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Abstract. Bezier surfaces are commonly used in Computer-Aided Geometric Design
since it enables in geometric modeling of the objects. In this study, the shape operator of the
timelike and spacelike surfaces has been analyzed in Minkowski-3 space. Then, the obtained
results were applied to a numeric example.
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1. INTRODUCTION

Bezier curves and surfaces which are the elements of computer-aided geometric
design were discovered by Pierre Bezier and De Casteljau on the purpose of using them to
design car bodies. Bezier surfaces have a set of some algorithmic properties that analyze and
interpret the shapes. Thus, CAGD and geometric modeling are used commonly. As a
parametric curve, the Bezier curve is described by Bernstein's basic polynomials and has a
control polygon. Bezier surfaces seen as a product of two Bezier curves have the same feature
as well. Until today, various studies related to Bezier curves and surfaces have been
conducted in several studies. Some basic concepts of Bezier curves and surfaces are given in
detail in [1-7]. Ye and his colleagues (2010), by examining a new sort of the fundamental
functions of the Bezier curves having one and two shape parameters, studied on some models
for these structures [8]. As for Sun and his colleagues (2019) investigated the particular
coordinate networks on the Bezier surfaces [9]. Incesu (2008, 2003) and Yilmaz (2009)
calculated the geometric properties of the Bezier surfaces, shape operator, Gauss, and the
mean curvature [10-12]. Lang ve Rdéschel (1992) studied on the metric properties of the
developable rational Bezier surfaces [13]. On the other hand, Minkowski geometry firstly
discovered by German mathematician and physicist Herman Minkowski (1864-1909).
Minkowski tried to solve the problems in relativity theory handled in mathematical physics by
using geometric methods. Minkowski and Einstein, his teacher of Russian origin from Zurich
Polytechnic school, gave a dimension quality to time by showing that indeed time concept
was an inseparable part of the space. In addition to three dimensions described with width-
length-height (coordinates x-y-z) of an object, the time is taken as a fourth dimension in the
Minkowski geometry. There is a distance concept bearing an important resemblance to the
distance concept in the Euclid geometry. Definitions and theorems related to curves and
surfaces in the Minkowski 3-space are given in the source [14] in detail. Georgiev (2009)
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examined some basic metric properties to form the substructure of the spacelike Bezier
surface in the Minkowski 3-space [15]. Also, Ugail and his colleagues (2011) worked on the
calculation of the basic forms of the Bezier surfaces and the solution of the Plateau-Bezier
problem in Minkowski-3 space [16]. Kusak Samanci and Celik (2017) analyzed the surface
normal of the timelike and the spacelike Bezier surfaces, coefficients of the basic forms,
Gauss and mean curvatures, and also shape operator in the Minkowski 3-space for the first
time [17, 18]. Incesu (2019) researched the equivalence relations LS (3) and the ratio of
similarity of the Bezier surfaces [19].

In this study, the first and second fundamental basis form of the timelike and spacelike
Bezier surface, Gauss and mean curvature were calculated in Minkowski space. Furthermore,
the coefficients of the matrix corresponding to the shape operator were acquired. By utilizing
these coefficients, Gauss and mean curvatures were calculated. At the end of the chapter, an
explanatory numeric example was given.

2. MATERIALS AND METHODS

Let R®be three dimensional Euclid space. The space R? = (R*.9(.) defined by the
Lorentzian inner product g(x,y)=xy, + XYy, — Xy, is called Minkowski space for the

VECIOTS X = (%, X, %,)and y =(y,,y,.v,). When §(W,W)>0 or w=0, the vector W taken
in Minkowski-3 space is called a spacelike vector, when J(W,W)<0, it’s called a timelike

vector, and then when §(W,W)=0 and w0, it’s called a null (spacelike) vector. The
spacelike and timelike vectors among these vectors are termed as non-degenerate vectors as

well. Suppose that k = (k;,k,,k;)and I = (I,,1,,1;) taken in RR?space are any two vectors. The

cross product of two vectors k and I in Minkowski 3-space is calculated by the equation

& & &
ka I ==k, k, k,|.Assume that M surface having parameterization b =b(u,v) defined
Il I2 |3

by b:U < R> - R} in R? Minkowski space is a surface. The tangent plane T,M which is
spanned by vectors b, (P) and b, (P) in the Minkowski space, k >1, is called a tangent

plane passed through a point P of regular plane M of the classes ck.
bAk, b, ARy

”bu AL bv” B —8(E.G—F2) .

