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Abstract. The multiplicative convergence on Riesz algebras introduced and 

investigated with respect to norm and order convergences. If   is a Riesz space and   is a 

Riesz algebra then the vector norm        can be considered. Then         is called 

algebraic lattice normed spaces. A net         in an         is said to be multiplicative  -

convergent to     if          
 
   holds for all     . In this paper, the general 

properties of this convergence are studied. 
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1. INTRODUCTION AND PRELIMINARIES 

 

 

Riesz algebras and lattice normed spaces provide natural and efficient tools in the 

theory of functional analysis. However, as far as we know, the concept of Riesz algebras and 

lattice normed spaces have not been combined before. This paper aim to use the mo- and   -

convergences that were introduced by Aydın [1] for combining the concepts of the Riesz 

algebras and lattice normed spaces, and also, introduce a new convergence. 

Let recal, first of all, some basic terminologies and notations which are used in the 

current paper. Let   be a real-valued vector space. Thus, if there is an order relation " " on  , 

i.e., it is antisymmetric, reflexive and transitive, then   is called ordered vector space 

whenever, for every       such that    , the inequalities          and       

hold for all     and    . Consider an ordered vector space  . Then it is called Riesz 

space or vector lattice if, for any two vectors      , the infimum     and the supremum 

    exist in  .  

Let   be a Riesz space. Then, for any    , the positive part of   is        , the 

negative part of   is            and the absolute value of   is            . 

Moreover, for any two elements     in a Riesz space is called disjoint whenever         
 . If every nonempty bounded below subset has an infimum (or, every nonempty bounded 

above subset has a supremum) in a Riesz space   then it is called Dedekind complete Riesz 

space.  

A given partially ordered set   is called directed if, for each        , there is another 

    such that      and     . A function from a directed set   into a set   is called a 

    in  . Thus, a Riesz space   is Dedekind complete if and only if every         

implies the existence of supremum of the net        . A subset   of a Riesz space   is called 

solid if, for each     and    ,         implies    . A solid vector subspace of a 

Riesz space is referred to as an ideal. An order closed ideal is called a band [2-4].  
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A net         in a Riesz space   is said to order convergent to a vector     if there 

exists another net           such that for every  , there is an index    such that        

   for all indexes     . In this case, it is abbreviated as   

 
  . A subset   of a Riesz 

space is said to be order closed whenever         in   and   

 
   implies     [5, 6]. 

Recall that, in a Riesz space  , a net         is called unbounded order convergent (or,   -

convergent, for short) to     if         
 
   for every     . In this case, write 

  

  
→   [7-9]. 

Let   be a Riesz space under an associative multiplication. If the multiplication with 

the usual properties makes   an algebra, and also, the multiplication of two positive vectors in 

  is positive, i.e.,        implies       . Then   is called a Riesz algebra (or, shortly, 

 -algebra). In addition, if         holds for all       then   is called commutative. For 

any Riesz algebra  , it can be seen from that if       implies                 
  for all      then   is called  -algebra [10].  

Recall that, for each real number    , the Archimedean property; the sequence      

is unbounded above in  . That means 
 

 
    holds in   for each    . Motivated by this 

property, a Riesz space   is said to be Archimedean whenever 
 

 
    holds in   for each 

    . Every Riesz space does not need to be Archimedean. To see this, give the following 

example.   

 

Example 1.1. Consider the vector space    with the order, for any                   ,  

                if and only if       or       and      . Thus,        is a Riesz 

space, but it is not Archimedean. Indeed, 
 

 
       in   , but 

 

 
      is not decreasing to zero.  

 

Next, let   be arbitrary an Archimedean  -algebra which has a multiplicative unit 

vector  . Hence, from the equality           , one can see that e is a positive 

element. Moreover, it can be seen that   is a weak order unit because       implies 

               . It is known that Archimedean implies the commutative. Thus, in 

the current paper, unless otherwise, assume that every Riesz spaces are real and Archimedean, 

and also, all  -algebras are assumed to be commutative. Recall that a net         in an  -

algebra   multiplicative order converges to     if         
 
   for all     . It is 

abbreviated as           -converges to  , or shortly   

  
→  . Also, the   -Cauchy,   -

complete and   -continuous are defined [11, 12]. On the other hand, a Riesz algebra   is said 

to be normed Riesz algebra if it is Banach lattice and               holds for all 

     . Recall that the classical normed spaces are a function from a vector space to real 

numbers. However, when a vector-valued norm is taken, it means that the norm is a function 

from a vector space to Riesz space. Consider the structural properties of a vector space with 

some norm taking values in a Riesz space. So, it is called a lattice normed space; an     for 

short. Now, give some basic properties of lattice normed spaces [13, 14]. Let   be a vector 

space and   be a Riesz space. Then the map        is called a vector norm whenever it 

satisfies the following axioms: 

 

1.         if and only if     for all    ;  

 

2.                for all     and    ;  

 

3.                  . 
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Definition 1.2. Let         be a lattice normed space over  . Then it is called algebraic 

lattice normed spaces if   is a Riesz space,   is a Riesz algebra and the vector norm   is 

monotone, i.e.,         implies          . Then, it is abbreviated the         as     .  

