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Abstract. In this paper, numerical solutions of generalized Huxley are obtained by 

using a new scheme: Crank-Nicolson logarithmic finite difference method (CN-LFDM). The 

efficiency of the presented method is illustrated by a numerical example for different cases of 

parameters which confirm that obtained results are in good agreement with the exact 

solutions and numerical solutions obtained by some other methods in literature. The method 

is analyzed by von-Neumann stability analysis method and it is displayed that the method is 

unconditionally stable. 

Keywords: Generalized Huxley equation; Crank Nicolson logarithmic finite difference 

method; von Neumann Satbility analysis. 

 

 

1. INTRODUCTION  

 

 

Nonlinear partial differential equations are often used to model most of the problems 

in various fields such as physics, chemistry, biology, mathematics, and engineering. One of 

these nonlinear partial differential equations is generalized Huxley equation. 

The generalized Huxley equation     
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with initial condition 

 

 ,0 ( ),u x f x a x b    

 

and boundary conditions 

 

    0,),(,),( 21  ttgtbutgtau  

 

describe the propagation of a nerve impulse in nerve fibers and the movement of the wall in 

liquid crystals. Where ),(xf  )(1 tg   and )(2 tg  are known functions, , 0   and  0.1 

are given parameters. 
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Various numerical methods have been used to solve the equation (1) numerically by 

many researchers. . Variational iteration method (VIM) has been used to obtain the numerical 

solutions of the equation by Batiha et. al. [1]. Hashemi et. al. [2] used the homotopy 

perturbation method (HPM) to obtain the numerical solutions of the equation. Hashim et al. 

[3] applied the Adomian decomposition method to solve the equation numerically. Hemida 

and Mohamed [4] used the homotopy analysis method (HAM) for obtaining the numerical 

solutions of the equation. Inan [5, 6] used the explicit exponential finite difference method 

and implicit exponential finite difference method (I-EFDM) to solve the equation. 

In this study, we present the Crank-Nicolson logarithmic finite difference method to 

obtain the numerical solutions of the generalized Huxley equation. Logarithmic finite 

difference methods have been used to solve various equations in literature. Celikten et. al. [7] 

used the explicit logarithmic finite difference schemes to solve the Burgers equation. 

Modified Burgers equation has solved by Celikten [8] using the explicit logarithmic finite 

difference schemes.  

Celikten [9] obtained the numerical solutions of Burgers equation by using implicit 

and fully implicit logarithmic finite difference methods. Celikten and Surek [10] used the 

explicit logarithmic finite difference method to solve the generalized Burgers-Fisher equation 

numerically. El-Azab et al. [11] obtained numerical solutions of the Korteweg de Vries 

Burger (KdVB) equation using the open logarithmic finite difference method. Ismail and Al-

Basyoni [12] used the implicit logarithmic finite difference method to solve the Troesch 

problem numerically. Srivastava et al. [13] used the closed logarithmic finite difference 

method to solve two-dimensional Burgers equation systems. The one-dimensional coupled 

Burgers equation was solved by Srivastava et al. [14] using the implicit logarithmic finite 

difference method. Aljaboori [15] used the Crank-Nicolson logarithmic finite difference 

method to solve the combined Burgers equation numerically.  

 

 

2. MATERIALS AND METHODS 

 

 

2.1. CRANK NICOLSON LOGARITHMIC FINITE DIFFERENCE METHOD 

 

 

We demonstrate the finite difference approximation of ),( txu at the node point 

),( ni tx  by n

iu  in which ),,1,0( Niihxi  , ),2,1,0(0  nnkttn , 
b a

h
N


  is the 

node size in x  direction and k is the time step.  

We reorganize Equation (1) to acquire 
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Multiplying equation (2) by ue , we acquire the following equation: 
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using the finite difference approximations for derivatives in Equation (3) the following Crank 

Nicolson logarithmic finite difference scheme is acquired 
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 (4) 

 

where 1 -1i N  . 

Equation (4) is a system of nonlinear difference equations. We assume this nonlinear 

system of equations in the form 

 

                                                               ( ) 0G V                                                                     (5) 

 

where  1 2 1, , ,
T

NG g g g   and 1 1 1

1 2 1, , ,
T

n n n

NV u u u  


    . Newton’s iterative method is used 

to linearize the nonlinear Equation (5) results in the following iteration:  

1) Set  0
V , an initial guess.  

2) For 0,1,2,m  until convergence do:  

Solve        m m m
J V G V   ;  

Set      1m m m
V V 


   where 

 
( )

m
J V  is the Jacobian matrix which is appraised 

analytically. The solution at the previous time-step is taken as the initial estimate. The 

Newton’s iteration at each time-step is stopped when   5( ) 10
m

G V  . 