Matrix representation of the first fundamental form on any T,M plane of the M surface is

The unit normal vector field in P point of the M surface is N =

E F
acquired by W:(F Gthere E=g(b,.b,), F=g(b,.b), G=g(b,b,) are the

coefficients of the first fundamental form of the surface, detW =EG—F?. The non-
degenerate surfaces (timelike, spacelike) in Minkowski space are defined by this means. If the
surface is timelike (spacelike), then detw is negative (positive). For non-degenerate surfaces
to be represented simultaneously in Minkowski space, the demonstrationg(N,N)=¢ is
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used. If the surface is timelike, the normal N is a spacelike vector since the tangent plane is
timelike, and it yields g(N,N)=&=1 equality. If the surface is spacelike, N normal is a

timelike vector since the tangent plane is spacelike, and it yields equality g(N,N)=¢=-1.

Here, it is calculated by the equation [b, a, b= /-¢(E.G - F?)=-e.detW . The coefficients of

the second fundamental form of the surface M on any plane T,M
e=-g(Ab,b,)=-g(N,.b,)=g(N.b,)
f =-g(Ab,b,)=-g(N,.b,)=-9(b,N,)=9(N,b,)

g=-g(Ab,b,)=-g(N,b)=g(N,b,)

are calculated with the Lorentzian inner product. Also, with the help of coefficients (E,F,G)
of the first fundamental form and coefficients (e, f,g) of the second fundamental form, the

-1

shape operator of the surface is defined with the matrix A:(E g] (‘: fj. The mean
g

curvature H and the Gauss curvature K for an undegenerate surface are obtained by

a;

H=2traceA , K =sdetA with the help of the matrix A:[
2 a'21 a‘22

} corresponding to

shape operator [12-20].

Definition 2.1. A Bezier curve of degree n is defined by the equation b"(t) :Zbi B (t) for
i=0

n+1 control points by,b,...,b

n

in Euclid space. Here, B/(t) is the n-th degree Bernstein

ny . .
polynomials, it is represented by the equation Bi”(t):{ijt'(l—t)"'. The binomial
- . . n n!
coefficient provides the condition [i): Ty for o<i<n.
il(n—i)!

Theorem 2.2. Let b, € R® be the control points, the first-order derivative of the Bezier curve

b" (t) is obtained by the formula

db" S ()it
o (0)=26787 (1) (21)

i=0

where b” =n (b, -b).

Definition 2.3. Assume that B/ (U) and Bjm (V) are the nth and mth Bernstein base functions
with the parameters U and V, respectively. 0<i<n o< j<m, for the Bezier surface
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(U,V)E[O,l]X[O,l]With control  points bij, it’s expressed with the equation

ZZb,J ! . Parameter curves of the Bezier surface are specific Bezier
i=0 j=0

curves. Particularly, parameter curves b(u,0), b(u,1), b(0,v), b(Lv) are a Bezier curve

which is in the form of four edges of the Bezier curve. Bezier surfaces yield endpoint
interpolation with the corner points b(0,0)=b,,, b(10)=b,, b(0,1)=h,,, b(1L1)=b,,. The set

CH {by,.....b,,}» as in the convex polyhedron involving the Bezier surface, yields feature
b(u,v)eCH {by.....b, .} for v(u,v)e[0,1]x[0,1]. Besides, Tis a three-dimensional affine
transformation, the Bezier surfaces are invariant under the affine transformation due to the
eaualtty T(Zz B Bf“(v)J > 2T (5,)B7 (u)B] (v). [1-12]

i=0 j=0 i=0 j=0
Theorem 2.4. The first-order partial derivative of the Bezier surface b(u,v)according to the
parameters U and V is obtained by

n-1 m n m-1
Zbl(Jlo Bn—le ZbIOl B Bm—l (2.2)
i=0 j=0 i=0 j=0

where b = n(b

(i+1)]

—by ) and b™ =m(b,;, by ), [1-7].