 

Dealing with     s, shall keep in mind also the following examples.   

 

Example 1.3. Let   be a  Riesz algebra. Then           is an     .  

 

Example 1.4. Let   be a normed Riesz space with a norm    . Then           is an     . 

 

Let   be a Riesz space. Then consider the set                    
                 , where       is the set of all the order bounded operators on  . This set 

is not only a Riesz algebra but also an  -algebra. 

 

Example 1.5. Let   be a Riesz space and         be the set of orthomorphisms on  . Then 

define the map             by                 . Thus, one can get that 

              is an     . 

 

 

2. BASIC RESULTS  

 

 

In this section, the concept of convergence is introduced on algebraic lattice normed 

spaces. 

 

Definition 2.1. Let         be an     . Then a net         in   is said to be multiplicative 

 -convergent to     if  

 

          
 
   

 

holds for all     . Then it is abbreviated as   

  
→  .  

 

It is clear that   

  
→   is the same as saying        

  
→  . Also, for a Riesz algebra 

 ,  it follows that the   -convergence coincides with the   -convergence on the      

          [14]. Also, for a lattice normed space  , the norm convergence is the same with 

the   -convergence on the               . The following useful lemma is frequently used, 

so it is important to keep in mind it, which can be obtained by using the properties of Riesz 

algebras. 

 

Lemma 2.2.  If     for   and   in a Riesz algebra   then         for all     . 

 

Recall that an element   in an  -algebra   is called nilpotent whenever      for 

some natural number  . The algebra   is called semiprime if the only nilpotent element in E 

is the null element [10]. Now, let’s begin with the next basic properties of the   -

convergence which directly can be gotten from Lemma 2.1. and the inequality           
              in Riesz spaces, so the proof of the following results are omitted. 
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Proposition 2.3. Let   

  
→   and   

  
→   be in an             . Then  

 

1.    

  
→   if and only if       

  
→   ,  

 

2.     

  
→   for each subnet     

  of     ,  

 

3.         

  
→       for each      ,  

 

4.  if   

  
→   and   

  
→   then     whenever   is semiprime  -algebra,  

 

5.      
  
→    . 

 

The   -continuity of lattice operations in     s are obtained by the following sense. 

 

Proposition 2.4. Consider two nets         and         in an             . Then   

  
→   

and   

  
→   implies                 

  
→    .  

 

Proof: Assume   

  
→   and   

  
→  . Then the assumption implies that there are two nets 

          and           in  . Also, for each           there exist      and      

so that              and              for all      and     , and for each 

positive vector  . By applying the  inequality                 [4], one can see that  

 

 

                                         

                                  

  (|    |)                      

 

 

 for all      and      and for every     . Hence,               
 
   because 

of          , that is, one can get                 

  
→    . 

 

Let    be a Dedekind complete Riesz space and   be another Riesz space. Then    is 

called order completion of   if   is isomorphic to a majorizing order dense Riesz space 

subspace of   .  It is known that Riesz space has a unique order completion if it is 

Archimedean [2]. Thus, the following work can be given. 

 

Theorem 2.5.  Let         be a net in an             . Then   

  
→   in   if and only if 

  

  
→   in the               , where                       for all    . 

 

Proof: Suppose that        -converges to zero in        . That is,        
 
   in   for 

all     . Thus,        
 
   in    for all      [9]. Consider an arbitrary positive vector 

    . Since    is order completion of  ,   majorizes    i.e., there is a positive element 

      such that     . Thus, one can get that                   because of 

            . Hence, it can be seen that         
 
   in   . It means that   

  
→   in 

the order completion    because     
  is arbitrary. 
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Conversely, suppose   

  
→   in   . That is,         

 
   in    for every     

 . 

In particular,         
 
   in    for each     . As a result,         

 
   in   holds for 

all      [9]. Hence,         
 
   in   for all     , and so,   

  
→   hold in  . 

 

Definition 2.6. Let         be an      and   be a subset of  . Then   is said to be   -

closed if, for any net         in   that is   -convergent to    , it satisfies that    . 

 

Remark 2.7. In     s, every band is   -closed. Indeed, Let   be given a band in an      

       . Take a net         in   such that   

  
→  . Thus, by using Proposition 2.4., 

       
  
→         for any     . Since      in   and     ,            for all  . 

Thus,          , and so        . 