 

 

2.2. STABILITY ANALYSIS 

 

 

To investigate the stability of scheme, we will use the von Neumann stability analysis 

in which the growth factor of a typical Fourier mode is defined as follows: 

 

                                                           ,  1
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von Neumann stability analysis is used to analyze the stability of finite difference scheme 

applied to linear partial differential equations. So we will investigate the stability of linear 

form of the scheme. The nonlinear term of the scheme (4) have been linearized by replacing 

the quantity  n

iu


 by local constant U . Hence the numerical scheme (4), convert into 
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Since the scheme (7) is logarithmic, the examination will be improved by expanding 

the logarithmic term of the scheme into a Taylor’s series. Hilal et al. [16] applied the same 

procedure to calculate the local truncation error of exponential finite difference schemes and 

examine their stability. If the logarithmic term of the scheme expands to Taylor series and use 

the first term of the expansion the scheme can be written as: 
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By substituting the (6) equality into the (8) linear form of the scheme, we get the 

growth factor as follows: 
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Stability condition in von-Neumann method is 1   and this condition is satisfied 

since 0   and  0.1  . Therefore CN-LFDM generalized Huxley equation  is 

unconditionally stable. 

 

 

3. NUMERICAL RESULTS AND DISCUSSION 

 

 

Crank Nicolson logarithmic finite difference method is used to acquire the numerical 

solutions of the generalized Huxley equation. To demonstrate the correctness of results 
2L  

and L error norms: 
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are used, in which U  and u  indicate the exact and computed numerical solutions, 

respectively. In all numerical computations we took as 0.01h   and 0.000001k  . 

 

 

3.1. NUMERICAL EXAMPLE OF GENERALIZED HUXLEY EQUATION 

 

 

Consider the generalized Huxley equation of the form Equation (1) in domain 

0 1,  0x t    with initial condition 
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and boundary conditions 
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The exact solution of this problem is [17]: 
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where  4 1     and  4 1    . 

The numerical solutions of Generalized Huxley Equation obtained by CN-LFDM are 

compared with the exact solutions and numerical solutions obtained by some other methods 

[1-5] in literature in Tables 1-3. The comparisons for the case 1  , 1  and 0.001   are 

shown in Table 1, while the comparisons for the case 2  , 1  and 0.001   are shown 

in Table 2 and for the case 3  , 1  and 0.001   are shown in Table 3.  

 

Table 1. Exact and numerical solutions for the case δ = 1, β = 1 and γ = 0.001. 

x  t  Exact CN-LFDM 

VIM [1], 

HPM [2], 

ADM [3] 

HAM [4] I-EFDM [5] 

0.1 

0.05 5.000302E-4 5.000195E-4 5.000052E-4 5.000100E-4 5.000125 E-4 

0.1 5.000427E-4 5.000250E-4 4.999927E-4 5.000030E-4 5.000102 E-4 

1 5.002676E-4 5.002363E-4 4.997678E-4 4.998680E-4 5.000064 E-4 

0.5 

0.05 5.001009E-4 5.000677E-4 5.000759E-4 5.000810E-4 5.000768 E-4 

0.1 5.001134E-4 5.000517E-4 5.000634E-4 5.000730E-4 5.000692 E-4 

1 5.003383E-4 5.002316E-4 4.998385E-4 4.999380E-4 5.000572 E-4 

0.9 

0.05 5.001716E-4 5.000949E-4 5.001466E-4 5.001520E-4 5.001540 E-4 

0.1 5.001841E-4 5.000963E-4 5.001341E-4 5.001440E-4 5.001516 E-4 

1 5.004090E-4 5.003070E-4 4.999092E-4 5.000090E-4 5.001479 E-4 

 

Table 2. Exact and numerical solutions for the case δ = 1, β = 1 and γ = 0.001. 

x  t  Exact CN-LFDM VIM [1] 
HPM [2], 

ADM [3] 
HAM [4] I-EFDM [5] 

0.1 

0.05 2.236188E-2 2.236141E-2 2.236077E-2 2.236077E-2 2.236100E-2 2.236110E-2 

0.1 2.236244E-2 2.236167E-2 2.236021E-2 2.236021E-2 2.236070E-2 2.236099E-2 

1 2.237250E-2 2.237117E-2 2.235015E-2 2.235015E-2 2.223546E-2 2.236082E-2 

0.5 

0.05 2.236447E-2 2.236306E-2 2.236335E-2 2.236335E-2 2.236360E-2 2.236339E-2 

0.1 2.236503E-2 2.236246E-2 2.236279E-2 2.236279E-2 2.236320E-2 2.236305E-2 

1 2.237508E-2 2.237067E-2 2.235273E-2 2.235273E-2 2.235720E-2 2.236251E-2 
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x  t  Exact CN-LFDM VIM [1] 
HPM [2], 

ADM [3] 
HAM [4] I-EFDM [5] 

0.9 

0.05 2.236705E-2 2.236416E-2 2.236593E-2 2.236593E-2 2.236620E-2 2.236114E-2 

0.1 2.236761E-2 2.236428E-2 2.236537E-2 2.236537E-2 2.236580E-2 2.236615E-2 

1 2.237766E-2 2.237375E-2 2.235532E-2 2.235531E-2 2.235980E-2 2.236599E-2 

 
Table 3. Exact and numerical solutions for the case δ = 3, β = 1 and γ = 0.001. 