Corollary 2.5. The values of the first-order partial derivatives of the Bezier surface b(u,v)

according to the parameters U and Vv at the minimum point (U,V) =(0,0) are calculated by

b, (01 0) = n-(blo - boo) = bégv b, (0’ O) = m-(bm _boo) = b(()gll)’ [10-12]. (2.3)

Theorem 2.6. The second-order partial derivatives of the Bezier surface b(u,v) according to
the parameters U and V are calculated with the following equations.

n-2 m
b, (u,v)=>">"bl*9B? (u) BT (v) (2.4)
i=0 j=0
n-1 m-1
by, (u,v)=>> b*BM B (v) (2.5)
i=0 j=0
n m-2
b, (u,v)=> > bi*?B" (u)B"?(v) (2.6)
i=0 j=0
where  b*® =n.(n=1)(Iy,,,); =20, +; ), B =nm(by ) B, —By ;)
and b{>® = m.(m—1)(b, .,y —2b, ., +1; )
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Theorem 2.7.  The second-order partial derivatives of the Bezier surface b(u,v)for

parameters U and V at the minimum point (U,V)=(0,0) is represented by the following
equations [10-12],

i) buu (0' O) =n (n _1)(b20 - 2b10 + boo) = béé,o) (2.7)
i) buv (O’ O) = nm(bn - b10 _b01 + boo) = bt%l) (2.8)
i) b, (0,0) = m(m—1)(by, - 20y, + by, ) = b (2.9)

3. RESULTS AND DISCUSSION

In this study, the coefficients of the first fundamental form of the timelike and
spacelike Bezier surfaces were calculated by following a method different from in [16] and by
generalizing in the Minkowski space described in [15]. Then, by calculating the second
fundamental form, Gauss, and mean curvatures of the Bezier surface for the first time, the
matrix form of the shape operator of the surface was calculated in the Minkowski-3 surface.
At the very and, a quantitative example was given.

Definition 3.1. The Bezier surface which is defined in the form of
ZZ i Bi for the control points by in Minkowski-3 space defined by the
i=0 j=0

Minkowski inner product is called the non-degenerate Bezier surface in Minkowski-3 space.
If the normal of the surface is g(N,N)=1, it is called a timelike Bezier surface, but if

g(N,N)=-1, itis called a spacelike Bezier surface.

Theorem 3.2. The coefficients (E,F,G)of the first fundamental form of the timelike
(spacelike) Bezier surface b(u,v)in the Minkowski-3 space are obtained by

n-1 m n-1 m
[ Zbulo)Bn 1(U Bm ZbulO)Bn 1(u ( )j (3.1)
i=0 j=0 i=0 j=0
n-1 m n m-1
[.=o;b'lo)8n (u)BT(v) JZ:(;b,“)Bi”(u)B;“(v)j
(3.2)
n m-1 n m-1
G= g( bigol)B ( Bm 1 , Zb|01)B Bm 1( )j (3.3)
i=0 j=0 i=0 j=0

Proof: The coefficients of the first fundamental form of the Bezier surface are obtained by
using the first-order partial derivative given in the equation (2.2) with the Lorentzian inner
product metric. The coefficient E is obtained by

=9 (b, (uv).b, (uv))
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{3gemomo)

i=0 j=0

I—*

gt

S s e )] (St wey|

j=0 i=0 j=0

B (u) B (v )j

n-1 m n-1

=9 zbllO)Bn—l(u)Bm

i=0 j= i=0 j

MB

Il
o

Similarly, the coefficients F and G are obtained.

Corollary 3.3. The coefficients (E,F,G)of the first fundamental form of the timelike

(spacelike) Bezier surface b(u,v)at the min point (U,V) =(0,0) in the Minkowski-3 space are
obtained by

E=g(b5”b5" ). F=g(bk".bi”). G =g(bG" b5Y). (34)

Corollary 3.4. The first fundamental form of the timelike (spacelike) Bezier surface at the
point (U,V)=(0,0)in Minkowski-3 space is calculated by

