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Abstract. Fermi-Walker derivative and the energy of magnetic curves have an 

important place in physics and differential geometry. In this study, we calculate the Fermi-

Walker derivatives of T , 1N , 2N  magnetic curves according to the Bishop frame in the 

space. Moreover, we obtain the energy of the Fermi-Walker derivative of magnetic curves 

according to the Bishop frame in space. Finally, we have energy relations of some vector 

fields associated with Bishop frame in the space. 

Keywords: magnetic curve; Lorentz force; Bishop frame; Fermi-Walker derivative; 

energy. 

 

 

1. INTRODUCTION  

 

 

The closed 2-form F  on Riemannian manifold ),( gM  is called a magnetic field. 

Magnetic curves on a Riemannian manifold ),( gM  is a trajectory characterized by a charged 

particle moving in under the influence of a magnetic field F . If these charged particles enter 

the magnetic field they are exposed to a force called a Lorentz force. The Lorentz force is an 

(1, 1)-type tensor field   on Riemannian manifold ),( gM  and it satisfies that 

),(=)),(( YXYXg F , ).(, MYX   Lorentz force equation is expressed by 

.=)( XX  V  Morever the magnetic trajectories of the magnetic field F  is given by 

 

 T.VTTT  =)(=  

 

Generalized Lorentz equation obtained from the geodesics of M  is given by 0=TT  

[1-3]. 

A charged particle moves along a curve in the magnetic vector field then it is exposed 

to the magnetic field. The researchers have examined the trajectories of charged particles 

moving in an area modeled by the homogeneous space R2S  [4]. The notions of T -

magnetic, 1N -magnetic and 2N -magnetic curves and some characterizations for them in the 

semi-Riemannian manifolds have been determined by some researchers [5-9]. 

The local theory of the curves has been investigated by some researchers by 

considering Serret-Frenet laws. Bishop frame, which is also called an alternative or a parallel 

frame of the curves by means of parallel vector fields. The Serret-Frenet and Bishop frames 

have one thing in common i.e. their tangent vector field. Recently, many studies have been 

done on the Bishop frames in the Euclidean space [10-12]. 
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On the other hand, several methods in the research of magnetic curves for a given 

magnetic field on the constant energy level have been invesitgated by Muntenau in [1]. Also, 

many researchers have identified energy related studies using different methods [13-21]. 

In this study, we calculate the Fermi-Walker derivatives of T , 1N , 2N  magnetic 

curves according to the Bishop frame in the space. Moreover, we obtain the energy of the 

Fermi-Walker derivative of magnetic curves according to the Bishop frame in space. Finally, 

we have energy relations of some vector fields associated with Bishop frame in the space. 

 

 

2. MATERIALS AND METHODS 

 

 

At this stage, some basic concepts about curves in space are given. 

The Euclidean 3-space supplied with the standard straight metric given by 

 

.=, 2

3

2

2

2

1 dxdxdx   

 

Here ),,( 321 xxx  is a coordinate system of the Euclidean 3-space. 

Considering that  BNT ,,  is the Serret-Frenet frame of   that the following Frenet-

Serret equations can be given. 
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where   and   are the curvature function and torsion of  , respectively and 
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1,===

BN,BT,NT,

BB,NN,TT,
 

 

The Bishop frame, which is referred to as the alternative or parallel frame of the 

curves depending to parallel vector fields, was introduced by L.R. Bishop in 1975. It is a well-

defined alternative approach even in the absence of the second derivative of the curve [22]. 

The Bishop frame is explained as 
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from here  

 
0.===

1,===

2121

2211

N,NNT,NT,

N,NN,NTT,
 

 

Here,  21 N,NT,  is called Bishop trihedra and 1k  and 2k  are called Bishop curvatures 

of the curve and the connection between Frenet and the Bishop frame is expressed as follows  
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where 
1

2arctan=)(
k

k
s , )(=)( ss

'

   and 2

2

2

1 )()(=)( kks  . Bishop curvatures are 

defined by )(cos=1 sk   and )(sin=2 sk   [12]. 

 

 

3. FERMI-WALKER DERIVATIVE 

 

 

In this section, we give the definitions of T , 1N , 2N  magnetic curves and Fermi-

Walker derivative [23-25]. 

 

Definition 3.1. Let 3: RRI be a curve with Bishop frame in Euclidean 3-space 

and
VF be a magnetic field in 3R . If the tangent vector field T   of the Bishop frame satisfies 

the Lorentz force equation TVTT  =)(='
, then the curve  is called a T -magnetic 

curve according to Bishop frame [23]. 