 

The following useful property can be directly gotten as a result of Proposition 2.4.   

 

Proposition 2.8. The positive cone    in an              is   -closed.  

 

Proposition 2.9.  Every monotone   -convergent net in an      order converges to its   -

limit. 

 

Proof: Assume         is an increasing net in an             . Then it is enough to show 

that   

  
→   implies     . Let’s fix an arbitrary index  . Then          for    . 

From Proposition 2.8.,      

  
→        . Then it can be seen that      for each  . 

Thus   is an upper bound of      because   is arbitrary. Take   as another upper bound of 

    , i.e.,      for all  . Then, again by Proposition 2.8.,     

  
→       , or    . 

Therefore, one can obtain     . 

 

Let         be an      and   be a Riesz subalgebra of  . For a net         in  , 

  

  
→   in         implies   

  
→   in        .  

 

Theorem 2.10. Let         be an      and   be a Riesz subalgebra of  . Assume         

is a net in   such that   

  
→   in        . Then   

  
→   in         if each one of the 

following cases holds:   is majorizing in  ,   is a projection band in  , or if, for each    , 

there are element         such that            . 
 

Proof: Suppose         is an   -convergent to zero net in        . Take a fixed     .  

           Firstly, assume   is majorizing in  . Thus, there is      such that    . So, one 

can see the following inequality 

 

                  
 

 Since        
 
  ,        

 
  . That is,   

  
→   in        .  

Secondly, let   be a projection band in  . Then, by Theorem 1.41.(1) [4],     
   and      . So, one can get positive vectors       and      

  such that      
  . It is known that      in   and      , and so         for all indexes  . Thus, 

       for each   [6]. As a result, by the following equality                   

            

 
  ,        

 
   in  . Therefore,   

  
→   in        .  
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Lastly, assume there exist some elements         such that           for the 

given     . Then  

 

                                                        
 

Thus, by using the   -convergence of         in        , it is known           
 
   and           

 
  , and so        

 
  . It means that   

  
→   in         because   

is arbitrary in   . 

 

Definition 2.11. Let         be an     ,   be a subset of   and   be a vector in  . Then  

 

1.   is said to be   -unit if, for any     ,             order converges to zero 

for all     ; 

 

2.   is said to be   -dense in   if, for any     and for any         , there is 

    such that            for all     . 

  

Theorem 2.12. Let         be an     ,     , and    be the order ideal generated by   in 

 . If    is   -dense in   then   is a   -unit.  

 

Proof: Take a non zero element       . Let’s fix a positive vector     . So, there is 

     such that            for all      because    is   -dense in  . One can 

observe the following inequality [4]; 

 

                                  
 

Hence, by replacing   by     . Thus, assume without loss of generality that there is 

     such that       and            for all     . Therefore, for any    , 

there is       such that        and           
 

 
  for every     . Then there 

is          such that         because of      . So,           holds.  

As a result, for    ,                   , and so             

          
 

 
  for all     . Therefore,            

 
   for each     , and so 

  is a   -unit. 

 

Remark 2.13. Let         be an     . Then the followings hold: 

 

1. Let   be   -unit in  . Take a positive reel number   and a positive vector     . 

For any       it can be observed that 

 

               
 

 
    

 

 
                                 

 

Therefore, it can be easily seen that    and     are both  -units. 

 

2. A positive vector   in a Riesz space   is called strong order unit if, for each    , 

there exists an integer   such that       . If     is a strong unit, then   is a   -

unit. Indeed, fix an element     , then there is     such that     , so 
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for any     and for all     . 

 

3. A positive vector   in a Riesz space   is said to be a weak order unit whenever the 

band generated by   satisfies     . Assume     is a   -unit. Then   is a weak 

unit. Suppose      . Thus,        for any    . So,  

 

                     

 

for all      because   is a   -unit. Hence,    . Therefore, by the fact that a 

vector     is a weak order unit if and only if       implies     [4],   is is a 

weak unit. 

  

Proposition 2.14. Let         be an     . Then, for each   -unit   in      ,     

holds.  

 

Proof: Suppose     is a   -unit in      . It is enough to show that      because of 

       . Assume     . Then, for      , it can be obtained that 

 

             (   (           ))     (         )   

 

                           

 

for all     . Thus,               is not order convergent to zero. This is impossible 

because   is a   -unit. Therefore,     , it means that    .  

 

 

3. CONCLUSION 

 

 

The concept of      and the   -convergence are introduced. The continuity of 

lattice operations in     s with the   -convergence are given. A relation of the   -

convergence between Riesz spaces and their Dedekind completions is shown. A relation 

between the   - and the order convergences is seen. The notions of   -unit and   -density 

are defined. Some basic properties of   -unit and   -density are proved. 
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