3
N
AR

dszzg(iz OB (U) B (v), Zm:bllo)B”‘l )B"‘(v)jdu2

i=0 j=0 i=0 j=0
n-1 m n m-1
g Zzbllo Bnl bIOl)B Bm 1(V)jd d
i=0 j= i=0 j=0

n m-1 n m-1
{ Zb,“B (u) B (V). Zb,“)B Bml(v)jdz

Corollary 3.5. The first fundamental form of the timelike (spacelike) Bezier surface at the
point (u,v)=(0,0) in Minkowski-3 space is obtained by
ds? = g(b00 b )d +2g(b00 b 8*1))du.d +g(b00 b 3'1>)dvz. Let the components of the
vector 1 =(4,4,,4,) to provide the abbreviation in the equations to be

n m-1 n-1 m n-1 m n m-1
ﬂlz[z yl(101)B ( )Bm 1( ) Zzi(jl,o)Binfl Zylo Bnl Z ZI(101 ! Bm 1( )]

i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0

n-1 m n_ m-1 n_ m-1 n 1 m
2[ 2% B (u) By (v) Y > 2B (u) By (v x"VB! (u) B (V)Y > 2B (u) BT (v)J

i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0

=]
N

]

Now, the metric properties for the timelike (spacelike) Bezier surfaces in Minkowski space
were proven. In the following results, if the Bezier surface is timelike, then £ =1 will be taken
in the equalities; if the surface is spacelike, then ¢ =1 in the equalities.

S ) oy (03 S (e 03 e )8y (S S w)er )|

j=0 i=0 j=0 i=0 j=0 i=0 j=0

Iy
o
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Theorem 3.6. The normal vector field N on the non-degenerate Bezier surface b(u,v)in the
Minkowski-3 space is obtained by

N A (3.5)

J-€9(4. 1)

where if the Bezier surface is timelike, then ¢ =1, if it is spacelike, then &=1.

Proof: The unit normal vector of the timelike (spacelike) Bezier surface b(u,v)in the

Minkowski 3-space is obtained by using the Lorentzian cross product of the tangent vector of
the curve for the parameters given in the equation (2.2)

n-1 m i
oab SbE )BT ()AL TSR (1B ()
N = u L™~V _ i=0 j =& |
(U,V) ”bu AL b ” n-1 m (1L,0)pn-1 m n m-1 @D L (3 6)
i oz;'b” B (u)B (V) A 3 Obij Bl (u)B;"(v)
1=0 J= i L

where the demonstration g(N,N)=¢ is used for the timelike and spacelike surfaces to be
represented simultaneously. If the Bezier surface is timelike, g(N,N)=1, if it’s spacelike,
it’s seen as g (N, N)=—1. Also, the norm |b, A, bv||=\/|E.G— F2| =\/—3(E.G—F2) =-¢.detW is

used [14]. When the demonstration involving & is written while taking a norm in the
equation (3.6), the surface normal is computed by

_ (k) (k) A
\/\ﬂfﬂf—ﬂ;\ \/—a(zfmf—z;) \/—gg(z,x)L

Corollary 3.7. The equation of the normal vector field N on the Bezier surface which is
timelike (spacelike) in the Minkowski-3 space at the min point (U,V) = (0,0) is
b A, bSY

b0 A ploY

oo~ AL Poo

N (0,0)=

L

Theorem 3.8. The determinant of the first fundamental form of the timelike (spacelike)
Bezier surface b(U,V) in the Minkowski-3 space is calculated by detw =-g(4,4).

Proof: When the determinant of the first fundamental form of the timelike (spacelike) Bezier
surface b(U,V)in the Minkowski-3 space is written in its place in the equations

detW =EG-F? and the product and square functions are organized by utilizing equations
(3.1), (3.2) ve (3.3), the following result is obtained.
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n-1 m n m-1 n m-1 n-1 m
detW = OZOXI B (u)BP (V)ZO: Oy,(JO”B,” (u)BJ""l(v)—ZO: 0xl(J‘”)B,”(u)B;“’l(v) 0Z(;yf]“’)BI”’l(u)Bm(v)
i=0 j= i=0 j= i=0 j= i=0 j=
n-1 m n m-1 n m-1 n-1 m
- 2 2% B (u)B] (v) 2 22 By (u) B (v) - 2 3 xRl (u) B (V) > 2B (u) B (V)J
i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0
n-1 m n m-1 n m-1 n-1 m
| S By () 3 2B (B (v)- 238 ()8 () sz,-”)B.“-l(u)Br(v)J
i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0
-1 m n m-: n m-: n-1 m 2
oSS B ()Y (V)3 2B (1) B ()~ 3 XB (u)By (1) S 2B u) By (v)
i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0
-1 m n m-. n m- n-1 m 2
L S5m0 ()2 2 (u)Br (1)~ Xy (u) B () 2B (u) B (v)
i=0 j=0 i=0 j=0 i=0 j=0 i=0 j=0
2
n-1 m n m-1 n m-1 n-1 m
(ES e wa IS e werv)- S e e v wer )
i=0 j= i=0 j= i=0 j= i=0 j=
=-g(4.1)

