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Abstract. Bezier surfaces are commonly used in Computer-Aided Geometric Design 

since it enables in geometric modeling of the objects. In this study, the shape operator of the 

timelike and spacelike surfaces has been analyzed in Minkowski-3 space. Then, the obtained 

results were applied to a numeric example. 
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1. INTRODUCTION  

 

 

Bezier curves and surfaces which are the elements of computer-aided geometric 

design were discovered by Pierre Bezier and De Casteljau on the purpose of using them to 

design car bodies. Bezier surfaces have a set of some algorithmic properties that analyze and 

interpret the shapes. Thus, CAGD and geometric modeling are used commonly. As a 

parametric curve, the Bezier curve is described by Bernstein's basic polynomials and has a 

control polygon. Bezier surfaces seen as a product of two Bezier curves have the same feature 

as well. Until today, various studies related to Bezier curves and surfaces have been 

conducted in several studies. Some basic concepts of Bezier curves and surfaces are given in 

detail in [1-7]. Ye and his colleagues (2010), by examining a new sort of the fundamental 

functions of the Bezier curves having one and two shape parameters, studied on some models 

for these structures [8]. As for Sun and his colleagues (2019) investigated the particular 

coordinate networks on the Bezier surfaces [9]. Incesu (2008, 2003) and Yılmaz (2009) 

calculated the geometric properties of the Bezier surfaces, shape operator, Gauss, and the 

mean curvature [10-12]. Lang ve Röschel (1992) studied on the metric properties of the 

developable rational Bezier surfaces [13]. On the other hand, Minkowski geometry firstly 

discovered by German mathematician and physicist Herman Minkowski (1864-1909). 

Minkowski tried to solve the problems in relativity theory handled in mathematical physics by 

using geometric methods. Minkowski and Einstein, his teacher of Russian origin from Zurich 

Polytechnic school, gave a dimension quality to time by showing that indeed time concept 

was an inseparable part of the space. In addition to three dimensions described with width-

length-height (coordinates x-y-z) of an object, the time is taken as a fourth dimension in the 

Minkowski geometry. There is a distance concept bearing an important resemblance to the 

distance concept in the Euclid geometry. Definitions and theorems related to curves and 

surfaces in the Minkowski 3-space are given in the source [14] in detail. Georgiev (2009) 
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examined some basic metric properties to form the substructure of the spacelike Bezier 

surface in the Minkowski 3-space [15]. Also, Ugail and his colleagues (2011) worked on the 

calculation of the basic forms of the Bezier surfaces and the solution of the Plateau-Bezier 

problem in Minkowski-3 space [16]. Kuşak Samancı and Çelik (2017) analyzed the surface 

normal of the timelike and the spacelike Bezier surfaces, coefficients of the basic forms, 

Gauss and mean curvatures, and also shape operator in the Minkowski 3-space for the first 

time [17, 18]. İncesu (2019) researched the equivalence relations LS (3) and the ratio of 

similarity of the Bezier surfaces [19]. 

In this study, the first and second fundamental basis form of the timelike and spacelike 

Bezier surface, Gauss and mean curvature were calculated in Minkowski space. Furthermore, 

the coefficients of the matrix corresponding to the shape operator were acquired. By utilizing 

these coefficients, Gauss and mean curvatures were calculated. At the end of the chapter, an 

explanatory numeric example was given. 

 

 

2. MATERIALS AND METHODS 

 

 

Let be three dimensional Euclid space. The space 
 
defined by the 

Lorentzian inner product  is called Minkowski space for the 

vectors and . When  or , the vector  taken 

in Minkowski-3 space is called a spacelike vector, when , it’s called a timelike 

vector, and then when  and , it’s called a null (spacelike) vector. The 

spacelike and timelike vectors among these vectors are termed as non-degenerate vectors as 

well. Suppose that and taken in space are any two vectors. The 

cross product of two vectors  and  in Minkowski 3-space is calculated by the equation 

. Assume that surface having parameterization  defined 

by  in  Minkowski space is a surface. The tangent plane  which is 

spanned by vectors  and  in the Minkowski space, , is called a tangent 

plane passed through a point  of regular plane of the classes  . 

The unit normal vector field in  point of the surface is . 