 

Proposition 3.2. Let  be a unit speed T -magnetic curve according to Bishop frame 

in Euclidean 3-space. Then, the Lorentz force according to the Bishop frame is obtained as 
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where  is a certain function defined by ),(= 21 N,Ng [15]. 

 

Definition 3.3. Let 3: RRI be a curve with Bishop frame in Euclidean 3-space 

and
VF be a magnetic field in 3R . If the vector field 1N  of the Bishop frame satisfies the 

Lorentz force equation 111 =)(= NVNN  '
, then the curve  is called a 1N -magnetic 

curve according to Bishop frame [23]. 

 

Proposition 3.4. Let  be a unit speed 1N -magnetic curve according to Bishop frame 

in Euclidean 3-space. Then, the Lorentz force according to the Bishop frame is obtained as 
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where  is a certain function defined by )(= 2NT,g [23]. 
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Definition 3.5. Let 3: RRI be a curve with Bishop frame in Euclidean 3-space 

and
VF be a magnetic field in 3R . If the vector field 2N of the Bishop frame satisfies the 

Lorentz force equation 222 =)(= NVNN  '
, then the curve  is called a 2N -magnetic 

curve according to Bishop frame [23]. 

 

Proposition 3.6. Let   be a unit speed 2N -magnetic curve according to Bishop frame 

in Euclidean 3-space. Then, the Lorentz force according to the Bishop frame is obtained as 
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where  is a certain function defined by )((= 1NT),g  [23]. 

 

Definition 3.7. X is any vector field and )(s is unit-speed any curve in space. 
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(3.4) 

 

defined as
s

X




~

~

 derivative is called Fermi-Walker derivative. Here 
ds

d
=T , 

ds

d
A

T
= [26]. 

 

Definition 3.8. X is any vector field along the )(s space curve. If the Fermi-Walker 

derivative of the vector field X  

,0=~

~

s

X





                                                        
(3.5) 

 

the vector field X along the curve, parallel to the Fermi-Walker terms, is called [26]. 

 

Theorem 3.9.Let  be a T -magnetic curve with Bishop frame. Then, Fermi Walker 

derivatives of Lorentz forces )(T , )( 1N , )( 2N are given by 
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where )(= 21 N,Ng . 

 

Corollary 3.10. Lorentz forces )(T , )( 1N , )( 2N  are parellel according to Fermi 

Walker if 
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Proof. Assume that   is a T -magnetic curve with Bishop frame. By using Fermi 

Walker derivatives, we have 
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Also, Lorentz forces )(T , )( 1N , )( 2N  are parallel to the Fermi--Walker terms, 

then 

 

 0.=0=0,= 21

'''

andkk   

 

Therefore, constantk =1 , constantk =2   and constant=  is obtained. 

 

Theorem 3.11.Let  be a 1N -magnetic curve with Bishop frame. Then, Fermi Walker 

derivatives of Lorentz forces )(T , )( 1N , )( 2N are given by 
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where )(= 2NT,g . 

 

Corollary 3.12. Lorentz forces )(T , )( 1N , )( 2N are parellel according to Fermi 

Walker if 
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Proof. It is clear with Theorem 3.11. 

 

Theorem 3.13. Let  be a 2N -magnetic curve with Bishop frame. Then, Fermi Walker 

derivatives of Lorentz forces )(T , )( 1N , )( 2N are given by 
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where )(= 1NT,g . 

 

Corollary 3.14. Lorentz forces )(T , )( 1N , )( 2N are parellel according to Fermi 

Walker if 
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Proof. It is clear with Theorem 3.13. 

 

 

4. RESULTS AND DISCUSSION 

 

 

In our this part, we define Fermi-Walker derivative and energy with Sasaki metric 

[27]. 

 

Definition 4.1.For two Riemannian manifolds  ,M  and  H,N  energy of a 

differentiable map    H,,: NMf  is defined by 
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where v  is the canonical volume form on M [27,28]. Sasaki metric defined as 

 

            .,,=, 212121  QQddS   

 

Now, we study relationship between Fermi-Walker derivative and Frenet fields of 

curves. Fermi transport and derivative have the following theories. 