Corollary 3.9. The coefficients /%1=(y§g'l)z((,t’°)—yé%,‘o)zég’l)), /12=(XS§°)Z§,8’1)—Xég’l)zét’o)),

2 =(x§§°)yég'l) —xgg'l)y(%o)) are obtained for the point (U,V)=(0,0) of the timelike (spacelike)
Bezier surface b(u,v) in the Minkowski space. Using the equation (3.4), the determinant of
the first fundamental form is calculated by

detW =EG-F?
= g(bs”b" )9 (b bis™) — g (b3 bis")

—(A*+ 4" = 42)=—g(4,4).

Theorem 3. 10. The coefficients of the second form of the timelike (spacelike) Bezier
surface are computed by

(n ib,”)B” ?(u)BT (v), /1}/«/—59 (1,2) 3.7)
:g(n -1 m b,lanl(u B™ l(V J/ ,—gg(ﬂﬂ, (3.8)

i=0 j=0

N

I
o

H

o[ S5 e ()4 / oo (i h). 39)

Il
o

Proof: The coefficients €, f, g of the second fundamental form of the timelike (spacelike)
Bezier surface b(u,v) are calculated to be the coefficient € of the second fundamental form
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by using the second-order partial derivative given in the equations (2.4) (2.5) and (2.6), and
the formulas of the normal vector field N given in the equation (3.6).

of £ umer e (wer )4

J-€9(4.2)

Similarly, the coefficient f and g of the second fundamental form are obtained by
using the Theorem (2.6) and the Theorem (3.6).

Corollary 3.11. The coefficients (e, f,g)of the second fundamental form of the timelike

(spacelike) Bezier surface at the min point (U,V)=(0,0) in the Minkowski-3 space are
obtained by the equations

g b2% 4 g ) g N

o) o) ol -
-£9(4,4) -£9(4,1) -£9(4,4)

where A=(4,4,4) is defined by the components ﬂlz(ygg'l )yl 01)),

,0 0, 0, ,0 ,0 0, 0, ,0
1y = (X415 — X292 ) and 2, = (e EH ey ).

Theorem 3.12. The Gauss and the mean curvature of the timelike (spacelike) Bezier surface
b(U,V) in the Minkowski-3 space are obtained with the following equations.

n-2 m n m-2
g bl(zo)an ] ( bl(oz ! Bmz ’lj
< P [Z J Z : ) (3.11)
gz(/l,l)' n-1 m-1 ; .
o ESer e w]
i=0 j=

ISSN: 1844 — 9581 Mathematics Section
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o E5ever w2 o S wier ), S wer )
S —1 —2g[n1m1 B (u)B] (v) ijg[n1ibi21°>Bi”1(u)Br(v),imzlb,§“B (u)BM (v )] (3.12)
—6.93(/1,1) =0 j=0 i=0 j=0 i=0 j=0
oSS 0o S e ESuer et )

Proof: The Gauss and the mean curvature of the timelike (spacelike) Bezier surface b(U,V) in

the Minkowski space are obtained by utilizing the Theorem (3.2) and the Theorem (3.10). The
Gauss curvature of the Bezier surface is calculated by

= 3.13)
g(n_:gbfzo)BI”—Z(u)B;” (V) ﬂj g(_iorizbigoz B ( )Bm 2( ) i) gz(i: m_:b.gll)Bun_l(u)B;n_l(V) lj
\/—89 (4, 4) \/—89 (4, 4) ( o (/1 /1))2
=g — (/1,/1)
i o B 00 S o { £ 0