Matrix representation of the first fundamental form on any plane of the surface is 

acquired by 
E F

W
F G

 
  
 

where , ,  are the 

coefficients of the first fundamental form of the surface, . The non-

degenerate surfaces (timelike, spacelike) in Minkowski space are defined by this means. If the 

surface is timelike (spacelike), then is negative (positive). For non-degenerate surfaces 

to be represented simultaneously in Minkowski space, the demonstration  is 
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used.  If the surface is timelike, the normal  is a spacelike vector since the tangent plane is 

timelike, and it yields  equality. If the surface is spacelike, normal is a 

timelike vector since the tangent plane is spacelike, and it yields equality . 

Here, it is calculated by the equation . The coefficients of 

the second fundamental form of the surface on any plane 
 

 

                                                  
 

 

                                                   
 

                                                
 

are calculated with the Lorentzian inner product. Also, with the help of coefficients  

of the first fundamental form and coefficients  of the second fundamental form, the 

shape operator of the surface is defined with the matrix . The mean 

curvature  and the Gauss curvature  for an undegenerate surface are obtained by 

 ,    with the help of the matrix  corresponding to 

shape operator [12-20]. 

 

Definition 2.1.   A Bezier curve of degree n is defined by the equation for 

 control points  in Euclid space. Here,  is the n-th degree Bernstein 

polynomials, it is represented by the equation . The binomial 

coefficient provides the condition  for . 

 

Theorem 2.2.  Let  be the control points, the first-order derivative of the Bezier curve 

 is obtained by the formula  
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where . 
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with control points , it’s expressed with the equation  

. Parameter curves of the Bezier surface are specific Bezier 

curves. Particularly, parameter curves , , ,  are a Bezier curve 

which is in the form of four edges of the Bezier curve. Bezier surfaces yield endpoint 

interpolation with the corner points , , ,  The set

, as in the convex polyhedron involving the Bezier surface, yields feature 

for . Besides, is a three-dimensional affine 

transformation, the Bezier surfaces are invariant under the affine transformation due to the 

equality    [1-12]. 

 

Theorem 2.4.  The first-order partial derivative of the Bezier surface according to the 

parameters  and  is obtained by  

 

 ,                                       (2.2) 

 

where  and , [1-7]. 

 

Corollary 2.5. The values of the first-order partial derivatives of the Bezier surface  

according to the parameters  and  at the minimum point   are calculated by  

 

  [10-12].                    (2.3)                        

 

Theorem 2.6.  The second-order partial derivatives of the Bezier surface  according to 

the parameters  and  are calculated with the following equations. 

 

                                                                               (2.4) 

 

                                                                                     (2.5) 

 

                                                                                (2.6) 

 

where   

and . 

     , 0,1 0,1u v   ijb

     
0 0

,
n m

n m

ij i j

i j

b u v b B u B v
 



 , 0b u  ,1b u  0,b v  1,b v

  000,0b b   01,0 nb b   00,1 mb b  1,1 .nmb b

 00 ,..., nmCH b b

   00 ,, ,..., n mb u v CH b b      , 0,1 0,1u v   T

         
0 0 0 0

. . ,
n m n m

n m n m

ij i j ij i j

i j i j

T b B u B v T b B u B v
   

 
 

 
 

 ,b u v

u v

     
1

1,0 1

0 0

,
n m

n m

u ij i j

i j

b u v b B B v




 

      
1

0,1 1

0 0

, ,
n m

n m

v ij i j

i j

b u v b B B v




 



 
  1,0

1ij iji j
b n b b


 

 
  0,1

1ij iji j
b m b b


 

 ,b u v

u v    , 0,0u v 

         0,110

10 00 00 01 00 000,0 . ,  0,0 . ,u vb n b b b b m b b b     

 ,b u v

u v

       
2

2,0 2

0 0

,
n m

n m

uu ij i j

i j

b u v b B u B v




 



     
1 1

1,1 1 1

0 0

,
n m

n m

uv ij i j

i j

b u v b B B v
 

 

 



       
2

0,2 2

0 0

,
n m

n m

vv ij i j

i j

b u v b B u B v




 



        2,0

2 1
. 1 2 ,ij iji j i j

b n n b b b
 

   
 

       1,1

1 1 1 1ij iji j i j i j
b nm b b b b

   
   

        0,2

1 1
. 1 2ij iji j i j

b m m b b b
 

   



The shape operator of… Hatice Kusak Samanci et al. 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 