x  t  Exact CN-LFDM VIM [1] 
HPM [2], 

ADM [3] 
HAM [4] I-EFDM [5] 

0.1 

0.05 7.937402E-2 7.937235E-2 7.937005E-2 7.937005E-2 7.937080E-2 7.937122E-2 

0.1 7.937601E-2 7.937331E-2 7.936807E-2 7.936807E-2 7.936970E-2 7.937084E-2 

1 7.941169E-2 7.940713E-2 7.933236E-2 7.933234E-2 7.934820E-2 7.937025E-2 

0.5 

0.05 7.938196E-2 7.937716E-2 7.937799E-2 7.937799E-2 7.937880E-2 7.937814E-2 

0.1 7.938394E-2 7.937523E-2 7.937601E-2 7.937601E-2 7.937760E-2 7.937692E-2 

1 7.941962E-2 7.940476E-2 7.934031E-2 7.934029E-2 7.935620E-2 7.937501E-2 

0.9 

0.05 7.938989E-2 7.938080E-2 7.938592E-2 7.938592E-2 7.938670E-2 7.938709E-2 

0.1 7.939187E-2 7.938132E-2 7.938394E-2 7.938394E-2 7.938550E-2 7.938671E-2 

1 7.942755E-2 7.941506E-2 7.934825E-2 7.934823E-2 7.936410E-2 7.938612E-2 

 

As can be seen from the tables, numerical solutions obtained by the presented method 

are quite compatible with exact solutions and numerical solutions obtained by some other 

methods in the literature.  

In addition, the numerical solutions obtained by the method presented at time 1t   are 

better than the numerical solutions obtained by some other methods in the literature. 2L  and 

L  error norms for the case 1  , 0.01   and different values of   are given in Table 4. 

2L  and L  error norms for the case 1  , 1   and different values of   are given in Table 

5. Table 6 presents 2L  and L  error norms for the case 1  , 0.001   and different values 

of  . As it can be seen from the tables, the 2L  and L  error norms acquired by the CN-

LFDM are quite small in all cases. 

 
Table 4. L2 and L∞ error norms for the case δ=1 and γ=0.01. 

t 
L2

 
L∞

 

β = 1 β = 10 β = 100 β = 1 β = 10 β = 100 

0.01 2.349602E-6 9.186968E-6 5.433684E-5 8.393999E-6 2.690926E-5 8.870622E-5 

0.1 6.226516E-6 3.792347E-5 3.120904E-4 8.864600E-6 4.742339E-5 4.068564E-4 

1 9.105172E-6 5.884348E-5 4.180346E-4 1.142221E-5 7.678065E-5 5.646421E-4 

10 9.082588E-6 4.666173E-5 1.141340E-7 1.139386E-5 6.091816E-5 1.550568E-7 
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Table 5. L2 and L∞ error norms for the case δ = 1 and β = 1. 

t 
L2

 
L∞

 

γ = 0.01
 

γ = 0.001
 

γ = 0.0001
 

γ = 0.01
 

γ = 0.001
 

γ = 0.0001
 

0.01 2.349602E-6 2.350512E-8 2.350589E-10 8.393999E-6 8.394278E-8 1.183651E-10 

0.1 6.226516E-6 6.237805E-8 6.238358E-10 8.864600E-6 8.867026E-8 1.250322E-10 

1 9.105172E-6 9.124808E-8 9.126230E-10 1.142221E-5 1.144705E-7 1.614362E-10 

10 9.082588E-6 9.125080E-8 9.126260E-10 1.139386E-5 1..447403E-7 1.614370E-10 

 

Table 6. L2 and L∞ error norms for the case β = 1 and γ = 0.001.  

t 
L2

 
L∞

 

δ = 1 δ = 2 δ = 4 δ = 1 δ = 2 δ = 4 

0.01 2.350512E-8 8.751590E-7 4.684094E-6 8.394278E-8 3.069117E-6 1.593123E-5 

0.1 6.237805E-8 2.485496E-6 1.462652E-5 8.867026E-8 3.329747E-6 1.867144E-5 

1 9.124808E-8 3.684982E-6 2.201687E-5 1.144705E-7 4.637855E-6 2.793710E-5 

10 9.125080E-8 3.668338E-6 2.171734E-5 1..447403E-7 4.616923E-6 2.755716E-5 

 

 

4. CONCLUSION 

 

 

In this study, Crank-Nicolson logarithmic finite difference method is used to obtain 

the numerical solutions of the generalized Huxley equation. The comparison of the numerical 

solutions obtained by presented method with the exact solutions and the numerical solutions 

obtained by previous studies in the literature is given by tables. It is clear from the tables that 

the numerical solutions obtained by CN-LFDM are in good agreement with the exact 

solutions and better than numerical solutions obtained by some other methods in literature. 

The presented method is an efficient technique for finding numerical solutions for various 

kinds of nonlinear problems. 
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