.  

Setting each coefficient of each term to zero, a set of algebraic equations for 

0 1 2, , ,a a a   is  derived. 

 
2 4 2 2 3 2 2 2 2 2 2 2 3

1 2 1 0 1 1 220 600 440 10 25 2400a b a a b a a b a ab a a ab a a b a                  
2 2 3 2 2 3

0 2 1 0 1 1 0 1 1 260 320 20 50 0,ab a a a b a b a a a ab a a ab a a              
2 5 2 4 2 3 3 2 2 2 2 2

1 2 1 0 1 1 220 1240 1040 10 60 11680a ba a b a a b a aba a ab a a b a                
2 2 2 2 2

0 2 1 0 1 1 0 1 1 2140 2720 80 310ab a a a b a ba a a ab a a ab a a                 
2 2 2 3 2 2 3 2 2

1 0 1 2 2 0 2 2 0 270 2 100 5440 2 2 160 0,ab a b a a ab a a b a b a a a ab a a               
2 5 2 4 2 3 2 3 3 2 2

2 1 1 2 0 2 1640 620 35 17680 80 5840a ba a ba aba a b a aba a a b a              
2 2 2 2 2 2 2 2

0 1 1 2 1 0 1 2 270 500 230 2 460 34240aba a ab a a ab a ba a ab a a b a                
2 3 2 2 2

0 2 2 0 2 1 1 0 1 12 2 520 2720ba a a ab a a b a a b a ba a a                                                 
2

0 1 1 2 0 1 280 530 6 0,ab a a ab a a b a a a       
2 4 2 3 3 2 2 2 2 2 2

2 1 1 2 1 2 28440 3600 240 170 640 62080a ba a ba aba a aba ab a a b a                         (3.4)
2 3 2

0 2 1 1 0 1 1 2 0 1 2380 9600 120 1500 6aba a ba a b a aba a ab a a ba a a              
2 2 2 2 2 2 2 2 2

1 0 1 2 0 2 2 0 2 1 2180 2 660 4 24640 2 4ab a ba a ab a b a a a b a ba a b a a            

2 0 22 400 0,a ab a a     
2 3 2 3 2 2 2 2 2

2 2 1 1 2 1 2280 34200 7800 1000 245 1720aba a ba a ba aba a aba ab a             
2 2 2 3 2 2

0 2 1 2 2 0 2 1 1 2 14 4 79200 540 5 4800ba a ba a a b a aba a ba b a a a b a              

0 1 1 2 0 1 260 1030 6 0,aba a ab a a ba a a     
3 2 2 2 2 2 2 2 2

2 2 2 0 2 1 2 2 1 22 1080 1100 4 5 60000 4b a ab a ab a ba a b a a a b a ba a            
2 2 2

2 0 2 1 2 1 133600 240 1310 110 7200 0,a b a aba a ab a a aba a b a        . 

 

The resulting algebraic system (3.4) is solved with the help of Mathematica to get the 

values of unknown constants 0 1 2; ; ;a a a   
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2

2 2 2

0 1 220 8 , 240 , 240 , 220 4 ,a a a a a a a a b             

   
2

2 2 2

0 1 2

1 5
( 5) 8 , 30 , 30 , 4

2 4
a a a a a a a a b     
 

       
 

,                   (3.5) 

 

where  and  are arbitrary constants.  

By using Eqs. (3.5) , expression (3.3) can be written as  

 

                                             2 2

1( ) 20 8 240 240 ,( ) ( )G G
U a a a a

G G
   

 
                (3.6)      

 

where  
2

2 2220 4
(1 )

t
x a b



  


  
 

, or  

 

                                               2 2

2

1
( ) ( 5) 8 30 30 ,

2
( ) ( )G G

U a a a a
G G

   
 

              (3.7)     

 

where   
2

2 25
4

4 (1 )

t
x a b



  


  
 

. 

Using the general solutions of Eq. (2.5) into (3.6)-(3.7), three kinds of traveling wave 

solutions are obtained. 

 Case 1: 
2 4 0   , hyperbolic function solutions of Eq. (3.1) are obtained. 