869 

Theorem 2.7.  The second-order partial derivatives of the Bezier surface for 

parameters  and  at the minimum point  is represented by the following 

equations [10-12], 

i)                                                                         (2.7)                                                                  

ii)                                                                           (2.8)                                                
                                                                                      

 

iii)                                                                    (2.9)        

 

 

3. RESULTS AND DISCUSSION 

 

 

In this study, the coefficients of the first fundamental form of the timelike and 

spacelike Bezier surfaces were calculated by following a method different from in [16] and by 

generalizing in the Minkowski space described in [15]. Then, by calculating the second 

fundamental form, Gauss, and mean curvatures of the Bezier surface for the first time, the 

matrix form of the shape operator of the surface was calculated in the Minkowski-3 surface. 

At the very and, a quantitative example was given. 

 

Definition 3.1.  The Bezier surface which is defined in the form of  
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Minkowski inner product is called the non-degenerate Bezier surface in Minkowski-3 space. 

If the normal of the surface is  , 1g N N  , it is called a timelike Bezier surface, but if 

 , 1g N N   , it is called a spacelike Bezier surface. 

 

Theorem 3.2.  The coefficients  , ,E F G of the first fundamental form of the timelike 
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Proof: The coefficients of the first fundamental form of the Bezier surface are obtained by 

using the first-order partial derivative given in the equation (2.2) with the Lorentzian inner 

product metric. The coefficient E  is obtained by 
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Similarly, the coefficients F and G are obtained. 

 

Corollary 3.3.  The coefficients  , ,E F G of the first fundamental form of the timelike 
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Corollary 3.5.  The first fundamental form of the timelike (spacelike) Bezier surface at the 

point    , 0,0u v   in Minkowski-3 space is obtained by 
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Now, the metric properties for the timelike (spacelike) Bezier surfaces in Minkowski space 

were proven. In the following results, if the Bezier surface is timelike, then 1   will be taken 

in the equalities; if the surface is spacelike, then 1   in the equalities. 
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Theorem 3.6.  The normal vector field N on the non-degenerate Bezier surface  ,b u v in the 

Minkowski-3 space is obtained by  
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N

g



  



                                                                        (3.5) 

 

where if the Bezier surface is timelike, then 1  , if it is spacelike, then 1  . 
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the curve for the parameters given in the equation (2.2)  
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where the demonstration  ,g N N   is used for the timelike and spacelike surfaces to be 

represented simultaneously. If the Bezier surface is timelike,  , 1g N N  , if it’s spacelike, 
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Corollary 3.7.  The equation of the normal vector field N on the Bezier surface which is 
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Theorem 3.8.  The determinant of the first fundamental form of the timelike (spacelike) 

Bezier surface  ,b u v in the Minkowski-3 space is calculated by  det , .W g     

 

Proof: When the determinant of the first fundamental form of the timelike (spacelike) Bezier 

surface  ,b u v in the Minkowski-3 space is written in its place in the equations 

2detW EG F   and the product and square functions are organized by utilizing equations 

(3.1), (3.2) ve (3.3), the following result is obtained. 
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Corollary 3.9. The coefficients 
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Theorem 3. 10.  The coefficients of the second form of the timelike (spacelike) Bezier 
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Proof: The coefficients , ,e f g of the second fundamental form of the timelike (spacelike) 

Bezier surface  ,b u v  are calculated to be the coefficient e  of the second fundamental form 
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by using the second-order partial derivative given in the equations (2.4) (2.5) and (2.6), and 

the formulas of the normal vector field N given in the equation (3.6). 

 

    , , ,uue g b u u N u v  

                 

           

2 1 1
2,0 1,0 0,12 1 1

0 0 0 0 0

1 1
1,0 0,11 1

0 0 0

0

0

det , ,
n m n n m

n m n m n m

ij i j ij i j ij i j

i j i i j

n n m
n m n m

ij i j L ij i j

i i j L

m

j

m

j

b B u B v b B u B v b B u B v

b B u B v b B u B v

  
  

    

 
 

 





 
  

 



 



 

 
 

                    
2 2 2

2,0 2,0 2,02 2 2

1 2 3
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2 2 2

1 2 3

n m n m n m
n m n m n m

ij i j ij i j ij i j

i j i j i j

x B u B v y B u B v z B u B v  

  

  
  

     

    


 

  

 

                 

 

2 2 2
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1 2 3
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2 2 2

1 2 3

n m n m n m
n m n m n m

ij i j ij i j ij i j

i j i j i j

x B u B v y B u B v z B u B v  

   

  
  

     

 


  

  

   

     

 

2
2,0 2

0 0

,

,

n m
n m

ij i j

i j

g b B u B v

g



  




 

 
 
 




 

 

Similarly, the coefficient f  and g  of the second fundamental form are obtained by 

using the Theorem (2.6) and the Theorem (3.6). 