As for the mean curvature H, it is obtained by

1(eG-2fF+gE
H=¢=. 3.14
2 ( EG-F? j ( )
n-2 m
o ESumarwerwa) .
i=0 j=0 b(Ol)B Bm—l b(O,l)B_n Bm—l
T SR wer ) S8 e )
g[n 1mlb|(lan1 Bm 1( )lj ) .
_ —& ) i=0 j=0 {n x b(lO Bn -1 B™ by b-(-o'l)Bn gm-t J
29(4,4) J-€9(4,2) ’ Z FB (B Z 1B ()BT ()
( n mZZb'(OZ Bm 2( ) ﬂl] n-1 m n-1 m
i o S5 (w)r v S5 e ) )
\/—gg /1,1) i—0 j=0 i—0 j=0
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Corollary 3.13. The Gauss and the mean curvature of the timelike (spacelike) Bezier surface
b(U,V) at the minimum point (U,V) = (0,0) in Minkowski space is computed by

= (g(b2%, ) (58, 2) g2 (1%, 4)

g(b5,2)-g(bl" BS")
rymrorwr R L]
+(bi2?,2) g (65”,65”)

Theorem 3.14. The coefficients of the matrix Az{a“ a”} corresponding to the shape
a21 a22

operator of the timelike (spacelike) Bezier surface b(U,V)in the Minkowski-3 space are

calculated by

n-2 m n m-1 n m-1
g(zzbéz'o)Bi“(U)Bf" (v) /1]9(2_ bi"BY (u) B (v). > > bjB} (u) B} l(V)J
B 1 i=0 j=0 i=0 j=0 i=0 j=0
aﬂ —& 93(1 ﬂ’) SRS (1) pn-1 m-1 A (LO)pn-1 m SLS 01)pn m-1
-9 o 1j B (U)B (V) 419 OZ(;bIJ B (U)Bj (V)' - ob” B (U)BJ (V)
1=0 J= i=0 j= i=0 j=
n-1 m-1 n m-1 n m-1
(o ESea wer 4o SEuer w35 u e e )|
i=0 j= i=0 j= i=0 j=
4 =7 / 3 n m-2 n-1 m n m-1
-£.0 (ﬂ, ﬂ,) g ) 0bigo,z)Bln (U)Bm 2 Jg[ Zbl(lO)Bn -1 B (V) ) 0b|(101)B|n (U)B;n—l (V)J
i=0 j= i=0 j= i=0 j=
n-2 m n-1 m n m-1
o[ S5 v).4]o[ S Su e w)ar (0. S SH s w)ar (o)
a =+ 1 i=0 j=0 i=0 j=0 i0 j=0
A —£ g3 (//L ﬂ) n-1 m-1 n-1 m n-1 m
o ESuar e ) o SSuer wer . S wer e )
i=0 j=0 i=0 j=0 i=0 j=0
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g(imzlbigl,l Bn 1 Bm 1 ’ﬂ’jg[nzlibulO)Bn -1 (V)’i

1 i=0 j=0 i=0 j=0 i-0 j=0
a, =+—g3(/1 l) o . . .
—&. , . o ) .
oSS ey fo| SSuer e o ST uer v (v)j
i=0 j= i=0 j= i=0 j=

Proof: The coefficients of the matrix corresponding to the shape operator of the timelike

(spacelike) Bezier surface b(U,V) in the Minkowski-3 space are calculated with the equations

are obtained by writing the statements of the Theorem (3.2) and the Theorem (3.10) in their
place in the matrix multiplication

1 G -F)(e f
CEG-F*(-F E Jf g)
When we calculate the components obtained from this matrix multiplication
separately, the first component of the matrix is obtained by

_eG-fF
%= EG_F?
n-2 m n m-1 n m-1
=" 1 Q(Z bﬁzo)Bu“Z(U)Bm(v)’ﬁjg[ZZbSOl)B.” (u)B]*(v). 2 2 by B (u) By 1(V)J
-&£.0 (ﬁ,ﬂ) i=0 j=0 i=0 j=0 i=0 j=0
1 n-1m-1 (L) gni . n-1 m (L0)gn1 m n m-1 (0l gn -
+ (_89 (;L /1) g ol 1j BI (U)Bj (V)'ﬂ“ 9 — ;bu Bl (U)B (V)’ — J:Obu Bl (U)BJ (V)
n-2 . m n m-1 n m-1
O [o(E e o S e ST e wer )
i=0 j= i=0 j= i=0 j=
T _ 3 /1’1 n-1 m-1 Ny o n-1 m o . n m-1 ) N
PO o ESuer e 4o SEua e S S wer o)
i=0 j= i=0 j= i=0 j=

Similarly, other matrix components can be found.