 

1,1 1,1( , ) ( )u x t U          

2

2 2

1 2
2 2

2 2

2 1

1 1
sinh 4 cosh 4

2 2
40 ( 4 ) 60 ( 4 )

1 1
sinh 4 cosh 4

2 2

A A

a a

A A

     

   

     

    
      

       
          
    

         (3.8) 

 

where  
2

2 2220 4
(1 )

t
x a b



  


  
 

, or  

 

1,2 1,2( , ) ( )u x t U   

 

2

2 2

1 2
2 2

2 2

2 1

1 1
sinh 4 cosh 4

15 2 2
5 ( 4 ) ( 4 )

1 12
sinh 4 cosh 4

2 2

A A

a a

A A

     

   

     

    
      

       
          
    

          (3.9)     

 

where  
2

2 25
4

4 (1 )

t
x a b



  


  
 

. 

In particular, if 
1 2

1 3
, 45, 1, 0, , 0, 0

30 4
a b A A          , then  
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3

4

11
7

( )
4

t
x  



, 

and (3.8) becomes  

                                    

3

4
2

1,1

4
( , ) 2 tanh 11

73
( )
4

( )t
u x t x   



.                                         (3.10) 

Also, if  
1 2

1 1
, 5, 1, 0, , 0, 0

10 2
a b A A          , then 

1

2

3
( )
2

t
x  



 and (3.9) 

becomes    

                                  

1

2
2

1,2

1 3 3
( , ) tanh

32 4 16
( )
2

( )t
u x t x  



.                                           (3.11) 

  
 

Figure 1. The 3D surfaces of the exact solutions of Eq. (3.1), (a) given by (3.10) and  

              (b) (3.11), for ( , ) [ 5,5] [0,5]x t     

 

Case 2: 
2 4 0    , trigonometric function solutions of Eq. (3.1) are obtained. 

 

2,1 2,1( , ) ( )u x t U   

      

2

2 2

2 1
2 2

2 2

2 1

1 1
cos 4 sin 4

2 2
40 (4 ) 60 (4 )

1 1
sin 4 cos 4

2 2

A A

a a

A A

     

   

     

    
      

        
          
    

   (3.12) 

where  
2

2 2220 4
(1 )

t
x a b



  


  
 

, or  

 

2,2 2,2( , ) ( )u x t U     
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2

2 2

2 1
2 2

2 2

2 1

1 1
cos 4 sin 4

15 2 2
5 (4 ) (4 )

1 12
sin 4 cos 4

2 2

A A

a a

A A

     

   

     

    
      

        
          
    

         (3.13) 

 

where  
2

2 25
4

4 (1 )

t
x a b



  


  
 

 . 

In particular, if 
1 2

1 1 3
, 45, 0, , , 0, 0

30 4 4
a b A A          , then 

3

4

11
7

( )
4

t
x  



 and (3.12) becomes 

3

4
2

2,1

4
( , ) 2 tan 11

73
( )
4

( )t
u x t x  



.                                  (3.14) 

Also, if  1 2

1 1 1
, 5, 0, , , 0, 0

10 4 2
a b A A          , then 

1

2

3
( )
2

t
x  



 and 

(3.13) becomes   
1

2
2

2,2

1 3 3
( , ) tan

32 4 16
( )
2

( )t
u x t x   



                          (3.15)   

 

  
 

Figure 2. The 3D surfaces of the exact solutions of Eq. (3.1), (c) given by (3.14) and (d)                   

 (3.15), for ( , ) [ 5,5] [0,5]x t    .  

 Case 3: 
2 4 0   ,   so that x  , rational function solutions of Eq. (3.1) are 

obtained. 

                                               
22

3,1

1 2

( , ) 240 ( )A
u x t a

A A x
 


  ,                                   (3.16)  
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or              

                                               
22

3,2

1 2

( , ) 30 ( )A
u x t a

A A x
 


.                                     (3.17) 

    
 

Figure 3.  The 2D surfaces of the exact solutions of Eq. (3.1), (A) given by (3.10) and                                                

              (B) (3.11), for [ 5,5], 3x t   and 1,0.75,0.5,0.25  . 