 

Corollary 3.11. The coefficients  , ,e f g of the second fundamental form of the timelike 

(spacelike) Bezier surface at the min point    , 0,0u v   in the Minkowski-3 space are 

obtained by the equations  

 

  

  
 

  
 

  
 

2,0 1,1 0,2

00 00 00, , ,
,  ,  

, , ,

g b g b g b
e f g

g g g

  

        
  

  
                         (3.10)

  

     
 

where  1 2 3, ,     is defined by the components 
        0,1 1,0 1,0 0,1

1 00 00 00 00y z y z   , 

        1,0 0,1 0,1 1,0

2 00 00 00 00x z x z   and 
        1,0 0,1 0,1 1,0

3 00 00 00 00x y x y   . 

 

Theorem 3.12.  The Gauss and the mean curvature of the timelike (spacelike) Bezier surface 
 

 ,b u v in the Minkowski-3 space are obtained with the following equations. 

 

 

           

     

2 2
2,0 0,22 2

0 0 0 0

2
1 1

1,12 1 1

0 0

, . ,

.
,

,

n m n m
n m n m

ij i j ij i j

i j i j

n m
n m

ij i j

i j

g b B u B v g b B u B v

K
g

g b B u B v

 


 


 
 

   

 
 

 

    
    
    

   
     
  

 



                                     

 

(3.11)
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2 1 1
2,0 0,1 0,12 1 1

0 0 0 0 0 0

1 1 1
1,1 1,0 0,11 1 1

3
0 00 0

, ,

2 , ,
2 . ,

n m n m n m
n m n m n m

ij i j ij i j ij i j

i j i j i j

n m n
n m n m n

ij i j ij i j ij i j

i j i

m

j
L

g b B u B v g b B u B v b B u B v

H g b B u B v g b B u B v b B u B
g






  

  
  

     

  
  

  

   
   
   

 
   

  



 

 

   

                 

1
1

0 0

2 1 1
0,2 1,0 1,02 1 1

0 0 0 0 00

, ,

n m
m

i j

n m n n
n m n m n m

ij i

m m

j j

j ij i j ij i j

i j i i

v

g b B u B v g b B u B v b B u B v




 

  
  

    

 
 
 
 

  
   

 
    
     

    



  

 

     (3.12) 

 

Proof: The Gauss and the mean curvature of the timelike (spacelike) Bezier surface  ,b u v in 

the Minkowski space are obtained by utilizing the Theorem (3.2) and the Theorem (3.10). The 

Gauss curvature of the Bezier surface is calculated by 

 
2

2

eg f
K

EG F

 

  
 

 

                                                                                                              (3.13) 

 

 

     

 

     

 

     

  
 

2 2 1 1
2,0 0,2 1,12 2 2 1 1

0 0 0 0 0 0

2

, , ,

.
, , ,

.
,

n m n m n m
n m n m n m

ij i j ij i j ij i j

i j i j i j

g b B u B v g b B u B v g b B u B v

g g g

g

  

        


 

   
   

     

     
     
     

  




  

 

 
                 

2 2 1 1
2,0 0,2 1,12 2 2 1 1

2
0 0 0 0 0 0

. , . , , .
,

n m n m n m
n m n m n m

ij i j ij i j ij i j

i j i j i j

g b B u B v g b B u B v g b B u B v
g


  

 

   
   

     

      
         

      
  

 
 

As for the mean curvature H , it is obtained by  

 

2

1 2
.