Fermi-Walker transport is defined by 

 

 0.>=<>,<= TX,TTXTXX TTTT FW  

 

XT

FW  is called Fermi Walker derivativefor X  by T  along the particle [29]. 

 

Theorem 4.2. Let   be a unit speed T -magnetic curve according to Bishop frame in 

Euclidean 3-space [30]. Then, energy of )(T , )( 1N , )( 2N with Sasakian metric are 

given by 
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Proof.Let   be a unit speed T -magnetic curve according to Bishop frame in 

Euclidean 3-space. By using 2211

2

2

2

1 )(=)( NNTTT

''

kkkk    equation and from (4.1) 

energy formula, we get 
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Also, using )( 1NT  equation and  from energy formula, we have 
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Theorem 4.3. Let  be a unit speed 1N -magnetic curve according to Bishop frame in 

Euclidean 3-space. Then,energy of )(T , )( 1N , )( 2N  with Sasakian metric are given by 
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Proof: Let   be a unit speed 1N -magnetic curve according to Bishop frame in 

Euclidean 3-space. Then, by using 2112
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On the other hand, using 
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we have 
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Theorem 4.4. Let  be a unit speed 2N -magnetic curve according to Bishop frame in 

Euclidean 3-space. Then,energy of )(T , )( 1N , )( 2N with Sasakian metric are given by 
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Proof. Let   be a unit speed 2N -magnetic curve according to Bishop frame in 

Euclidean 3-space. Then, by using 221
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is obtained. 

Then, using 22111 =)( NNTNT kk'     and  from energy formula we have 

 

 

.))()()((1
2

1
=

))(),((1
2

1
=))((

2

2

2

1

2

111

dskk

ds

' γγ

NNN TT

















 

 

Similarly, by using =)( 2NT 2
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Theorem 4.5. Energy of )(
~

TT , )(
~

1NT , )(
~

2NT  with Sasakian metric are 

presented 
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Proof.Let   be a unit speed T -magnetic curve according to Bishop frame in 

Euclidean 3-space. When Eq. 2211=)(
~

NNTT

''

kk   and (2.2) are written in the energy 

formula 
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is obtained. 

Similarly by using 211 =)(
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k   equation and from energy formula we 

have 
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Then by using 122 =)(
~

NTNT

''

k   equation and from energy formula we have 
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Theorem 4.6. Energy of )(
~

TT , )(
~
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~

2NT with Sasakian metric are 

presented 
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Proof.Let   be a unit speed 1N -magnetic curve according to Bishop frame in 

Euclidean 3-space. When Eq. 2112=)(
~

NNTTT

''

kk    and (2.2) are written in the 

energy formula 
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is obtained. 

Similarly by using 22111 =)(
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have 
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Then, by using 222 =)(
~

NTNT k
'

   equation and from energy formula, we 
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Theorem 4.7. Energy of )(
~

TT , )(
~

1NT , )(
~

2NT with Sasakian metric are 

presented 

 

.))())(()((1
2

1
=))(

~
(

,))())(()((1
2

1
=))(

~
(

,))()())(((1
2

1
=))(

~
(

2

22

2

2112

2

22

2

12

2

2

2

11

22

11

2

212

22

1

2

1221

dskkkkkkkkk

dskkkk

dskkkkkkkk

'''''

'''''

'''''''

























N

N

T

T

T

T

(4.7) 

 

Proof.Let   be a unit speed 2N -magnetic curve according to Bishop frame in 

Euclidean 3-space. When Eq. 2211=)(
~

NNTTT

'' kk    and (2.2) are written in the 

energy formula  
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is obtained. 
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Similarly by using 111 =)(
~

NTNT k'    equation and from energy formula we get 
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Then by using 12122 =)(
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NTNT kkk '   equation and from energy formula we have 

 

 

.))())(()((1
2

1
=

)))(
~

()),(
~

((1
2

1
))(

~
(

2

22

2

2112

2

22

2

1

222

dskkkkkkkkk

ds

'''''












 NN=N TTTTT

 

 

 

CONCLUSIONS 

 

 

            The study of computing an energy of given vector field depending on the structure of 

the geometrical spaces has becoming more popular research area recently. 

In this paper, it was calculated the Fermi-Walker derivatives of some magnetic curves 

according to the Bishop frame in the space. Moreover, it was obtained the energy of the 

Fermi-Walker derivative of magnetic curves according to the Bishop frame in space. Finally, 

the energy relations of some vector fields associated with Bishop frame in the space was 

obtained. 
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