 

 

 3.2. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED BURGERS-FISHER 

EQUATION 

 

 

Let’s study the following (TFGBFE) in the form  

 

                  
2( , ) ( , ) ( , )

( , ) ( , )(1 ( , )) 0,
u x t u x t u x t

au x t bu x t u x t
t x x x





  
    

   
        (3.18)      

 

the fractional complex transformation  

 

( , ) ( ),
(1 )

t
u x t U kx


 


  

 
, 

 

permit to convert the (TFGBFE) (3.18) into the (NLODE) 

  

                                
2U UU (1 ) 0k U ak bU U        .                                        (3.19) 

 

Now, balancing the terms of U''  with UU'  gives N+2=2N+1 , so that N=1and thus the 

solutions are as follow.  

 

                                        
0 1 1( ) , 0( )G

U a a a
G




   .                                                  (3.20)   

Proceeding as above, substituting (3.20) into (3.19) and equating the coefficients of 

same powers of ( )G

G


 to zero, yields a set of simultaneous algebraic equations among 

0 1, , ,a a k  . 
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2 2

0 0 1 1 1 0( ) 0,a b a b a a k aa a k          

         2 2 2 2

1 0 1 1 1 1 0 1 12 2 0,a b a a b a a k a k aa a k aa k                                  (3.21) 

         
2 2 2

1 1 1 1 0 13 0,a b a a k aa k aa a k        

        
2 2

1 12 0a k aa k   . 

 

After solving these algebraic systems, four sets of values of arbitrary constants are 

obtained: 
 

 if 
2 4 0   , then  

2

0 1
2 2 2 2

1 1 1 4
1 , , , ,

2 44 4 2 4 4

a a b
a a k




       

     
        
           

 

 

2

0 1
2 2 2 2

1 1 1 4
1 , , ,

2 44 4 2 4 4

a a b
a a k




       

     
        
           

.        (3.22) 

 

 If 
2 4 0   , then  

2

0 1
2 2 2 2

1 1 4
1 , , , ,

2 44 4 2 4 4

i i ia a b
a a k i




       

     
        
             

 

2

0 1
2 2 2 2

1 1 4
1 , , ,

2 44 4 2 4 4

i i ia a b
a a k i




       

     
        
           

,        (3.23) 

 

where  
2 4 0   . 

By substituting 0 1, , ,a a k   from (3.22) -(3.23) and the general solution of second order 

linear ODE (2.5) into (3.20), three types of travelling wave solutions of Eq.(3.18) are 

derieved. 

 Case 1: when 
2 4 0   , then  

 

1,1 1,1( , ) ( )u x t U 
2

1
1

2 4



 

 
  
  

 

2 2 2

1 2

2
2 2

2 1

1 1
4 sinh 4 cosh 4

2 21

21 14 2 sinh 4 cosh 4
2 2

A A

A A

       


       

     
        

      
             

     

 

2 2

1 2

2 2

2 1

1 1
sinh 4 cosh 4

1 1 2 2

1 12 2
sinh 4 cosh 4

2 2

A A

A A

     

     

   
     

    
   

     
   

                                           (3.24)         
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where  
2

2 2

4

(1 )2 4 4 4

a a b t
x




   


  

  
 

So, 
  

2 2

1 2

1,1 2 2

2 1

4 4
sinh cosh

4 8 (1 ) 4 8 (1 )1 1
( , )

2 2 4 4
sinh cosh

4 8 (1 ) 4 8 (1 )

a a b t a a b t
A x A x

u x t
a a b t a a b t

A x A x

 

 

 

 

    
       

       
    
       

      

      (3.25) 

 

In particular, if  1 24, 2, 1, 0, 0a b A A     , then (3.25) becomes   

 

1,1

1 1
( , ) tanh(3 )

2 2
u x t t x   ,                                              (3.26) 

or, 

 

2 2

1 2

1,2 1,2
2 2

2 1

1 1
sinh 4 cosh 4

1 1 2 2
( , ) ( )

1 12 2
sinh 4 cosh 4

2 2

A A

u x t U

A A

     



     

   
     

     
   

     
   

         (3.27) 

 

where 
2

2 2

4

(1 )2 4 4 4

a a b t
x




   


 

  
. 