2

eG fF gE
H

EG F


  
  

 
 

                                                                                                (3.14)         

                                                                  

 

 

     

 
           

     

 
     

2
2,0 2

1 1
0 0 0,1 0,11 1
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1 1
1,1 1 1

1
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00
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,
,

,
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ij i j n m n m
i j n m n m

ij i j ij i j

i j i j

m

j

n m
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ij i j n
i j n m

ij i j ij

i

g b B u B v

g b B u B v b B u B v
g

g b B u B v

g b B u B v b
g g



  




    




 
   

   

 
 


  

 

 
 

  
 

  

 
 

   



 




     

     

 
           

1
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2
0,2 2

1 1
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1
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,

,
,
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j j
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ij i j ij i j

i i

B u B v

g b B u B v
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0
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3
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Corollary 3.13.  The Gauss and the mean curvature of the timelike (spacelike) Bezier surface 

 ,b u v at the minimum point    , 0,0u v   in Minkowski space is computed by 

 

 
         2,0 0,2 1,12

00 00 002
, , ,

,
K g b g b g b

g


  

 


   

 

 

       
       

       

2,0 0,1 0,1

00 00 00

1,1 1,0 0,1
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3

0,2 1,0 1,0

00 00 00

, . ,

2. , , .
2 . ,

, ,

g b g b b

H g b g b b
g

g b g b b






  


 
 

  
 

 
  

 
 

 

 

Theorem 3.14.  The coefficients of the matrix 11 12

21 22

a a
A

a a

 
  
 

 corresponding to the shape 

operator of the timelike (spacelike) Bezier surface  ,b u v in the Minkowski-3 space are 

calculated by 

 

 

                 

                 

2 1 1
2,0 0,1 0,12 1 1
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11
3 1 1
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0
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Proof: The coefficients of the matrix corresponding to the shape operator of the timelike 

(spacelike) Bezier surface  ,b u v in the Minkowski-3 space are calculated with the equations 

are obtained by writing the statements of the Theorem (3.2) and the Theorem (3.10) in their 

place in the matrix multiplication   

 

2

1
.

G F e f
A

F E f gEG F

   
    

    
. 

 

When we calculate the components obtained from this matrix multiplication 

separately, the first component of the matrix is obtained by 
 

11 2

eG fF
a

EG F
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 Similarly, other matrix components can be found. 
 

Teorem 3.15. The Gauss and the mean curvature of the timelike (spacelike) Bezier surface 

 ,b u v in the Minkowski-3 space are calculated with the following equations by utilizing the 

shape operator of the surface. 
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Proof: Alternatively, the Gauss and the mean curvature of the timelike (spacelike) Bezier 

surface  ,b u v in the Minkowski-3 space can be obtained by utilizing from the coefficients of 

the matrix corresponding to shape operator as well. Thus, The Gauss curvature of the timelike 

(spacelike) Bezier surface is calculated with the equation  
 

   11 22 12 21det . .K A a a a a   

 

                                                                             (3.15) 

   

 
 

           

     

2 2
2,0 0,22 2

2 2 2
0 0 0 03 1 2

3 2
1 1

1,1 1 1

0 0

, ,

     
,

,

n m n m
n m n m

ij i j ij i j

i j i j

n m
n m

ij i j

i j

g b B u B v g b B u B v

g
b B u B v

 
   

 


 
 

   

 
 

 

    
    

      
  

  
  
  

 

  

   

 

 

           

     

2 2
2,0 0,22 2

0 0 0 0

3 2
1 1

1,1 1 1

0 0

, ,
,

,
,

n m n m
n m n m

ij i j ij i j

i j i j

n m
n m

ij i j

i j

g b B u B v g b B u B v
g

g
b B u B v

 
  

 


 
 

   

 
 

 

    
    

     
  

  
  
  

 


 

  
 

           

     

2 2
2,0 0,22 2

0 0 0 0

2 2
1 1

1,1 1 1

0 0

, ,

,
,

n m n m
n m n m

ij i j ij i j

i j i j

n m
n m

ij i j

i j

g b B u B v g b B u B v

g
b B u B v

 


 


 
 

   

 
 

 

    
    
    

   
  

  
  

 


. 

 

The mean curvature H is obtained by the equation  
 

 11 22

1
.
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Corollary 3.16.  The coefficients of the matrix A  corresponding to the shape operator of the 

timelike (spacelike) Bezier surface  ,b u v  at the point    , 0,0u v   are calculated by the 

equality 
 

 

                2,0 0,1 0,1 1,1 1,0 0,1

11 00 00 00 00 00 00
3

1
, , . , ,

,
a g b g b b g b g b b
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3

1
. , , , ,
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g
 

  


 


 

 

 

                2,0 1,0 0,1 1,1 1,0 1,0
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1
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                1,1 1,0 0,1 0,2 1,0 1,0

22 00 00 00 00 00 00
3

1
, , , ,

,
a g b g b b g b g b b

g
 

  
 


. 