Teorem 3.15. The Gauss and the mean curvature of the timelike (spacelike) Bezier surface

b(U,V) in the Minkowski-3 space are calculated with the following equations by utilizing the
shape operator of the surface.

) g[?:jzm:b,“’s” 2 (v),xj.g(in S 2b,§°2>5, (u)B? (v )zj

gz(l,/l). n-1 m-1
(3

i=0 j=0

2
b“B"1 u)B" (v ),1]
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n-2 m n m-1 n m-1
g[ S 0B (u)By (v) ﬂ]g(z OB () B (v) b.ﬁ"”s.“(u)sr-l(v)j
i=0 j=0 i=0 j=0 i=0 j=0
s n-1 m-1 . . n-1 m . N n m-1 . .
He —29(22@% ()BT (v z]g[ SheE ()87 (v). 3 S e (u)B) 1<v>j
—-£.0 (/1,/1) i=0 j=0 i=0 j=0 i=0 j=0
n m-2 n-1 m n-1 m
+g[ 0987 (u)B7 (v ajg[ S hiB () B (v) zbsms.“-l(u)s?(v)]
i=0 j=0 i=0 j=0 i=0 j=0

Proof: Alternatively, the Gauss and the mean curvature of the timelike (spacelike) Bezier

surface b(U,V) in the Minkowski-3 space can be obtained by utilizing from the coefficients of
the matrix corresponding to shape operator as well. Thus, The Gauss curvature of the timelike
(spacelike) Bezier surface is calculated with the equation

K=cdet(A)=¢(a,.a,, —a,.a,) (3.15)

n-2 m n m-2
b(zo Bn ) B ,l b(oz Bm 2 1
o8 -x %) QLZ )8 ]g( 2z BB j
g (i ﬁv) n-1 m-1 2
{5 )B,-m-%v),zJ
i=0 j=0
n-2 m n m-2
o[ S5 e (w18 1).4]o[ S5 w)er 2.4
_ —gg (ﬂ,,ﬂ,) i=0 j= i=0 j=0
- g3 A A n-1 m-1 2
( ) _(io >, bi(jl,l)Bln—l(u)B;n—l (V)a/lj
n-2 m n m-2
g( Oz;bigz,o)Ban (U)Bjm (V),l]g( " obso Z)Bun (U)Bjmfz (V)’EJ
& i=0 j= i=0 j=
T g’ (MA)| (nama :
. (ES e wer)
1=0 J=

H=s> |zA_§(an+a22) (3.16)
& n-2 m . n n m-1 . n m-1 .
o[ ST 0 0o S w0 S S e )
2,/—£.9 (/1,/1) i=0 j=0 i=0 j=0 i=0 j=0
p— [M > b8 (u) 8 (1) i]g(n 3B )8 (1)) S b ()8 (v )J
2./—¢ 93(1,1) i=0 j=0 ! I : i=0 j=0 ! i=0 j=0 ! I
n-1 m-1 n-1 m n m-1
* : [ > DB (u) B (v) ng[ 2058 (u)BY (v), 3 > by B! (u) B 1(V)j
2 —-&.9 (ﬂ,ﬂ,) i=0 j=0 i=0 j=0 i=0 j=0
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3 b8 (u)B! <v>,”zlibiﬁ’°>sr*(u>sr(v)]

i=0 j=0 i=0 j=0

2 eg (1)

Corollary 3.16. The coefficients of the matrix A corresponding to the shape operator of the
timelike (spacelike) Bezier surface b(U,V) at the point (U,V)=(0,0) are calculated by the
equality

a, = m(g (bl 2) 0 (035, 55" )~ (b4 2) g (04”5
e R LG R CRR LICRC)
8, = %( g (bs”,2) g (b5, b5") - g (b%".2) g (.65 )
0 - m(g (b5",2) 9 (050" )~ g (b5, 2) g (b5, BG”))-

Theorem 3.17. Through the coefficients of the shape operator of the timelike (spacelike)
Bezier surface b(U,V)at the min point (U,V) =(0,0), the Gauss and the mean curvatures are

calculated by the formulas

g(bii”,2).(b$Y,05")
H=—————| -29(b;",2)g (b5 b5 )
+g(bi2?,2) g (65”,65”)

in the Minkowski-3 space.