So, 
 

2 2

1 2

1,2 2 2

2 1

4 4
sinh cosh

4 8 (1 ) 4 8 (1 )1 1
( , )

2 2 4 4
sinh cosh

4 8 (1 ) 4 8 (1 )

a a b t a a b t
A x A x

u x t
a a b t a a b t

A x A x

 

 

 

 

    
     

       
    

     
      

 .    (3.28)      

 

Also, if   1 24, 2, 0.75, 0, 0a b A A     , then (3.28) becomes  

 

                   
0.75

1,2

1 1
( , ) coth 3

2 2 (1.75)

t
u x t x

 
   

 
                                                  (3.29)  

 

 Case 2: when  
2 4 0   , after simplification, then 

 

2 2

2 1

2,1 2 2

2 1

( 4 ) ( 4 )
cos sin

4 8 (1 ) 4 8 (1 )1
( , )

2 2 ( 4 ) ( 4 )
sin cos

4 8 (1 ) 4 8 (1 )

ia i a b t ia i a b t
A x A x

i
u x t

ia i a b t ia i a b t
A x A x

 

 

 

 

    
       

       
    
       

      

      (3.30) 

 

and  
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2 2

2 1

2,2 2 2

2 1

( 4 ) ( 4 )
cos sin

4 8 (1 ) 4 8 (1 )1
( , ) .

2 2 ( 4 ) ( 4 )
sin cos

4 8 (1 ) 4 8 (1 )

ia i a b t ia i a b t
A x A x

i
u x t

ia i a b t ia i a b t
A x A x

 

 

 

 

    
     

       
    

     
      

        (3.31)   

 

If 1 20, 0A A  , with the fact that (sin( ) sinh( ),cos( ) cosh( )i i i     ) , then  

 

                          

2

2,1

1 1 ( 4 )
( , ) coth

2 2 4 8 (1 )
( )a a b t

u x t x





   

 
                                (3.32) 

 

  and, if  2 10, 0A A  , then  

 

                          

2

2,2

1 1 ( 4 )
( , ) tanh

2 2 4 8 (1 )
( )a a b t

u x t x





  

 
                                   (3.33) 

 

  
 

Figure 4. The 3D surfaces of the exact solutions of Eq. (3.18), (e) given by (3.26) and (f)   

                    (3.29), for ( , ) [ 5,5] [0,1].x t              

                                               

 
 

Figure 5. The 2D surfaces of the exact solutions of Eq. (3.18), (e) given by (3.26), for 

             [ 5,5], 0.5x t   and 1,0.75,0.5,0.25  . 

 

3.3. EXACT SOLUTIONS OF TIME-FRACTIONAL GENERALIZED SHALLOW WATER 

WAVE EQUATION 
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Let’s consider the (TFGSWW) equation of the form  

   
3 2

3 2

( , ) ( , ) ( , ) ( , ) ( , )( ) ( )u x t u x t u x t u x t u x t

t x x t x x t

  

  
 

      
 

      
                    (3.34) 

                              

2

2

( , ) ( , )
0( )u x t u x t

t x x





  
  
  

. 

 

The fractional complex transfomation ( , ) ( ),
(1 )

t
u x t U kx



  


  
 

, transform 

the Eq. (3.34) to the following ordinary differential equation:  

 

                                3 (4) 2 2 2 0k U k k U U U k k            .                     (3.35)    

 

Integrating Eq. (3.35) with respect to   once, yields 

 

                                  
23 (3) 2 2 21

0
2

k U k k U k k U           .                      (3.36) 

 

By the same procedure as illustrated below, the  value of N can be determined by 

balancing (3)U  and  U'U''  in Eq. (3.36). So  1N  . Let’s suppose that the solutions of Eq. 