 

Theorem 3.17.   Through the coefficients of the shape operator of the timelike (spacelike) 

Bezier surface  ,b u v at the min point    , 0,0u v  , the Gauss and the mean curvatures are 

calculated by the formulas 
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,
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in the Minkowski-3 space.

  

Proof: The Gauss and the mean curvature at the minimum point of the surface are calculated 

by writing the coefficient values in the Corollary (3.16) into the equations (3.15) ve (3.16). 
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3. A NUMERIC EXAMPLE 
 

 

The equation of the quadratic timelike Bezier surface b(u,v)
 
of which control points 

are b00 = (2,1,3), b01 = (4,2,6), b02 = (2,6,7), b10 = (3,3,8), b11 = (3,6,8), b12 = (3,7,8),  

b20 = (4,3,6), b21 = (4,6,9), b22 = (4,8,9) in the Minkowski space is calculated by  
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. 1 . 4,3,6 2 . 1 . 4,6,9 . 4,8,9

u v u v v u v

u u v u v u v u u v

u v u v v u v

       
 
 

         
 
     
 

 

 
Figure 1. Quadratic timelike Bezier surface. 

 

Let analyze the surface metric of this described quadratic timelike Bezier surface at 

the point  0,0b . The first-order partial derivatives of the quadratic timelike Bezier surface is 

obtained by the representation 
 

  1,0

1ij iji j
b n b b


   and 

 
  0,1

1ij iji j
b m b b


  . In that case, 

the first-order partial derivatives of the quadratic Bezier surface are calculated as 
   1,0

10 2,0, 4b   ,  
   0,1

01 0, 4, 2b 
   1,0

00 2, 4,10b  , 
   0,1

00 0,6,6b   
   1,0

01 2, 4, 4b  . The 

coefficients , ,E F G  of the first fundamental form of the quadratic timelike Bezier surface are 

calculated respectively as 
    1,0 1,0

00 00, 80E g b b   , 
    1,0 0,1

00 00, 36F g b b    

    0,1 0,1

00 00, 0G g b b  which are from the Corollary (3.3). The second-order derivatives of the 

quadratic timelike Bezier surface are obtained to be 
2 280 72. .ds du du dv    from the 

Corollary (3.5). The second-order derivatives of the quadratic timelike Bezier surface are got 

as    0,0 0, 4, 14 ,uub       0,0 0,0, 12 ,uvb  
 

   0,0 0, 2, 4vvb    . The normal vector 

field N of the quadratic timelike Bezier surface is the unit normal vector 

 
   

 
, 0,0

, 1,1 3,1 3
u v

N u v


  of the surface from the Corollary (3.7). The equation 

        
2 220,0 , 0,0 1 1 3 1 3 1g N N      is obtained with the help of the Minkowski 

metric. Therefore, the normal vector N is spacelike. The coefficients e, f, g of the second 

fundamental form of the quadratic timelike Bezier surface are calculated respectively to be 
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    0,0 , 0,0 10 3,uue g b N       0,0 , 0,0 4,  uvf g b N 

    0,0 , 0,0 2 3vvg g b N  . Since  
22det 36 0W EG F     the surface is timelike. 

Since the surface is timelike, it’s taken to be 1  . The coefficients of the matrix 

corresponding to the shape operator of the quadratic timelike Bezier surface is obtained to be 

11 12 21 22

1 25 1 17
, , ,

9 162 54 243
a a a a        . By utilizing the shape operator of the quadratic 

timelike Bezier surface, the Gauss and the mean curvature are found respectively as 

31 2916,  22 243K H    from the equations (3.15) and (3.16). 

 

 

4. CONCLUSION 
 

 

In this study, it was discussed that the analysis of the Bezier surfaces commonly used in 

the Computer-Aided Geometric Desing (CAGD) in the Minkowski space in terms of 

geometric perspective. After obtaining the coefficients of the first and the second fundamental 

form of the timelike and the spacelike Bezier surfaces, the Gauss and the mean curvatures, the 

shape operator is calculated in the Minkowski space for the first time. 
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