Proof: The Gauss and the mean curvature at the minimum point of the surface are calculated
by writing the coefficient values in the Corollary (3.16) into the equations (3.15) ve (3.16).
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3. ANUMERIC EXAMPLE

The equation of the quadratic timelike Bezier surface b(u,v) of which control points
are boo = (2,1,3), bor = (4,2,6), boz = (2,6,7), bio = (3,3,8), bux = (3,6,8), b1 = (3,7,8),
b2o = (4,3,6), b1 = (4,6,9), b, = (4,8,9) in the Minkowski space is calculated by
2 2 2 (2
b(u,v)= 33 B (1) 8} (v} :Z(Z g (v).b”}Bf(u)
(a-u)".(1-v)*.(21.3)+2(1-u) ¥ (1-v).(2,4,6)+ (1-u)’V*.(2,6,7))
= +(2u.(1-u).(1-v)" (3,3.8)+ 4uv(1-u).(1-).(3,6,8) + 2u(1-u) v (3,7,8))

—+

Figure 1. Quadratic timelike Bezier surface.

Let analyze the surface metric of this described quadratic timelike Bezier surface at
the point b(0,0). The first-order partial derivatives of the quadratic timelike Bezier surface is
obtained by the representation b{*® = n(b(m) j —bij) and b\®Y = m(bi( oy —b
the first-order partial derivatives of the quadratic Bezier surface are calculated as
b =(2,0,-4),  bY=(042)b" =(2,4,10), bY=(0,6,6) bl =(24,4). The
coefficients E,F,G of the first fundamental form of the quadratic timelike Bezier surface are
calculated  respectively as E=g (béé‘o),béé'o)) =-80, F=g¢g (bé;'o),bég’l)) =-36

. ) In that case,

G=g¢ (bég‘l),bég'l)) =0which are from the Corollary (3.3). The second-order derivatives of the

quadratic timelike Bezier surface are obtained to be ds®=-80du’-72.du.dv from the
Corollary (3.5). The second-order derivatives of the quadratic timelike Bezier surface are got
as b, (0,0)=(0,-4,-14), b, (0,0)=(0,0,-12), b, (0,0)=(0,-2,—4). The normal vector
field Nof the quadratic timelike Bezier surface is the wunit normal vector
N(“’V)(u,v)=(o,o):(1']/3’1/3) of the surface from the Corollary (3.7). The equation

g(N(0,0),N(0,0))=1*+(/3)" ~(1/3)" =1 is obtained with the help of the Minkowski

metric. Therefore, the normal vector N is spacelike. The coefficients e, f, g of the second
fundamental form of the quadratic timelike Bezier surface are calculated respectively to be
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e=g(b, (0,0),N(0,0))=10/3, f =g(b, (0,0),N(0,0))=4,
g=9(h,(0,0),N(0,0))=2/3. Since detw =EG-F2=-(36)" <othe surface is timelike.
Since the surface is timelike, it’s taken to beg =21. The coefficients of the matrix
corresponding to the shape operator of the quadratic timelike Bezier surface is obtained to be
1 25 1 17 R .
=--,a,=—,a,, =——,a,, =——— . By utilizing the shape operator of the quadratic
T - TEL T S J be op f
timelike Bezier surface, the Gauss and the mean curvature are found respectively as
K =31/2916, H =—22/243 from the equations (3.15) and (3.16).

4. CONCLUSION

In this study, it was discussed that the analysis of the Bezier surfaces commonly used in
the Computer-Aided Geometric Desing (CAGD) in the Minkowski space in terms of
geometric perspective. After obtaining the coefficients of the first and the second fundamental
form of the timelike and the spacelike Bezier surfaces, the Gauss and the mean curvatures, the
shape operator is calculated in the Minkowski space for the first time.
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