(3.36) is of the form   

 

                                                
0 1 1( ) , 0,( )G

U a a a
G




                                                   

(3.37)  

 

where  ( )G G   satisfies (2.5). Substituting Eqs. (3.37) into Eq. (3.36), collecting the co-

efficients of  , ( 0,1,2, )( )iG
i

G


   and set it to zero, yields a set of algebraic equations for  

 0 1, , ,a a k  .  These systems are  

 

    2 3 3 2 2 2 2 2 2 2 2

1 1 1 1 1 1

1 1
2 0,

2 2
a k a k a k a k a k a k                   

     3 3 3 2 2 2 2 2

1 1 1 1 1 18 0,a k a k a k a k a k a k                    

    2 3 3 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1

1 1
7 8

2 2
a k a k a k a k a k a k                                (3.38) 

    
2

1 1 0,a k a k     

    
3 2 2 2 2

1 1 112 0,a k a k a k            

     3 2 2 2 2

1 1 1

1 1
6 0

2 2
a k a k a k        . 

  

The roots of Eqs. (3.38) are obtained by  the aid of Mathematica as 
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 0 0 1 2 2

12
, , ,

4 1

k k
a a a k k

k


   

  
    

    

,                                                 (3.39)  

 

where   
 2 2

0
4 1

k

k  


 
 and 0   . 

 

Now substituting (3.39) and using Eqs. (2.6) into (3.37), three kinds of traveling wave 

solutions of Eq. (3.34) are obtained as follows: 

 

 Case 1: when 
2 4 0   , then, hyperbolic function solutions are obtained:  

 

2 2

2 1 2

1 0
2 2

2 1

1 1
sinh 4 cosh 4

6 46 2 2
( , )

1 1
sinh 4 cosh 4

2 2

( )
A A

kk
u x t a

A A

     
 

   
     

   
           

     
     

   

  (3.40) 

 

 where  
 2 2 (1 )4 1

k t
kx

k




 

 
  

. 

In particular, if 0 1 20, 1, 0, 2, 2, 1, 0.75, 0, 0a k A A                , then  

 

                                          
0.75

1

2
( , ) 4 tanh 2 4

3 (1.75)

t
u x t x

 
    

 
.                              (3.41)  

 

 Case 2: when  
2 4 0    , then, trigonometric function solutions are obtained: 

 

 

2 2

2 2 1

2 0
2 2

2 1

1 1
cos 4 sin 4

6 46 2 2
( , )

1 1
sin 4 cos 4

2 2

( )
A A

kk
u x t a

A A

     
 

   
     

   
           

     
     

   

   (3.42) 

 

where   
 2 2 (1 )4 1

k t
kx

k




 

 
  

. 

If 
0 1 2

1
0, 0, , 2, 2, 1, 0.5, 0, 0 

4
a k A A             , then 

 

                                  
0.5

2

2
( , ) 4 tan 2

3 (1.5)

t
u x t x

 
   

 
.                                                (3.43) 
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 Case 3: when  
2 4 0   , then rational function solutions are obtained: 

 

                      2
3 0

1 2

6 12
( , )

(1 )

( )
( )

Ak k
u x t a

t
A A kx k





   



  
 

 
 

.              (3.44)   

 

If  
0 1 2

1
4, 1, , 1, 2, 1, 0.25, 1

4
a k A A             , then  

 

                     
3 0.25

4
( , ) 2

1
(1.25)

u x t
t

x

 
 

  
 

.                                                      (3.45)      

  
 

               
Figure 6.  The 3D surfaces of the exact solutions of Eq. (3.34), (g) given by (3.41), (h). (3.43), and (i) (3.45) , 

for ( , ) [ 5,5] [0,5].x t     
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Figure 7.  The 2D surfaces of the exact solutions of Eq. (3.34), (g) given by (3.41), for 

 [ 5,5], 5x t    and 1,0.75,0.5,0.25  . 

 

 

4. CONCLUSION 

     

 

In this work the solutions of three important nonlinear time-fractional evolution 

equations, TFKKE, TFGBFE, and TFGSWW were found. Through using  the ( )
G

G


-

expansion method,  three types exact solutions (hyperbolic, trigonometric, and rational 

solutions) are derived . The availability of computer systems like Mathematica facilitates the 

tedious algebraic calculations and plots of surfaces of solutions. The proposed method in this 

paper is also a standard, direct and computerizable method, which allows us to do 

complicated and tedious algebraic calculation. 
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